1,353 research outputs found

    L'impact de la structure chrono-géométrique de l'espace-temps sur la causalité.

    Get PDF
    We discuss the usual account of causal structure that relies on the temporal precedence constraint between cause-effect pairs. In particular, we consider the subtle interplay between local and global characters of time and causality encoded in General Relativity. We find that the temporal precedence constraint must be relaxed. We argue that these results could lead to an enriched structure of the physical causality

    AP Adjacency as a Precedence Constraint

    Get PDF
    Attributive APs precede certain other categories (PPs, genitive DPs, and so on), when the noun precedes both (Giurgea 2009, Adger 2012). This observation may suggest an analysis in terms of X-bar-style ‘structural layering’. However, such an account faces several problems: (i) in languages with PP-AP-N order, scrambling of the AP is permitted, (ii) in languages with AP-N- PP order or PP-N-AP order, there is evidence that the AP can c-command the PP, as well as the other way around, and (iii) in languages with N-AP-PP order, the AP can take scope over the PP, as well as the other way around, arguably as a consequence of a structural ambiguity. We therefore develop an alternative analysis based on a striking parallel between the syntax of attributive APs and that of objects: while OV languages systematically allow adverbs to intervene between object and verb, VO languages tend to require verb-object-adverb order. This aspect of verbal syntax is familiar and can be captured in terms of a well-known linear constraint: Case Adjacency (Stowell 1981; Janke and Neeleman 2012). We propose that this constraint has a nominal counterpart that ensures N-AP adjacency in noun-initial structures. Thus, this instance of NP/VP parallelism has its source in parallel constraints, rather than parallel structural layers

    Improving local search heuristics for some scheduling problems - I

    Get PDF
    Local search techniques like simulated annealing and tabu search are based on a neighborhood structure defined on a set of feasible solutions of a discrete optimization problem. For the scheduling problems P2∣∣Cmax,1∣prec∣∑CiP2||C_{max}, 1|prec|\sum C_i and 1∣∣∑Ti1||\sum T_i we replace a simple neighborhood by a neighborhood on the set of all locally optimal solutions. This allows local search on the set of solutions that are locally optimal

    Designing new models and algorithms to improve order picking operations

    Get PDF
    Order picking has been identified as a crucial factor for the competitiveness of a supply chain because inadequate order picking performance causes customer dissatisfaction and high costs. This dissertation aims at designing new models and algorithms to improve order picking operations and to support managerial decisions on facing current challenges in order picking. First, we study the standard order batching problem (OBP) to optimize the batching of customer orders with the objective of minimizing the total length of order picking tours. We present a mathematical model formulation of the problem and develop a hybrid solution approach of an adaptive large neighborhood search and a tabu search method. In numerical studies, we conduct an extensive comparison of our method to all previously published OBP methods that used standard benchmark sets to investigate their performance. Our hybrid outperforms all comparison methods with respect to average solution quality and runtime. Compared to the state-of-the-art, the hybrid shows the clearest advantages on the larger instances of the existing benchmark sets, which assume a larger number of customer orders and larger capacities of the picking device. Finally, our method is able to solve newly generated large-scale instances with up to 600 customer orders and six items per customer order with reasonable runtimes and convincing scaling behavior and robustness. Next, we address a problem based on a practical case, which is inspired by a warehouse of a German manufacturer of household products. In this warehouse, heavy items are not allowed to be placed on top of light items during picking to prevent damage to the light items. Currently, the case company determines the sequence for retrieving the items from their storage locations by applying a simple S-shape strategy that neglects this precedence constraint. As a result, order pickers place the collected items next to each other in plastic boxes and sort the items respecting the precedence constraint at the end of the order picking process. To avoid this sorting, we propose a picker routing strategy that incorporates the precedence constraint by picking heavy items before light items, and we develop an exact solution method to evaluate the strategy. We assess the performance of our strategy on a dataset provided to us by the manufacturer. We compare our strategy to the strategy used in the warehouse of the case company, and to an exact picker routing approach that does not consider the given precedence constraint. The results clearly demonstrate the convincing performance of our strategy even if we compare our strategy to the exact solution method that neglects the precedence constraint. Last, we investigate a new order picking problem, in which human order pickers of the traditional picker-to-parts setup are supported by automated guided vehicles (AGVs). We introduce two mathematical model formulations of the problem, and we develop a heuristic to solve the NP-hard problem. In numerical studies, we assess the solution quality of the heuristic in comparison to optimal solutions. The results demonstrate the ability of the heuristic in finding high-quality solutions within a negligible computation time. We conduct several computational experiments to investigate the effect of different numbers of AGVs and different traveling and walking speed ratios between AGVs and order pickers on the average total tardiness. The results of our experiments indicate that by adding (or removing) AGVs or by increasing (or decreasing) the AGV speed to adapt to different workloads, a large number of customer orders can be completed until the respective due date

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    Nonparametric Estimation of a Distribution Subject to a Stochastic Precedence Constraint

    Get PDF
    For any two random variables X and Y with distributions F and G defined on [0,∞), X is said to stochastically precede Y if P(X≤Y) ≥ 1/2. For independent X and Y, stochastic precedence (denoted by X≤spY) is equivalent to E[G(X–)] ≤ 1/2. The applicability of stochastic precedence in various statistical contexts, including reliability modeling, tests for distributional equality versus various alternatives, and the relative performance of comparable tolerance bounds, is discussed. The problem of estimating the underlying distribution(s) of experimental data under the assumption that they obey a stochastic precedence (sp) constraint is treated in detail. Two estimation approaches, one based on data shrinkage and the other involving data translation, are used to construct estimators that conform to the sp constraint, and each is shown to lead to a root n-consistent estimator of the underlying distribution. The asymptotic behavior of each of the estimators is fully characterized. Conditions are given under which each estimator is asymptotically equivalent to the corresponding empirical distribution function or, in the case of right censoring, the Kaplan–Meier estimator. In the complementary cases, evidence is presented, both analytically and via simulation, demonstrating that the new estimators tend to outperform the empirical distribution function when sample sizes are sufficiently large
    • …
    corecore