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Abstract    

Computer simulation of protein dynamics offers unique high-resolution in-

formation that complements experiment. Using experimentally derived 

structures of the natively folded prion protein, physically realistic dynamics 

and conformational changes can be simulated, including the initial steps of 

misfolding. By introducing mutations in silico, the effect of pathogenic 

mutations on prion protein conformation and dynamics can be assessed. 

Here, we briefly introduce molecular dynamics methods and review the 

application of molecular dynamics simulations to obtain insight into vari-

ous aspects of the prion protein, including the mechanism of misfolding, 

the response to changes in the environment, and the influence of disease-

related mutations. 

1 Introduction 

Transmissible spongiform encephalopathies (TSEs) are fatal neuro-

degenerative diseases that occur in mammalian species, including scrapie 

in sheep, bovine spongiform encephalopathy in cattle, chronic wasting dis-

ease in deer and elk and Creutzfeldt-Jakob disease (CJD) in humans. These 

prion diseases can arise spontaneously as a rare ‘sporadic’ disorder, caused 

by hereditary or somatic mutations, or through infectious transmission. The 

notion that the infectious disease agent in TSE could be devoid of nucleic 
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acids and primarily exists of protein, the so-called protein-only hypothesis, 

was first advanced in the 1960s based on experimental observations [1] and 

theory [2]. Prusiner and colleagues later showed that a particular protein 

was indeed required for infectivity [3-5]. Based on the name given to such 

a protein-based nucleic-acid free agent, a proteinaceous infectious particle 

or prion, the protein was called the prion protein (PrP). Further pathologi-

cal studies showed that the typical, often fibrillar, amyloid deposits, found 

in the brains of inoculated individuals, contained host-encoded PrP [6]. 

Together, these findings sparked wide-ranging studies on PrP, both in vivo 

and in vitro.  

The benign and natively folded cellular form, PrP
C
, was isolated and 

characterized in detail. It is largely soluble and has high α-helical content 

with little β sheet [7-9] (see section 3.1). In vivo, it is primarily found at-

tached to the outer cell membrane of neuronal cells [10], via a glyco-

sylphosphatidyl-inositol (GPI) anchor linked to the protein C-terminus [11] 

(Fig. 1a). Determining the function of PrP
C
 has proved to be a major chal-

lenge, complicated by the fact that PrP knock-out mice lack an obvious 

phenotype [12]. Many different putative functions have been proposed, in-

dicating that PrP
C
 is a multifunctional protein that plays a role in cell sig-

naling [13, 14] and metal metabolism [15-17]. When PrP aggregates and 

forms fibrils, however, it has significantly changed conformation and be-

comes largely insoluble and proteinase K resistant. It is likely that early, 

non-fibrillar aggregates represent the infectious particles and cause neuro-

toxicity [18]. Together, the various aggregates consisting of misfolded PrP 

are often denoted PrP
Sc

, for scrapie. Apart from the fact that PrP
Sc

 has a 

significantly increased β-sheet content and decreased α-helical content [7, 

19, 20], little is known about its precise conformation from experiment. 

The conversion from PrP
C
 to PrP

Sc
 appears to be triggered by a decrease in 

pH [21, 22], introduction of mutations [23, 24] and by the presence of 

PrP
Sc 

[25].  

Despite the continuing research into various aspects of the prion protein, 

many open questions remain. These include the precise function of PrP
C
, 

the mechanism of PrP
C
 to PrP

Sc
 conversion, the nature of the infectious and 

neurotoxic particles and the mechanism of neurotoxicity. Current research 

efforts therefore cover many different aspects and employ a wide variety of 

experimental methods, from structural biology to in vivo studies. Computa-

tional studies can provide a complementary tool to help elucidate some of 

the outstanding questions. In the last decade, computer simulation of bio-

molecules, in particular proteins, has advanced significantly [26]. A meth-

od that has had a particularly large impact is molecular dynamics (MD) 

simulation. This technique allows for the detailed examination of the com-

plex internal motions and conformational changes in proteins, which is of-

ten important for understanding their function [27-29]. Furthermore, MD 
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simulations provide uniquely detailed information necessary to understand 

protein folding [30, 31] and, crucially, disease-related protein misfolding 

[32, 33]. Accurate all-atom MD simulations have now been performed on a 

large scale across essentially all known protein folds, opening the way to 

obtain fundamental insights into protein dynamics and folding [34]. 

MD simulation was first used in PrP research to study the conforma-

tional preferences of a small fragment, indicating how a disease-related 

mutation may favor aggregation [35]. Soon after detailed structural infor-

mation became available [8, 36-39], MD simulation was employed to study 

the folded domain of PrP [40-43]. These initial studies were limited, allow-

ing for studying local dynamical effects only. Currently, advances in com-

puter power and algorithms provide the means to perform multiple simula-

tions of 10s to 100s of nanoseconds. Although this may still be short in 

terms of biological time scales, the more extensive simulations make de-

tailed comparisons to experiment possible. Furthermore, longer simulations 

are able to capture significant conformational changes, such as those in-

volved in misfolding. 

In this chapter, we start with a brief outline of the theoretical aspects of 

MD simulations. Then, we review how these methods have been used to 

explore the dynamics and misfolding of the prion protein, and how this in-

formation was used to suggest models for early aggregates. Thereafter, we 

highlight applications of MD simulations that provide insight into the ef-

fects of mutations related to human prion disease. We then briefly describe 

other aspects of the prion protein that have been studied using molecular 

dynamics, such as the influence of post-translational modifications and 

small molecules. We close with an outlook of how MD studies can further 

increase our knowledge of the prion protein in the future. 

2 Molecular dynamics simulation 

Simulation of molecular dynamics of proteins at the atomic level is a 

well-established technique [29, 44, 45]. By explicitly representing all at-

oms and bonds in a macromolecule, it provides physically realistic infor-

mation on how this molecule, e.g. a protein, evolves over time. The result-

ing ‘trajectory’ is recorded at high temporal resolution and can be analyzed 

using a wide range of techniques, offering a uniquely detailed insight into 

local dynamics, stability, flexibility, and possible conformational changes 

in proteins. 
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2.1 Principles 

A typical protein contains 100s to 1000s of atoms and therefore has an 

even larger number of degrees of freedom. When the solvent around a pro-

tein is considered explicitly, the number of atoms and degrees of freedom 

increases even further. In order to model such a complex system efficient-

ly, electrons are generally ignored and properties of the system are calcu-

lated based on the nuclear positions only. In combination with a potential 

energy function that describes electronic phenomena such as chemical 

bonding, spatial configurations of atoms and electrostatic interactions, this 

simplification allows the use of classical mechanics to describe the system. 

