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Abstract

For any two random variables X and Y with distributions F and G defined

on [0,∞), X is said to stochastically precede Y if P (X ≤ Y ) ≥ 1/2. For in-

dependent X and Y , stochastic precedence (denoted by X≤spY ) is equivalent to

E[G(X−)] ≤ 1/2. The applicability of stochastic precedence in a variety of sta-

tistical contexts, including reliability modeling, tests for distributional equality vs.

various alternatives and the relative performance of comparable tolerance bounds, is

discussed. The problem of estimating the underlying distribution(s) of experimental

data under the assumption that they obey a stochastic precedence (sp) constraint is

treated in detail. Two estimation approaches, one based on data shrinkage and the

other involving data translation, are used to construct estimators that conform to

the sp constraint, and each is shown to lead to a root n-consistent estimator of the

underlying distribution. The asymptotic behavior of each of the estimators is fully

characterized. Conditions are given under which each estimator is asymptotically

equivalent to the corresponding empirical distribution function, or, in the case of

right censoring, the Kaplan Meier estimator. In the complementary cases, evidence

is presented, both analytically and via simulation, which demonstrates that the new

estimators tend to outperform the edf when sample sizes are sufficiently large.

Key Words: Empirical processes, Order statistics, Reliability, Stochastic order,

U–statistics.
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1 Introduction

The study of stochastic relationships between random variables or their distributions has

been a fertile area of research in applied probability for some time. The notion that

one random variable tends to be larger than another is one that can be quantified in

many different ways. Among the best known stochastic relationships in the literature

are stochastic ordering, uniform stochastic (or hazard rate) ordering and likelihood ratio

ordering, denoted here by X≤stY , X≤hrY and X≤lrY , respectively. (When X ∼ F and

Y ∼ G, we will use the inequality F ≤ G as interchangeable with X ≤ Y .)

Definitions and a comprehensive discussion of these and other orderings can be found

in the recent monograph by Shaked and Shanthikumar (1994). It is well known that

stochastic ordering is the weakest of these three notions, that is, X≤lrY implies X≤hrY
which, in turn, implies X≤stY . The fact that these concepts arise in a wide variety of

statistical applications provides additional motivation for the study of such relationships.

Early statistical applications of stochastic ordering include testing hypotheses for para-

metric families having monotone likelihood ratio and nonparametric tests for the equality

of two distributions against a stochastic ordering alternative (see Chapter 3 of Lehmann

(1986)).

Coincident with the studies alluded to above, there has been a growth of interest in the

use of nonparametric statistical methods in the analysis of failure time data. Nonpara-

metric reliability, for example, seeks to model life-testing data through known qualitative

characteristics of the experiment in question; a nonparametric class such as the collec-

tion of distributions with increasing failure rate serves to describe experimental subjects

tending to deteriorate over time without making restrictive parametric assumptions about

the underlying probability distribution. For a good overview of nonparametric modeling

in reliability, see Barlow and Proschan (1975). In the present article, we will be inter-

ested in the problem of estimating a distribution or survival function when it is assumed

to be a member of a particular nonparametric class (to be described in detail below).

Antecedents for the work presented here include Grenander’s (1956) and Marshall and

Proschan’s (1965) studies on estimating a distribution with monotone failure rate, Boyles

and Samaniego’s (1984) study on estimating a survival curve under the “new better than

used” constraint, the work of Brunk et al. (1966) and Dykstra et al. (1982) on estimation

under a stochastic ordering constraint, and of Rojo and Samaniego (1991, 1993), Muker-

jee (1996) and Arcones and Samaniego (2000) on estimation under a uniform stochastic

ordering constraint.

The weakest of the orderings mentioned above, viz. X≤stY , is still too strong an
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assumption in many problems in which one is inclined to believe that the X population

is somehow smaller than the Y population. If F and G are the cumulative distribution

functions (cdfs) of X and Y respectively, the stochastic ordering assumption prescribes

uniform domination (i.e. F (t) ≥ G(t) for all t) of one distribution by the other. While

that domination may well hold over an important part of the range of the relevant vari-

ables, it may be known to fail over another part of the range (due to infant mortality or

planned obsolescence, for example), or may simply be unknown or unknowable over the

entire range. Furthermore, stochastic ordering often fails when comparing distributions

from different parametric families, and may be quite an unmanageable concept when the

two cdfs of interest are not available in closed form. For these reasons, one might wish to

entertain the possibility of alternative formulations of the relationship between two ran-

dom variables. With this motivation, we introduce the following stochastic relationship

as a way of comparing distributions:

Definition: Let X and Y be independent random variables with distributions F and

G, respectively. Then the variable X is said to stochastically precede the variable Y

if P (X ≤ Y ) ≥ 1/2. This relationship will be denoted by X≤spY or, equivalently, by

F≤spG.

Suppose X and Y are independent random variables, with X ∼ F and Y ∼ G. It is

then easily seen that stochastic ordering implies stochastic precedence. If X≤stY , then

P (X ≤ Y ) =
∫
X

(1 − G(x−))dF (x) ≥
∫
X

(1 − F (x−))dF (x) = P (X ≤ X ′) ≥ 1/2, where

X ′ is an independent copy of X. It follows that stochastic precedence is a less restrictive

assumption on the relationship between two random variables than stochastic ordering.

If X ∼ N(µ1, σ1
2) and Y ∼ N(µ2, σ2

2), X≤stY iff µ1 ≤ µ2 and σ1
2=σ2

2, but X≤spY iff

µ1 ≤ µ2. Stochastic ordering recognizes differences in normal random variables only if the

variances are identical. Stochastic precedence, on the other hand, does not require equal

variances to order X and Y .

The assumption X≤spY is equivalent to the assertion that the median of the variable

Y −X is greater than or equal to zero. The relationship is thus seen to be different from,

but of the same ilk as, the more familiar restriction E(Y −X) ≥ 0. Statistical inference

under the latter restriction and its natural generalizations has been studied extensively,

and constitutes an important part of the field of order-restricted inference (see Robertson,

Wright and Dykstra (1988)).

Interest in the probability P (X ≤ Y ), where X and Y are independent random vari-

ables, has a fairly long history. Birnbaum (1956), for example, considered the problem

of the estimating P (X ≤ Y ) on the basis of two independent samples, advocating a
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scalar multiple of the Mann-Whitney statistic for this purpose, and deriving one-sided

confidence intervals based on his estimator. Church and Harris (1970) studied a particu-

lar parametric version of this problem arising in reliability, pointing out the relevance of

this probability in the modeling of stress-strength relationships. When Y represents the

stress placed on a component under test and X represents its (breaking) strength, then

P (X ≤ Y ) is simply the probability that the component fails. Johnson (1988) provides a

comprehensive review of work on modeling and inference related to stress-strength test-

ing. While the probability P (X ≤ Y ) has received a good deal of attention, its utility

in ordering the variables X and Y , as in the relationship X≤spY defined above, has not

heretofore been carefully explored.

In the section that follows, we discuss the occurrence of stochastic precedence in several

different statistical contexts, including accelerated life testing, test for contamination and

the comparison of nonparametric tolerance intervals. From this discussion, we will see

that interest in stochastic precedence extends well beyond the problems of stress-strength

testing or mathematical comparisons against other stochastic orders.

Our main interest is in improving nonparametric estimation of the underlying distribu-

tion function F when that F is subject to a stochastic precedence constraint. Specifically,

under the assumption that F≤spG, we will consider both one and two-sample estimation

problems. In the one sample case, the dominating distribution G is treated as known.

Our goal is to develop estimators of F (and of G, when appropriate) which obey the

postulated sp constraint. If the edf satisfies the sp constraint, then it will serve as a

suitable estimator. The real challenge, of course, is to develop a good estimator in the

more typical circumstance in which the edf violates the constraint.

In Section 3, we construct an estimator of F that satisfies the stochastic precedence

constraint by shrinking the sample (generated from F ) until the constraint holds. An

alternative estimator for F is derived in Section 4, based on shifting the data, rather than

shrinking it. Both estimators are shown to be consistent, and their asymptotic behavior

is fully characterized. Similar results are obtained for estimators of F and G in the

corresponding two sample problems. Finally, in Section 5, the two proposed estimators

are compared to each other and to the edf, both on the basis of their asymptotic properties

and in the context of a simulation study in which small sample comparisons are made

using data generated from several well-known reliability models. Also discussed in the

concluding section is constrained estimation based on censored data. All proofs of results

in the body of the paper have been relegated to the appendices.
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2 Stochastic Precedence in Statistics

In the introductory section, we motivated the concept of stochastic precedence as a useful

weakening of various forms of stochastic ordering that arise in reliability applications.