This type of modeling is generally described as molecular mechanics [46]. 

The potential energy function and the parameters for the different atoms 

and configurations of atoms used in this function are called a force field. 

Current force fields optimized for proteins are well established and de-

scribe protein dynamics with similar accuracy [47]. They use similar poten-

tial energy functions, in which, for example, bonds and angles are repre-

sented by harmonic terms, electrostatic interactions are described by 

atomic partial charges and the Coulomb equation, and Van der Waals forc-

es are included through a simple Lennard-Jones function [48, 49].  

The force field defines the energy of a particular atomic configuration. 

In order to describe the dynamics of a protein system, it is necessary to 1) 

get a starting configuration of the atoms in the system, 2) set this configu-

ration in motion and 3) calculate a new configuration based on that motion. 

High-resolution starting configurations for many proteins can be obtained 

from the Protein Data Bank (PDB) [50], the depository of protein struc-

tures usually determined by X-ray crystallography or protein NMR tech-

niques. Not every structure in this database will be of high enough quality 

for simulation. Also, in many cases, positions for missing atoms will need 

to be assigned, e.g. hydrogen atoms (not observed in X-ray crystallog-

raphy) and atoms in parts of the structure that are too flexible to be deter-

mined in the experiment. Once a starting conformation is obtained, and (in 

the case of simulation with explicit solvent) solvent molecules are added in 

optimized positions, the system can be set in motion. In order to do so, ve-

locities are assigned randomly, typically restrained by the Maxwell-

Boltzmann distribution at a chosen temperature. Given these initial veloci-

ties and atomic masses, the forces on all atoms in the systems are now de-

scribed by the derivative of the potential energy defined by the force field. 

These forces can in turn be used to calculate a new set of atomic positions 

and velocities. In order to obtain a physically accurate new atomic configu-

ration, the time step (the amount of time between one configuration and the 

next) must typically be ≤2 fs (smaller than the fastest movement in the sys-

tem, e.g. bond vibration). In principle, MD simulation is a deterministic 
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technique: given one set of atom positions and velocities, one series of con-

figurations through time, or a trajectory, will be the result. 

2.2 Scope, limitations and variations 

Within the limitations of the accuracy of force fields, MD simulation 

predicts the motion of a molecular system through time. The simulation 

lengths that can be assessed have greatly increased by the developments in 

computer hardware and efficient algorithms. However, current simulations 

are typically still limited to 10s to 100s of nanoseconds, whereas many bio-

logical processes occur on much longer time scales. The combination of 

the high temporal and high spatial resolution obtained in MD simulations, 

however, is unattainable by experimental techniques. One could see an MD 

simulation as a ‘computational experiment’ that can reveal the motion of 

biomolecules in great detail. Just as in lab experiments, it is important to 

repeat the experiment (i.e. the simulation) to substantiate any conclusions 

drawn. Now computational resources allow one to do so, it is therefore 

good practice to perform several simulations of the same system, starting 

from different initial velocities. 

Another way to view MD simulation is as a technique to probe the 

atomic positions and momenta that are available to a molecular system un-

der certain conditions. In other words, MD is a statistical mechanics meth-

od that can be used to obtain a set of configurations distributed according 

to a certain statistical ensemble. The natural ensemble for MD simulation is 

the microcanonical ensemble, where the total energy E, volume V and 

amount of particles N (NVE) are constant. Modifications of the integration 

algorithm also allow for the sampling of other ensembles, such as the ca-

nonical ensemble (NVT) with constant temperature (T) instead of constant 

energy, or in the isothermal-isobaric ensemble (NPT) in which pressure is 

constant instead of volume. The structural configurations of a protein that 

are accessible within these conditions are governed by the free energy 

landscape. When standard all-atom explicit solvent MD simulation is used, 

physically realistic conformational transitions between such configurations 

are sampled. The nature of the free energy landscape, however, reduces the 

likelihood of sampling rare transitions (such as misfolding). Given the limi-

tations in time-scale, the system is more likely to sample conformations 

within a set of closely related local minima, a ‘valley’ within the free ener-

gy landscape. There are several ways in which more comprehensive sam-

pling of conformational space can be achieved, although this usually comes 

at the cost of representing a physically relevant trajectory or pathway. A 

simple way to increase sampling is to raise the temperature used in simula-
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tion. This effectively increases the energy available to the system to over-

come free energy barriers. Another technique using this principle is replica-

exchange MD [51]: several non-interacting replicas of the simulation sys-

tem are run at different temperatures, and the replicas are allowed to ex-

change with one another when similar conformations are sampled. Another 

technique that helps to avoid the multiple minima in the free energy land-

scape is metadynamics, aimed at avoiding minima that have already been 

sampled within a trajectory [52]. However, these two methods can’t pro-

vide pathways for a process, or the mechanism of a conformational change. 

Instead they are used for sampling different states. In order to enhance the 

timescales accessible by MD simulation, the number of particles to consid-

er can be reduced by the use of implicit solvent methods or a coarse-

grained representation of the system, in which multiple atoms (e.g. in an 

amino acid side chain) are treated as one particle. 

3 The dynamics and misfolding of the wild-type prion 

protein 

MD simulations have been employed extensively to study the conforma-

tional dynamics of the wild-type prion protein for a range of species. A 

wide variety of force fields, setups and analyses has been used to this end. 

The majority of studies is performed on human, mouse or hamster PrP. In 

all but a few contributions [53-55], simulations include only the protein 

portion, i.e. the unglycosylated form without membrane anchoring. These 

simulations therefore present the recombinant PrP (recPrP) that is used for 

many in vitro studies, usually produced in E. coli. Often, only the struc-

tured part of recPrP is simulated. Although most initial MD studies could 

only capture local dynamics [40-43], some studies were able to shed light 

on the misfolding process over short time scales (~10 ns) [56, 57]. More 

recent studies reporting multiple simulations of 50 ns or more [58, 59], 

have provided a more comprehensive view of the conformational dynam-

ics.  

Apart from studying the native dynamics of recPrP in solution, MD 

simulation has also been used to sample possible early events in prion pro-

tein misfolding, either by simulating under conditions that are known to 

promote misfolding, such as low pH [56, 57, 59-61], or by using enhanced, 

non-physical sampling methods [62, 63]. As details of the misfolding 

pathway are unknown and difficult to probe by experiment, the results ob-

tained can only suggest potential events and conformations along the path-

way. Careful comparison with available experimental data, however, may 

validate the simulation results. 
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3.1 The starting point: PrP structures from experiment 

High-resolution structural information is required as a starting point for 

atomistic MD simulations. For PrP, the first [8] and most abundant struc-

tural information has been obtained by nuclear magnetic resonance tech-

niques (NMR), which has resulted in experimentally derived models of PrP 

of a wide variety of species [64-70]. For human and sheep PrP, structures 

determined by X-ray crystallography have also been reported, both with 

and without antibodies bound [71-75]. The overall structure of PrP that has 

emerged from these studies is largely identical for the different species and 

conditions. The mature protein (residues 23-230 in human PrP numbering, 

used throughout in this chapter) exhibits a highly flexible N-terminal do-

main, consisting of the first ~100 residues, and a folded or globular C-

terminal domain, spanning residues 125-228. The final residues (229-230) 

also appear to be flexible. 

The globular domain contains a short β-sheet, existing of two strands 

(S1 and S2 with res. 128-131 and 161-164, respectively), and three α-

helices (HA, HB and HC) (Fig. 1b). The first α-helix, HA, is the shortest. It 

spans residues 144-156, with the last 3 residues forming a 310 helix at neu-

tral pH and a less regular structure at pH 4.5 [39, 76]. The second and third 

α-helices, HB (res. 172-194) and HC (res. 200-228), are connected by a di-

sulfide bond: Cys179-Cys214. This disulfide bond is retained when PrP 

misfolds and aggregates [77, 78]. Around it, several hydrophobic residues 

are located that link HB and HC together and form a stable core of the pro-

tein [79]. The C-terminal end of HB (res. 187-194) is significantly less sta-

ble than the rest; NMR studies reveal that it can exist in a disordered con-

formation [39] and hydrogen-exchange protection of the backbone amides 

is low [39, 76, 79]. The many threonine residues in this sequence 

(HTVTTTTK, conserved in mammalian PrPs) cause this part of HB to 

have an inherently low helical propensity [80]. Notably, this part of HB 

appears to be stabilized to some degree by the presence of the flexible N-

terminus, likely due to contacts [39]. At the top of HC, a so-called ‘capping 

box’ interaction [81] may help stabilize the helical structure [82]. For the 

C-terminal portion of HC, there are also indications that its conformation 

can be flexible. Residues 220-231 are considered partly disordered in 

mouse PrP [8] and human PrP with the R220K mutation [83]. NMR relaxa-

tion studies on hamster and mouse PrP further indicate fast picosecond 

time-scale motions of the backbone amides from res. 222 [84, 85].  

The detailed structural information obtained from experiment for the 

globular domain of PrP
C
 provides a starting point to perform molecular dy-

namics simulations. One must realize, however, that uncertainties in the 

structure of PrP in aqueous solution still exist. Using protein NMR tech-

niques, a set of conformational constraints is obtained that is subsequently 
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used to generate likely structural models that satisfy these constraints [86]. 

Although this method generally provides a good description of the overall 

fold, the positions of certain residues or side-chains may be less well-

defined. X-ray crystallography has similar limitations, although high-

resolution electron density maps offer more certainty. The crystallization 

process may, however, influence the protein conformation, e.g. through 

crystal packing, dimerization and domain swapping. The structure obtained 

may therefore not be fully representative for the conformation in solution. 

3.2 The influence of pH on PrP dynamics and conformation 

A range of experiments have indicated a relationship between a decrease 

in pH and misfolding and aggregation of PrP [87]. In human recPrP, signif-

icant conformational changes were observed between pH 6 and 4.4 [22], 

involving exposure of hydrophobic surface, thereby facilitating aggrega-

tion. Human PrP extracted from brain cells forms detergent-insoluble ag-

gregates at pH 3.5 and 1.5 M guanidinium hydrochloride [88]. Initial 

changes are accompanied by a decrease in thermodynamic stability of 

recPrP relative to neutral pH, as evidenced by continuous-flow fluores-

cence [89] and NMR [76]. Further, studies of human recPrP under acidic 

and mildly denaturing conditions suggest the presence of intermediate 

states during misfolding and oligomerization: a native like α-helical con-

formation was observed at pH 4.1 and a conformation with β-sheet charac-

teristics at pH 3.6 [90]. For mouse and hamster recPrP, similar changes 

were observed in response to a decrease in pH [91, 92]. In particular, loos-

ening of the tertiary structure of hamster recPrP occurred below a pH of 

4.7, with a minor shift to β structure at pH 4.0. This was accompanied by a 

decrease in binding of antibodies to epitopes in the flexible N-terminus 

[92], indicating that this flexible tail changes during misfolding. More re-

cently, spontaneous aggregation and fibril formation of human recPrP was 

achieved under conditions of pH 4.0 and slow rotation, without addition of 

denaturants [21]. Altogether, it is evident that pH affects conformation and 

stability of PrP, and acidic pH can cause misfolding and aggregation. This 

is relevant for the occurrence of misfolding and aggregation in vivo, as it 

has been suggested that these processes may take place in endosomal com-

partments [93-96], which are mildly acidic [97].  

In standard molecular mechanics methods, all atoms and bonds between 

atoms are explicitly defined, i.e. they are either present or not. In order to 

model the changes in pH, one must therefore alter the protonation states of 

ionizable amino acid side chains. For a decrease in pH, the relevant side 

chains are those of histidine, glutamate and aspartate. Their pKa values in 
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solution are 6.08, 4.15 and 3.71, respectively [98]. The local protein envi-

ronment can, however, change the pKa of individual residues significantly. 