The origins of stochastic precedence can be traced to problems involving strength-stress

testing in which the probability P (X ≤ Y ) arises naturally. In this section, we consider a

collection of additional applications of stochastic precedence. This discussion establishes

that this ordering has a host of statistical ramifications, and constitutes a useful addition

to existing approaches for quantifying the way in which two or more experiments might be

related. We consider five distinct scenarios in which the concept of stochastic precedence

stands to enhance current statistical theory and practice.

2.1 The analysis of data from ordered experiments.

The fields of isotonic regression (IR) and accelerated life testing (ALT) are both centered

on data presumed to be derived from populations that are ordered in some way. As an

example if IR analysis, Dykstra, Kochar and Robertson (1991) develop a test for uniform

stochastic ordering and apply it to data on survival times for patients with carcinoma of

the oropharynx in the presence of a covariate measuring the seriousness of their tumors. In

ALT, materials are often tested at stress levels that are more severe than those at normal

operating conditions. Failure time data from accelerated life tests are often treated using

“linked” parametric models that assume a specific functional relationship between stress

level and the parameters of the model (e.g., the Arrhenius model or the power law – see

Nelson (1990)). Among the nonparametric approaches that have been taken to ALT is

that of McNichols and Padgett (1984), who postulate that the distributions governing the

experiments differ only by their respective scale factors.

The notion of stochastic precedence can be viewed as a new nonparametric version

of traditional IR or ALT modeling. Because stochastic precedence is a weaker condition

than that inherent in virtually all IR and ALT models in current use, it stands to be more

broadly applicable to the analysis of data from ordered experiments. We shall describe

below, in a concrete example, how the inference results developed in the sequel might

influence such analysis. Indeed, treating the type of data available from separate phases

of the military acquisitions process –developmental and operational testing – was one of

the primary motivations for our study (see Cohen, Rolph and Steffey (1998)).

In typical applications of the acquisitions process in the Department of Defense, a

system under development (e.g., a vehicle, weapon or piece of hardware) is subjected to

testing at various stages prior to “procurement”. Developmental Testing (DT) occurs
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while prototypes are being built and refined. In the later stages of DT, tests are run on

fairly mature prototypes, and the data set obtained at that juncture is a useful guide

for predicting future performance. When the developmental process is complete, a set of

prototypes is delivered to an independent agency that performs Operational Testing (OT)

on the sample. It is generally the case that performance under OT is less impressive than

that under DT. The main reason for this is that DT occurs under controlled and fairly

restricted (laboratory-type) conditions, while OT is meant to investigate performance

characteristics under real, anticipated operating conditions. Thus OT often takes place

under stresses and strains that are not part of the DT environment.

The goal of a life-testing experiment during the OT phase is the estimation of the

lifetime distribution F under OT conditions. This task is especially challenging due to

the small sample sizes employed in OT (often smaller than DT sample sizes due to the

extraordinary cost of testing under field conditions.) If G is the lifetime distribution under

DT conditions, then the assumption F ≤sp G would typically be judged to be an emi-

nently reasonable assumption. The imposition of this assumption could potentially have

a substantial impact on the form and quality of the estimator of F . The example below

is meant to illustrate this impact. We have applied the sp-constrained estimator devel-

oped in Section 3 to data generated from distributions F and G that satisfy a stochastic

precedence constraint. The distributions involved do not satisfy the stronger stochastic

ordering (st) constraint, so that inference results based on the latter ordering are not well

suited for estimating F from these data.

Suppose that X is a prototype performance under OT conditions where exp(X) ∼
N(µ, σ2), or equivalently, F ∼ Lognormal with µ=0 and σ2=1. Under DT conditions,

G ∼ Lognormal with µ=0.18 and σ2=0.8. The mean of both distributions is 1.6487,

but P (X ≤ Y ) = 0.5559, so that F ≤sp G. At x=2.46, the 0.816 quantile of F , the

distribution functions cross, so that the stochastic ordering constraint fails to hold for

this case. The DT and OT data shown in Table 1 below were generated from these

respective distributions.

Table 1. Data from DT and OT, and the rescaled data OT∗=(0.609)OT
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DT OT OT*

0.3431 0.9727 0.4194 0.2554

0.4461 1.0487 0.8696 0.5296

0.4873 1.0516 0.8770 0.5341

0.5159 1.3262 1.1430 0.6961

0.5249 1.5254 1.3623 0.8297

0.5517 1.5805 1.3719 0.8355

0.5617 1.7979 1.7244 1.0502

0.6865 1.8327 2.7100 1.6504

0.8430 2.3811 3.9693 2.4173

0.8994 6.6239 6.8127 4.1490

Estimation under assumed constraints is characterized by “adjustments” made when

the available data appear to violate the constraint. In the isotonic regression problem of

estimating two ordered means, one would adjust the two sample means in constructing

a pair of estimators consistent with the assumed ordering. In the case of interest here,

an adjustment would be required when the empirical distribution functions Fn and Gn

violate, relative to each other, the constraint assumed for the population as a whole,

namely, F ≤sp G. The estimator studied in the next section adjusts the estimator Fn by

rescaling the data (the X sample, the Y sample or both) in a minimal way in order to

achieve two new empirical distributions that do satisfy the sp constraint. Figure 1 below

shows the two distribution functions F and G from which the data above was drawn,

the two empirical distribution functions Fn and Gn and the sp-constrained estimator F̂1,t

discussed in Section 3.2, with t set equal to zero.

It is clear that, in the instance above, the adjustment made by imposing the sp con-

straint makes a huge difference in the accuracy of estimation. We do not wish to represent

the picture above as typical. As with other constrained problems, the sampled data will

often conform to the assumed constraint (just as sample means tend to be ordered in the

same way as the means of the populations the samples were drawn from), and no ad-

justment is necessary. When is constrained estimation likely to be helpful? The example

above is a good illustration of the answer: when the data violates the constraint, and

especially when it violates it in a marked fashion. The application of the constraint in

such situations stands to make a rather large difference in the resulting data analysis.

The discussion above is aimed at demonstrating that, in selected applications, sp-

constrained estimation can have a strong effect on the practice of data analysis. In the
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Figure 1: F , G, Fn, Gn and F̂1,0.

succeeding sections, we provide the theoretical justification for two specific types of sp-

constrained estimators, demonstrating their consistency and discussing the comparative

advantage that they have asymptotically over the standard unconstrained estimator when

the sp constraint holds.

2.2 An embedding of the Behrens-Fisher problem.

The concept of stochastic precedence has, among its interesting applications, a natural

connection to the Behrens-Fisher problem. While this famous testing problem admits to

some reasonably satisfactory approximate solutions to due to Aspin (1949) and Trickett,

et al. (1956), there continues to be some disagreement in the field about the best way to

test the equality of two normal means in the presence of heteroscedasticity. The concepts

and methods introduced in this paper provide a new way of treating these hypotheses.

Consider testing the hypothesis of “sp equality” (F =sp G) against the alternative of strict

stochastic precedence (i.e., F≤spG). In the heteroscedastic normal case, the hypothesis

of equal means is nested within the null hypothesis above while the hypothesis that

µF < µG is nested within the alternative above. It follows that a size-α test in the

nonparametric problem will have size no greater than α in the Behrens-Fisher problem.
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Moreover the nonparametric test for stochastic precedence has reasonable power when the

true distributions are normal with different means, and constitutes a robust alternative

to the parametric procedures in common use. The nonparametric test to which we allude

is specified in greater detail in Arcones, Kvam and Samaniego (2001).

2.3 Testing against a contaminated normal alternative.

In the literature on robust estimators of location (see Andrews et al. (1974)) and on

the detection and treatment of outliers, the contaminated normal distribution plays a

distinguished role. The model is meant to describe the potential that exists for a small

fraction of the data available in a given experiment to be drawn from an extraneous

source, perhaps simply from the distribution governing gross errors. When one considers

the possibility of trying to detect the presence of contamination, the problem of test-

ing that data came from a single normal population rather than from a mixture of two

normals naturally arises. It can be shown that when a single normal distribution and a

mixture of two normals are assumed to have the same mean, the two distributions enjoy a

strict stochastic precedence relationship, provided that the mixing probability differs from

1/2. This suggests that a test of the null hypothesis of normality against the alternative

hypothesis of a contaminated normal can be based on a test statistic that measures the

extent to which standardized data appears to come from a distribution that stochastically

precedes or is preceded by the standard normal distribution. In Arcones, et al. (2001),

we show that, asymptotically, such a test achieves the nominal significance level under

the null hypothesis and has limiting power 1 under contaminated normal alternatives.