Langella et al. [99] calculated theoretical pKa values of the relevant side-

chains based on the coordinates deposited for human recPrP obtained by 

protein NMR at pH 4.5 and pH 7.0 [39, 76]. Although differences in the 

local conformation of residues between the various structures lead to a 

range of pKa values, their results suggest that two of the four histidine resi-

dues in the globular domain (His140 and His177) will be protonated at 

very mildly acidic pH (pH < 6.5). The other two (His155 and His187), 

however, may only become fully protonated around pH 4.5. At this mildly 

acidic pH, solvent-exposed glutamate residues may also become protonated 

and a further decrease to strongly acidic pH (pH ≤ 3.0) will likely result in 

protonation of all glutamate and aspartate side chains. In line with these 

values, several MD studies have used differential protonation of side chains 

to compare the conformational dynamics of human PrP between neutral 

and strongly acidic pH [56, 57, 61], neutral and mildly acidic pH [99, 100], 

and all three pH environments [59, 101]. The neutral pH environment was 

represented by using singly protonated (neutral) histidine side chains and 

all other ionizable side chains charged, mildly acidic pH by all ionizable 

side chains charged, and strongly acidic pH by all ionizable side chains 

protonated. One study also simulated species with only part of the histidine 

side chains charged [99]. For hamster and bovine PrP, MD simulations 

have also been performed in a strongly acidic pH environment [56, 57], 

predominantly to capture the process of PrP misfolding (see further section 

3.3). 

All studies on the effect of pH on WT PrP published before 2007 re-

ported single MD simulations, mostly of 10 ns. In 2007, DeMarco and 

Daggett reported 3 simulations of 15 ns of human PrP at both neutral and 

strongly acidic pH [61]. As in all previous studies, the overall fold was sta-

ble at neutral pH. Significant changes were observed for one simulation at 

strongly acidic pH, which was linked to misfolding of the protein (see fur-

ther below). Recently, we performed the most extensive MD simulations of 

the effect of pH on human PrP to date, including detailed comparisons to 

experimental data [59]. In this study, 5 simulations of 50 ns at each of the 

three pH environments were compared. In the remainder of this section, we 

will focus on this study to highlight the information obtained by MD simu-

lation on the effect of pH on the structure and dynamics of PrP. 

At neutral pH, the overall fold is stable, without significant changes in 

secondary or tertiary structure. The flexibility of the S2-HB and HB-HC 

loops is high, in accordance with experimental data [84, 85]. Although the 

capping box at the N-terminal end of HC was not present in the starting 

structure (obtained from the representative NMR structure with PDB code 

1QLX), it formed within 1 ns in all simulations at neutral pH. Also, a hy-
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drogen bond between His187 and the main-chain carbonyl of Arg156, 

which anchors HA to HB, was present for ~30% of the simulation time. 

Comparisons with publicly available distance restraints obtained from 

NMR further indicated that relevant conformational ensembles were sam-

pled and maintained throughout all 5 runs.  

Theoretical pKa calculations indicate that the first two histidine side 

chains to become protonated are His140 and His177. In a single 10 ns sim-

ulation, Langella et al. found little difference from a neutral pH simulation 

[99], as could be expected from their initial placement out into solvent. 

With all histidine side chains protonated, however, simulations revealed 

more significant changes [59]. In this mildly acidic pH environment, the 

310-helix conformation in res. 153-156 that was formed for ~25% of the 

time at neutral pH, largely disappeared. This is in agreement with the NMR 

studies and the simulations indicate that this change is due to a repulsion 

between the side chains of His155 (now protonated) and Arg156. A more 

significant change, which was not directly apparent from the NMR struc-

ture obtained at pH 4.5, was observed in the loop between HB and HC. 

Phe198, central in this loop and part of the hydrophobic core at neutral pH, 

moved out into solvent. This change was accompanied by a change in the 

loop conformation and disruption of the capping box on top of HC. These 

changes may be related to the protonation of His187, the histidine with the 

lowest theoretical pKa value (and therefore perhaps largely unprotonated in 

the NMR experiment). In the simulations at mildly acidic pH, a salt bridge 

interaction between His187 and Asp202, involved in the capping box at 

neutral pH, is formed. 

The strongly acidic environment introduces significant changes in the 

PrP structure: protonation of the 5 Asp and 9 Glu side chains in the globu-

lar domain causes the overall atomic charge in this domain to rise by 14 a.u 

compared with the mildly acidic regime. A large effect on the confor-

mation and dynamics can therefore be expected. Notably, changes to the 

most stable part of the PrP structure (as determined by NMR and hydrogen 

exchange [39, 76, 79, 85]) are minimal (Fig. 2). A major change observed 

in 3 of the 5 simulations, also found in several other studies [56, 57, 61, 

102], is a repositioning of HA. The N-terminal part of helix swings away 

from the stable HB-HC core, out into solvent. Interestingly, this part was 

determined to be the most pH sensitive site in cysteine-scanning spin-

labeling ESR studies [103]. Detailed analysis indicates that this movement 

is always preceded by a decrease in contacts between the hydrophobic resi-

dues in the S1-HA loop and those on HC (Fig. 2). Interestingly, unfolding 

studies also indicate that the S1-HA loop and HA can rearrange and be-

come detached from the remainder of the protein [104, 105]. The changes 

in the S1-HA loop and HA may therefore be related to misfolding.   
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3.3 Misfolding and aggregation 

Due to the importance of PrP misfolding for development of TSE dis-

eases and the technical difficulties involved in probing this process exper-

imentally, many MD studies have aimed at probing the initial events in 

conversion of PrP
C
 to PrP

Sc
. Different strategies have been used to increase 

the likelihood of observing such initial misfolding when starting from the 

native PrP
C
 structure, which should be a rare event. One strategy is the in-

troduction of single-residue mutations that have been shown to destabilize 

the native PrP
C
 fold and promote aggregation. For example, Hirschberger 

et al. studied the M205R and M205S mutations in the structured part of 

human PrP (res. 125-228) in single 10 ns MD simulations [106]. Cell stud-

ies had indicated that these mutations interfere with folding and can adopt a 

misfolded conformation [107]. In simulation, the native fold was indeed 

destabilized by both mutations, but in significantly different ways: with 

M205S unfolding of the central part of HB (res. 181-188) occurred where-

as with M205R, HA moved out to solvent and subsequently lost helical 

structure. It is not clear if these events are related to the misfolding path-

way of WT PrP, because the mutant proteins may never adopt the native 

fold. In section 4, we will discuss the use of MD to study the effects of sin-

gle residue mutations further. 

To increase conformational sampling, replica-exchange MD simula-

tions were performed by De Simone et al. [63], based on the crystal struc-

ture of sheep PrP [73] (res. 125-230). One conformational substate found in 

the simulations was argued to be a possible intermediate for aggregation. It 

featured similar changes from the native fold as found in regular MD simu-

lations of human PrP at acidic pH [59, 61]: HA was disconnected from the 

core of HB and HC and a large hydrophobic surface was exposed. The lim-

itation of this work and other studies [62, 106], however, is that the flexible 

N-terminus was not included in the simulations. There are many indica-

tions from experiment that at least part of this region plays a role in mis-

folding and aggregation [108-111]. We have therefore always included part 

of the flexible N-terminus in our simulations. Further, the relation between 

acidic pH, a decrease in PrP
C
 stability and conversion of PrP

C
 to PrP

Sc
, as 

outlined above, makes it plausible to use simulations in the strongly acidic 

environment as the conversion-inducing perturbation. 

The first MD study to report on the initial, pH-induced conformational 

conversion of PrP
C
 [56] used a starting structure of res. 109-219 from re-

combinant Syrian hamster PrP determined by NMR [37]. Whereas simula-

tion at neutral pH resulted in a stable 10 ns trajectory, a significant increase 

in flexibility and conformational changes were observed at strongly acidic 

pH. Importantly, the native β-sheet extended and additional strands were 

formed in the N-terminal region. Also, HA and the preceding S1-HA loop 
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became disconnected from the rest of the globular domain. Several residues 

in the S1-HA loop adopted a β-strand-like structure. Similar structural con-

versions were later also reported in equivalent simulations and fragments 

of bovine and human PrP [57] and for a longer fragment of human PrP (res. 

90-231) [61]. Recently, it was shown that this type of initial structural con-

version can also take place under mildly acidic simulation conditions (only 

His protonated) [59]. The similarities between simulations of a number of 

different fragments and different conditions provide credence to the early 

steps of misfolding observed.  

Although the 3 helices remain largely intact in the simulations of early 

misfolding, the amount of β-structure increases. An additional β-strand is 

formed onto the native sheet, usually located in residues 116-122 of the 

flexible N-terminus. Further strands sometimes form in the remaining part 

that was included in the simulation. Antibody studies indicate that residues 

90-120 undergo a conformational change upon conversion to PrP
Sc

 [112-

114] and a range of studies support the involvement of residues in this re-

gion in PrP
Sc

 formation [108, 110, 111, 115]. Our misfolding simulations 

also indicate the formation of an isolated strand in the loop preceding HA 

(res. 136-140), after hydrophobic contacts with HC are lost. Abalos et al. 

[108] showed that modifications in this loop, such as sequence scrambling 

and mutations to alanine, interfered with conversion to PrP
Sc

. Also, NMR 

studies indicate that the S1-HA loop changes under high-pressure condi-

tions, including the loss of hydrophobic contacts [116]. These experimental 

data confirm that the pH- and aggregation-related exposure of hydrophobic 

surface [22] can arise from a conformational change in the S1-HA loop, as 

first suggested by MD simulation [56]. 

In addition to the MD studies mentioned above, simulation of the 109-

219 fragment of hamster PrP was also performed with the D147N mutation 

[117]. This mutation does not significantly destabilize the PrP fold, but it 

does increase conversion efficiency [23]. 20 ns MD simulation at neutral 

and strongly acidic pH revealed structures that deviated significantly from 

the starting structure. At strongly acidic pH, a conformational state arose 

that was similar to those observed in pH-induced misfolding simulations of 

WT PrP [56, 57]. Again, the conformation exhibited a three-stranded sheet 

(formed by extension of the native sheet) and an isolated strand in residues 

135-140 (the S1-HA loop). Using a typical structure from this conforma-

tional state as a monomer, an oligomeric structure was built by bringing to-

gether exposed hydrophobic residues. This included the docking of the iso-

lated β-strand to the additional β-strand formed from the flexible N-

terminus. Further addition of monomers led to a spiral oligomeric structure 

with a 31 symmetry axis and a β-sheet core (Fig. 3a). This ‘protofibril’ 

could be an early aggregate on the pathway to amyloid formation and/or 

relevant to infectious and neurotoxic particles. The model fits remarkably 
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well to the electron-microscopy data of two-dimensional PrP
Sc

 crystals 

[118], including the position of res. 142-176 and glycans inferred from 

electron-microscopy difference maps of PrP27-30 and PrP
Sc

106 [117]. 

Subsequently, the compatibility between the protofibril model and a range 

of experimental data further indicated the relevance of this model [119], in 

contrast to a previously proposed fibril model based on a β-helix structure 

[120].  

After our protofibril model was shown to be plausible, similar models 

were built for WT hamster, human and bovine PrP [121]. Again, the initial 

monomer structure was obtained from MD simulation at the strongly acidic 

pH regime. In contrast to hamster PrP, human and bovine PrP showed a 

left-handed spiral formation (Fig. 3b). This difference and further subtle 

differences between the individual protofibril models may reflect strain dif-

ferences and give clues to the origin of observed “species barriers” [122]: 

transmission of prion disease between different species can be inefficient 

or even absent. Furthermore, the models may help to rationalize the per-

ceived importance of the S2-HB loop conformation regarding cross-species 

infectivity [9, 65, 66, 69], as this loop forms a crucial contact area between 

multiple monomers in the protofibril models.  

4 The effect of pathogenic mutations 

About 10-15% of prion diseases in humans are caused by mutations in 

the PRNP gene (see further chapter X by Collinge et al.). Three different 

types of pathogenic mutations exist: premature stop codons, insertion of 

additional octapeptide repeats in the flexible N-terminus, and point-

mutations leading to single amino acid replacements. The latter type of 

pathogenic mutation has been found in at least 28 different locations, and 

effects on protein stability, misfolding as well as cellular processing and 

function are reported [123]. MD simulations can be used to study the effect 

of these mutations on protein conformation and stability, particularly for 

the 24 mutations that are found in the C-terminal folded domain of human 

PrP [124-126]. Structural biology can also offer insights into the structural 

effect of pathogenic mutations [75, 127] (see also chapter Y by Surewicz et 

al.). In some cases, however, structural studies do not reveal differences be-

tween wild-type and mutant proteins whereas MD simulations do (see e.g. 

[128-130]).  
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4.1 D178N 

The D178N mutation in human PrP is involved in familial prion disease 

[131]. Intriguingly, the phenotype of disease is significantly altered by the 

common M/V polymorphism at res. 129: fatal familial insomnia (FFI) aris-

es in combination with M129 and familial CJD arises in combination with 

V129 [132], although this distinction may not be so clear cut [133, 134]. 