2.4 Comparing complex coherent systems.

Methods for comparing competing system designs relative to either deterministic or

stochastic criteria are of importance in reliability engineering. For an overview, see

Kochar, Mukerjee and Samaniego (1999). Recent work by Boland et al. (1992) and

by Singh and Misra (1994) focuses on the question of whether active or parallel redun-

dancy produces better performance in particular systems of interest. If X and Y are the

respective lifetimes of the systems under study, Singh and Misra suggest that the second

system be judged better than the first if P (X < Y ) exceeds P (X > Y ), a condition that

is essentially equivalent to X≤spY . Now, the demonstration that a given system is better

than another in the sense above can be an imposing analytical problem. For complex sys-

tems, the comparison can be virtually intractable. Thus, statistical procedures for testing

the condition X≤spY , and for estimating each system’s lifetime distribution under an
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sp constraint, may be the only practical way to make the determination of superiority.

In industrial applications in which competing prototypes can be constructed and tested

under fixed conditions, the methods for estimation and testing developed in this paper

can be applied to establish system superiority in the sense suggested by Singh and Misra.

2.5 Comparing fixed-level tolerance limits

Suppose that X1:n ≤ X2:n ≤ ... ≤ Xn:n are the order statistics from a random sample

of size n from a continuous distribution F on the real line. We will refer to the order

statistic Xi:n as an approximate 100(1 − α)% upper tolerance limit for 100(1 − γ)% of

the population if P (Xi:n ≥ F−1(1 − α)) ≥ 1 − γ and P (Xi−1:n ≥ F−1(1 − α)) < 1 − γ.

Thus, Xi:n covers 100(1 − α)% of the population with probability at least 1 − γ, no

smaller order statistic attains such coverage at a probability level of at least 1 − γ and

P (Xi−1:n−1 ≥ F−1(1− α) < 1− γ). Since the variable F (Xi:n) has the Beta(i, n− i+ 1)

distribution, the probabilities above can be easily evaluated as partial binomial sums.

Using the language above, the order statistics X29:29 and X45:46 are both approximate

95% upper tolerance limits for 90% of the population. The smallest sample size for which

an order statistic can serve as a 95% upper tolerance limit for 90% of the population is

n = 29, and the maximum order statistic Xn:n serves in that capacity for 29 ≤ n ≤ 45.

When n = 46, the second largest order statistic provides 90% coverage at the desired

probability level. While it seems natural to claim that X45:46 is superior to X29:29 as an

upper tolerance limit for 90% of the population, the sense in which it is superior may

not be obvious. One might guess, for example, that X45:46 is stochastically smaller than

X29:29. If that were so, then X45:46 could be declared as preferable on the grounds that it

is an upper limit that tends to be smaller than the upper limit X29:29. It is not difficult to

check directly that the conjectured stochastic ordering does not hold between these two

order statistics. A more general result is summarized in the theorem below. The proof is

given in Arcones, Kvam and Samaniego (2000b).

Theorem 2.1. Let Xr1:k1 , Xr2:k2 be order statistics from independent samples of sizes k1

and k2, respectively, drawn from a continuous distribution F . Then Xr1:k1 ≤st Xr2:k2 if

and only if r2 ≥ r1 and k1 − r1 ≥ k2 − r2.

This result effectively eliminates the possibility of comparing upper tolerance limits

via well known order relations like ≤st, ≤hr or ≤lr. The sense in which X45:46 might be

better than X29:29 as an upper tolerance limit remains to be identified.
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The comparisons of greatest interest are those involving order statistics which consti-

tute approximate upper tolerance limits (UTLs) for fixed coverage and probability levels.