The aggregation propensity of PrP is significantly increased by the D178 to 

N substitution. When producing mutant human recPrP (res. 90-231) in E. 

coli, the D178N/M129 mutant aggregated into inclusion bodies [135], as 

was the case for D178N/M129 and D178N/V129 mouse recPrP [136]. 

Urea-induced unfolding studies indicated that the thermodynamic stability 

of PrP decreases by ~22 kJ mol
-1

 upon introduction of the mutation [136]. 

It was further found that the structure of D178N PrP
Sc

 is different from WT 

PrP
Sc

 obtained under the same conditions [137, 138].  

The D178 side chain can form a salt bridge with R164 (located on the 

second native β-strand, S2) and may be involved in hydrogen bond interac-

tions with the Y128 and Y169 side chains (located at the beginning of β-

strand S1 and the loop between S2 and HB respectively) [56]. The interac-

tions with both strands of the native β-sheet may be disrupted by the 

D178N mutation, thereby potentially affecting its stability. Spin-labeling 

ESR studies of D178N PrP indeed showed that the D178N mutation in-

creases instability in S2 [139]. Crystal structures of D178N PrP with either 

M129 or V129 show little difference with the overall static fold of WT PrP 

[75]. Differential packing of the monomers, however, indicates that the na-

tive β-sheet may combine to form an intermolecular 4-stranded sheet with 

M129, but not with V129.  

The experimental findings indicating that the D178N mutation affects 

PrP
C
 stability and promotes aggregation have prompted several MD studies 

studying the effect of the mutation on the PrP structure. To study the local 

structural effects, Billeter and Wüthrich performed short (0.5 ns) simula-

tions of D178N,E200K mouse PrP combined with either M129 or V129 

[140], in a small sphere of water. As expected, interactions with Y128 and 

R164 were disrupted (in contrast to the equivalent WT PrP simulations), 

but no further instability was found. Subsequent 1.5 ns explicit solvent MD 

simulations of WT mouse PrP (3 trajectories) and D178N mouse PrP (2 

trajectories) also showed no differences in flexibility or conformation 

[141]. Interestingly, the R164-D178 salt bridge was only populated for 

15% of the time in the most stable WT simulation in this study. The au-

thors concluded that the R164-D178 salt bridge may not be important for 

WT PrP stability, but these simulations seem too short to substantiate such 

a statement.  
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Several MD studies were also run under conditions intended to perturb 

the starting structure further (in addition to the mutation). In high tempera-

ture, implicit solvent MD simulations of mouse PrP, HA was stable in WT 

but not in D178N PrP [142]. The authors attributed this to changes in the 

charge distribution that affect internal salt bridges in HA. In explicit sol-

vent high temperature MD simulations of human D178N PrP (in combina-

tion with M129 or V129), however, no significant differences were ob-

served [143]. In order to reveal weaknesses in the conformation of the 

globular domain, Barducci et al. performed simulations of WT and D178N 

mouse PrP in a hydrophobic environment (a solution of CCl4) [144]. Mul-

tiple simulations of 3-8.1 ns revealed little difference in the overall con-

formation for WT PrP. With the D178N mutation, however, the S1/S2 β-

sheet became unstable, presumably due to the lack of interactions with 

R164 and Y128. The weakening of the β-sheet in relation to disruption of 

the D178-R164 and D178-Y128 interactions was later confirmed using the 

metadynamics simulation technique [62]. 

4.2 Mutations in the hydrophobic core 

The 3-dimensional structures of PrP of a variety of species have indicat-

ed that a conserved core of hydrophobic residues may confer stability to 

the globular domain [145]. This hydrophobic core consists of comprehen-

sive interactions between HB and HC, interactions between HC and the 

loop preceding HA as well as contacts the native sheet and the rest of the 

globular domain (Fig. 1b). Four mutations in residues that are part of the 

hydrophobic core have been related to familial prion diseases in humans: 

V180I, F198S, V203I and V210I [123, 146-149]. Further, Thr183 forms 

additional interactions with the hydrophobic core, and its mutation to Ala 

causes familial CJD [150]. Experiments on mouse PrP mutants indicate 

that thermodynamic stability of PrP is significantly reduced for T183A and 

F198S and somewhat reduced for V180I [136]. For V180I, V210 and 

F198S PrP, it was found that a folding intermediate increased in the popu-

lation relative to the native fold, further indicating that these mutations 

cause instability [89, 151]. Studies of V203I PrP are limited, but may sug-

gest an effect on stability as well [152]. For T183A, the observed instabil-

ity may be related to the loss of the hydrogen bond between Thr183 (in 

HB) and Y162 (in S2). The replacement of a hydrophobic residue with a 

hydrophilic residue in F198S PrP leaves a ‘gap’ in the hydrophobic core 

between HB and HC. The other three mutations are more conservative (Val 

to Ile), and it is therefore more difficult to interpret their potential effects 

from the WT structure alone.  
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To investigate the influence of the disease-related mutations in the hy-

drophobic core on the conformation and dynamics of recPrP, Van der 

Kamp and Daggett recently performed extensive MD simulations [126]. In 

a comparison of three 50 ns runs for each mutant with equivalent simula-

tions of WT human PrP (res. 90-230), all mutations were observed to have 

some effect on structure and stability. In line with the effect on the thermo-

dynamic stability of PrP, T183A and F198S significantly increased the 

flexibility of the globular domain, including the parts of HB and HC that 

are particularly stable in WT PrP (Fig. 4a). For F198S, flexibility was most 

strongly affected in the loop between HB and HC and the adjacent parts of 

the helices, as could expected based on the structural role of the Phe198 

side chain [145]. Interestingly, a further significant effect was a shift of the 

native β-sheet (~20 Å from the mutation site) away from the rest of the 

globular fold. Such as shift was also observed for T183A and, to a lesser 

extent, for V180I, and could be related to a loss of the hydrogen bond be-

tween Thr183 and Tyr162. The addition of an extra CH3 group in the Val 

to Ile mutations can cause steric crowding in the hydrophobic core. For 

V180I and V210I, this appears to cause a change in the hydrophobic pack-

ing of residues between HB and HC, which in turn causes Phe198 to move 

out of the hydrophobic core during the simulations. Further knock-on ef-

fects also cause a reduction of the hydrophobic contacts between the S1-

HA loop and HC. In turn, this change can lead to HA moving out into sol-

vent, similarly as observed in acidic conditions [59]. V203I was also ob-

served to cause these effects, albeit to a lesser extent.  

In one of the V180I simulations, a change in positioning of HA and the 

S1-HA loop is preceded by the addition of an extra strand onto the native 

sheet (Fig. 4b). This results in a similar early misfolded state as observed in 

simulation at acidic pH. In this conformation, significant parts of the origi-

nal hydrophobic core are exposed to solvent, which will contribute to its 

aggregation propensity. Similar conformations related to early misfolding 

were also found in simulations of V210I. At the same time, the core of HB 

and HC in the V210I simulations showed similar stability and confor-

mation as in the WT PrP simulations at three pH ranges [59]. These simi-

larities between conformation and early misfolding are in line with the 

findings that PrP
Sc

 in patients carrying the V210I mutation consist of both 

V210I and WT PrP [153]. In contrast, the significant instability and con-

formational changes observed for T183A and F198S, also observed in 

coarse-grained MD simulation of T183A [154], may indicate a different 

disease mechanism. Cell studies indicate that the instability of the globular 

fold interferes with GPI-anchor attachment and subsequent cellular pro-

cessing [155, 156]. In vivo, these mutations typically cause a prolonged du-

ration of disease [157] and can lead to abnormal PrP
Sc

 formation [158]. 

Although correlations between simulation of recPrP and disease are specu-
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lative, they indicate how MD simulation helps to uncover detailed molecu-

lar effects that may be important for the development of familial prion dis-

ease. 

5 Other applications  

5.1 In vivo modifications 

Although most MD simulation studies and many experimental studies 

have focused on the recombinant PrP, the protein can undergo important 

post-translational modifications in vivo. After translation and transport to 

the endoplasmic reticulum, N-glycosylation may occur on two different 

sites in the globular domain (Asn181 on HB and Asn197 in the HB-HC 

loop), yielding un-, mono- and diglycosylated forms of PrP [159]. Modifi-

cation of the initially attached high-mannose glycans occurs in the Golgi 

and creates a very diverse set (>400) of PrP glycoforms [160]. The effect 

of glycosylation on the structure of PrP was first studied by MD simulation 

[55]. Short (1.8 ns) simulations of an homology model of human recPrP 

(res. 90-230) with or without typical complex glycoforms indicated that 

glycosylation did not perturb the structure, and may even stabilize it 

somewhat. Although these simulations were too short to capture potential 

large conformational changes, NMR studies on bovine PrP purified from 

brain extracts indicated that the structure of glycosylated PrP (including the 

sugar portion of the GPI-anchor) is very similar to recPrP [161]. Recently, 

longer extensive MD simulations of diglycosylated PrP were reported [53]: 

DeMarco and Daggett performed 15 ns simulations of human PrP (res. 90-

230) with complex glycans at neutral and low pH and concluded that the 

conformation and dynamics of PrP were not affected. It is possible, howev-

er, that contacts between the glycan attached to Asn197 and HA perturb 

pH-induced misfolding, which may affect binding efficiency to PrP
Sc

 and 

the morphology of the fibrillar aggregate [53]. Furthermore, the authors al-

so reported equivalent simulations of diglycosylated PrP attached to a 

membrane via the GPI-anchor. This revealed that protein-membrane inter-

actions probably only occur with the flexible N-terminus. 

Another possible post-translational modification is the oxidation of me-

thionine side chains, which can occur in vivo due to the presence of various 

reactive oxygen species. It is a reversible process due to the action of me-

thionine sulfoxide reductases, but the methionine sulfoxide content of pro-
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teins increases with age [162]. In contrast to PrP
C
, a large fraction of me-

thionine side chains were found to be oxidized in PrP
Sc

, especially at 

Met213
 
[163]. A more recent study, however, concluded that Met213 is 

found in its oxidized state equally in PrP
C
 and PrP

Sc
 [164]. It is therefore 

unclear if methionine oxidation can be involved in triggering misfolding or 

stabilizing prion aggregates or not. To investigate if methionine oxidation 

could destabilize the PrP
C
 fold, MD simulations were performed of human 

PrP (res. 125-228) without Met oxidation, with Met213 oxidized and with 

Met206 oxidized [58]. Both residues are buried in the hydrophobic core of 

the native PrP structure. The simulations (2 runs of 80 ns for each species) 

indicated that methionine oxidation did not have a significant effect on the 

local structure, but a shift to more flexible conformational states occurred. 

Seemingly, the effect was transmitted to more distant regions in the struc-

ture, such as the S2-HB and HB-HC loops. It was suggested that methio-

nine oxidation could trigger misfolding. This hypothesis was later corrobo-

rated by experimental studies of recPrP that used norleucine and 

methoxinine as analogues of the hydrophobic, non-oxidized form or the 

hydrophilic oxidized form of methionine, respectively [165]. The norleu-

cine variant exhibited a stabilized α-helical structure and low aggregation 

propensity, whereas the methoxinine variant largely consisted of β-

structure and had a high tendency to aggregate. Recently, experiment and 

MD simulation were used to determine that the M206S and M213S muta-

tions also destabilized the native PrP fold and enhanced aggregation pro-

pensity [166]. 

5.2 The effect of small molecule ligands 

The interaction of PrP with small molecule ligands can be of great inter-

est with respect to the development of possible drugs targeting prion dis-

eases, for example by inhibiting misfolding. MD simulations can be used in 

order to explain and rationalize the effects of small molecules. One exam-

ple of this is the effect of the ‘chemical chaperone’ trimethylamide N-oxide 

(TMAO) on PrP misfolding. Experimentally, it was found that addition of 

TMAO efficiently reduced PrP
Sc

 formation in mouse neuroblastoma cells 

(75% reduction with 120 mM TMAO) [167]. Simulations in the presence 

of 1M TMAO were performed with hamster recPrP (res. 109-219) [168], 

starting from either the native conformation or a previously determined 

pH-induced misfolded conformation [56]. Both simulations were carried 

out with protonation states of the amino acids corresponding to the strongly 

acidic pH regime, to perturb the PrP structure. TMAO itself was not proto-

nated (whereas its pKa is ~4.7), as this is likely to cause destabilization ra-
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ther than stabilization of protein structure [169, 170]. Starting from the 

misfolded conformation, the extended sheet is disrupted and PrP regains 

contacts that had been lost during the pH-induced misfolding (Fig. 5). In 

the simulation starting from the native structure, no misfolding is observed. 