For sample sizes up to 100, approximate 95% UTLs for 90% of the population are iden-

tified as X29:29, X45:46, X59:61, X73:76 and X85:89. The comparison of such upper tolerance

limits will be accomplished via the notion of stochastic precedence. Specifically, one can

show that each order statistic in the above list is stochastically preceded by all the order

statistics that follow it. The computation involved in such comparisons is displayed in the

following result, which is a special case of Theorem 4 from Kvam and Samaniego (1993).

Theorem 2.2. If Xj:n and Xi:k are order statistics from independent samples of sizes n

and k, respectively, from a continuous distribution F , then

P (Xj:n ≤ Xi:k) =
n∑
`=j

(
n
`

)(
k
i

)(
n+k
`+i

) i

i+ `
. (2.1)

From Theorem 2.2, we find that P (X45:46 ≤ X29:29) = .62703, that is, we have that

X45:46 ≤sp X29:29. It follows that, among these two approximate 95% upper tolerance

limits for 90% of the population, the order statistic X45:46 is preferable, since it provides a

smaller upper tolerance limit 62.7% of the time. Similar computations establish successive

stochastic precedence relationships among the remaining upper tolerance limits in the list

above.

From this discussion, it is clear that the sp relationship between random variables

has some interesting statistical ramifications. The examples are by no means exhaustive.

For instance, stochastic precedence has also arisen in the comparison of point estimators

via Pitman’s measure of closeness (see Mason, et al. (1990)). In this paper, our main

interest is in estimating the underlying distributions of two variables which are subject to

a stochastic precedence constraint. We now turn to the development and comparison of

two distinct approaches to that inference problem.

3 Estimation via Data Rescaling

Let F and G be two continuous distributions on the positive real line, and assume that

F≤spG. If the edfs based on respective samples from F and G fail to meet the sp con-

straint, we seek to modify one or both edfs until the constraint is achieved. In this section,

we do this by minimally rescaling the observations to achieve the sp constraint. We as-

sume that F and G are continuous with support in (0,∞). Here, we treat the one-sample

case, where G is assumed known, and the two-sample case, where samples are available

from both populations, using the “data-shrinking” strategy.
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3.1 The One-Sample Case

Let us assume that G is known and that a random sample X1, ..., Xn is available from

F . The results we derive here hold somewhat more generally than for estimation under

a stochastic precedence constraint. We will obtain a consistent estimator of F under

the assumption that F satisfies the constraint E[φ(X)] ≤ 0, where φ(.) is an arbitrary

non-decreasing function on [0,∞).

When φ(x) = G(x−)−1/2, the inequality F≤spG is equivalent to E[φ(X)] ≤ 0. Define

θn = sup{t ≥ 0 : n−1
n∑
j=1

φ(tXj) ≤ 0}. (3.2)

We have that n−1
∑n

j=1 φ(θnXj−) ≤ 0 ≤ n−1
∑n

j=1 φ(θnXj+). Let λn = min(θn, 1), and

define our estimator of F as a function of λn:

F̂1(x) = n−1
n∑
j=1

I(λnXj ≤ x). (3.3)

By construction,
∫
φ(x)dF̂1(x) ≤ 0, thus F̂1 stochastically precedes G. The statistic λn

is the scale factor used to shrink the data. That is, when
∫
φ(x)dFn(x) > 0, we multiply

the set X1, ..., Xn by λn, with 0 < λn < 1, so that
∫
φ(x)dF̂1(x) = 0.

It is well known that {n1/2(Fn(x) − F (x)) : x ∈ IR} converges weakly to {W (F (x)) :

x ∈ IR}, where {W (u) : 0 ≤ u ≤ 1} is a Brownian bridge. If E[φ(X)] < 0, then

Pr{n−1
∑n

j=1 φ(Xj) ≤ 0} → 1, which implies Pr{F̂1(x) = F (x), for each x} → 1. This

fact implies that when the stochastic precedence is strict, (that is, P (X ≤ Y ) > 1/2), F̂1

has the same asymptotic limit as Fn. We record this result as

Theorem 3.1. If E[φ(X)] < 0, then {n1/2(F̂1(x) − F (x)) : x ∈ IR} w→ {W (F (x)) : x ∈
IR}.