In both cases, the hydrophobic residues in the flexible N-terminus formed 

an Ω-loop, that prevents this region from forming additional β-strands. The 

simulations further confirmed that the stabilizing action of TMAO is likely 

to be indirect: interactions of water molecules with the peptide backbone 

become less favorable in the presence of TMAO [171, 172]. 

Whereas the osmolyte TMAO cannot be used in vivo due to the toxic ef-

fect of trimethylamine, other compounds that inhibit formation of PrP
Sc

 can 

be administered to mammals. An example is N,N′-(methylenedi-4,1-

phenylene)bis[2-(1-pyrrolidinyl)acetamide], or GN8. This compound was 

found to inhibit PrP
Sc

 production in vitro and prion-infected mice treated 

with GN8 showed prolonged survival [173]. The molecule was selected 

based on virtual screening of compounds that would bind in the region of 

the HA-S2 loop and the HB-HC loop of mouse PrP. According to the vir-

tual screening results, GN8 forms hydrogen bonds with Asn159 and 

Glu196, thereby cross-linking the two loop regions. Yamamoto and Ku-

wata [174] first performed a 100 ns MD simulation of the initially obtained 

binding mode in water, to refine the PrP-GN8 structure further. The ob-

tained binding mode agreed with NMR chemical shift data [173]. Also, the 

flexibility of the PrP structure was decreased in comparison with the equiv-

alent simulation without GN8. To examine the stabilizing effect of GN8 

further, simulations were also performed of mouse PrP in 6 M urea, either 

with or without GN8 bound [174]. These simulations indicate that the pres-

ence of urea destabilizes all three helices, whereas binding of GN8 pre-

vents this destabilization to some extent. GN8 also appears to act as a 

‘chemical chaperone’ that reduces the flexibility of the native PrP structure 

and increases its stability. 

6 Conclusions and outlook 

When properly prepared and executed, molecular dynamics simulations 

are able to capture realistic information on the dynamics and conforma-

tional ensembles of prion proteins. The benefit of such simulations comes 

from the unique spatial and temporal resolution, providing significantly 

more detailed information than is available from experiment. Early MD 

simulations have already provided insight into local and global changes, 

including possible steps in the misfolding and aggregation of prion pro-

teins. Advances in computer speed and algorithms have made it possible to 
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perform more and longer simulations in recent years. This has opened up 

the possibility for increased sampling of the conformational dynamics of 

prion proteins. These new, extensive MD simulations have contributed sig-

nificantly to our knowledge on the detailed atomic-level molecular mecha-

nisms that are involved in the response to decreases in pH, single residue 

mutations, in vivo modifications and small molecules. 

The continuing increase in computer resources makes it possible to sim-

ulate bigger systems and longer timescales. This will allow, for example, 

for a more detailed characterization of the conformation and dynamics of 

PrP
C
 under near-physiological conditions: glycosylated and bound to a 

membrane. These studies are currently underway in our group. Further, di-

rect simulation of the process which is at the very heart of prion infection, 

conversion of PrP
C
 on a template of PrP

Sc
, is also now possible. 

The detailed information, gained from MD simulations, on the early 

mechanism of misfolding and related instabilities can be exploited for the 

design of small molecules or peptides that may serve as novel diagnostic 

tools and drugs. Once such molecules are designed, MD simulations can be 

employed to test and explain their action in detail. Overall, we expect that 

MD simulation methods will continue to be a valuable tool to provide in-

formation on various different aspects of the prion protein: the behavior 

and conformation of cellular PrP, misfolding of PrP, influence of mutations 

and development of prion disease diagnostics and therapies. 
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Fig. 1. Structure of the human prion protein. (a) The mature human prion protein as it 

can be found on the outer cell membrane. The GPI-anchor (attached to Ser230) and typi-

cal glycans (attached to Asn181 and Asn197) are shown in sticks. Structure obtained 

from MD simulation (Van der Kamp, Koldsø and Daggett, unpublished results).  (b) The 

structured part of the recombinant human prion protein, as obtained by protein NMR 

[39]. Secondary structure elements are labeled. 
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Fig. 2. Conformational changes in the globular domain of PrP induced by acidic pH 

[59]. (a) Snapshots from a simulation at acidic pH, indicating the loss of hydrophobic 

contacts between the S1-HA loop and HC, followed by displacement of the N-terminal 

end of HA. (b) Cα traces of simulations at neutral, mildly acidic and strongly acidic pH 

from left to right. Structures of 5 simulations at each pH regime are shown for every 1 ns 

in the 25-50 ns time interval. The parts of HB and HC that remain stable (in agreement 

with experiment) are indicated by darker colors. In both panels, N-terminal residues 90-

124 are omitted for clarity.  
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Fig. 3.  Potential misfolding and aggregation of PrP. (a) Misfolding of D147N hamster 

PrP observed in simulation at strongly acidic pH and docking of three misfolded mono-

mers into an intial aggregate [117]. (b) Spiral protofibril models (built up from 6 mono-

mers each) for D147N hamster PrP (as shown in panel a), bovine PrP and human PrP 

[121].  
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Fig. 4. Changes in conformation and flexibility caused by pathogenic mutations [126]. 

(a) Typical conformation and flexibility for WT PrP, T183A PrP and F198S PrP. Only 

the globular domain (res. 128-228) is shown. Flexibility is indicated by the thickness of 

the ribbon and the mutation site is indicated by a red sphere. (b) Early misfolding events 

in a simulation of V180I PrP. First, an additional strand appears on the native sheet. 

Thereafter, hydrophobic contacts between HC and the S1-HA loop are lost and HA 

moves out to solvent. Mutation site is indicated by a sphere. For clarity, res. 90-112 are 

omitted.  
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Fig. 5.  The effect of TMAO on PrP structure and misfolding. Starting from natively 

folded hamster recPrP (res. 109-219), simulation at acidic pH in water causes conversion 

to a misfolded form [56]. In the presence of 1M TMAO, however, the structure is pro-

tected from misfolding (protection) and the extended sheet in the misfolded confor-

mation dissolves (reversion) [168]. An Ω-loop conformation (green) in the flexible N-

terminus is observed in the presence of TMAO.  
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