If P (X ≤ Y ) = 1/2, the sp-constraint can more strongly affect the asymptotic variance

of F̂1. The difference is seen in part (ii) of the theorem that follows. For this theorem,

the limiting condition must be satisfied:

(c3.1) limh→1+ supx≥0 |F (hx)− F (x)− x(h− 1)F ′(x)|/(h− 1) = 0, supx≥0 xF
′(x) <∞.

Theorem 3.2. Let Un = n−1/2
∑n

j=1(φ(Xj) − E[φ(Xj)]). If E[φ2(X)] < ∞, then Un

converges in distribution to N(0,Var(φ(X))). In addition, {n1/2(Fn(x) − F (x)) : x ∈
IR} and Un converge jointly to {W (F (x)) : x ∈ IR} and U with covariance function

Cov(W (F (x)), U) = Cov(I(X ≤ x), φ(X)). Define ζ(t) = E[φ(tX)]. If E[φ(X)] = 0 and

ζ ′(1) exists and is positive, then
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(i) n1/2(θn − 1) + (ζ ′(1))−1Un
Pr→ 0 and n1/2(λn − 1) + (ζ ′(1))−1U+

n
Pr→ 0.

(ii) Under (c3.1) or (c3.2), {n1/2(F̂1(x)−F (x)) : x ≥ 0} w→ {W (F (x))+xF ′(x)(ζ ′(1))−1U+ :

x ≥ 0}.

Theorem 3.2 holds for other nondecreasing functions φ(.) as long as E[φ2(X)] < ∞.

We now turn our attention to the mean squared error (MSE) of the estimator F̂1 at an

arbitrary value x > 0. More specifically, we compare F to F̂ using the standardized limit

MSE(F̂ ) = lim
n→∞

n1/2E(F̂ (x)− F (x))2. (3.4)

By Lemma A.1, when φ(x) = G(x−) − 1/2, MSE(F̂1) simplifies to E[(W (F (x))] +

E[xF ′(x)(ζ ′(1))−1U+)2] = F (x)(1 − F (x)) + xF ′(x)(ζ ′(1))−1Cov(G(X−), I(X ≤ x)) +

2−1(xF ′(x))2(ζ ′(1))−2Var(G(X−)).

Note that the first term of the right hand side of this equation is the MSE of Fn.

For example, if X and Y have a Uniform(0, 1) distribution, then MSE(F̂1(x)) = x(1 −
x) + x2(x − 5/6). It follows that this MSE is smaller than MSE(Fn(x)) for x < 5/6.

The integrated mean squared error, defined here as IMSE(F̂1)=
∫

MSE(F̂1(x))dF (x) =

5/36, is slightly smaller than IMSE(Fn)=1/6. If X and Y are distributed as exponential

with mean µ = 1, then MSE(F̂1) = (1− e−x)e−x + 2xe−2x(x/3− 1 + e−x). In this case,

MSE(F̂1) ≤ MSE(Fn) for all x < 2.8214, which is approximately x0.94, the 0.94 quantile

of F . The integrated mean squared error is 77/648=0.1183, again less than that of Fn.

These examples show that improvement gains with F̂1 depend on the underlying dis-

tributions of F and G. While uniform improvement over Fn cannot be guaranteed, we see

from the above that F̂1 can offer improvement upon the MSE of Fn over a large portion

of the effective support set of the distribution F . In Section 5, we further investigate the

potential improvements made in reducing MSE from using F̂1 over Fn, and we compare

F̂1 to the alternative estimators derived in Section 4.

3.2 The Two-Sample Case.

Here we consider the estimation of F in the case in which G is also unknown. We assume

that an independent random sample Y1, ..., Ym from G is available, along with the original

sample X1, ..., Xn from F . In this case, we have to estimate two distribution functions

simultaneously. Let Fn and let Gm be the empirical distributions based on X1, ..., Xn and

on Y1, ..., Ym, respectively. For brevity, we shall repress further indexing of statistics ξn,m

that are based on both samples, and use ξ̂ instead.
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Let H1(t) = P (Y < tX), and define Ĥ1(t) = (nm)−1
∑n

i=1

∑m
j=1 I(Yj < tXi). Analo-

gous to (3.1), define

θ̂1 = sup{t ≥ 0 : Ĥ1(t) ≤ 1/2}, (3.5)

and let λ̂1 = min(θ̂1, 1). Given 0 ≤ t ≤ 1, we define the two–sample estimators of F

and G to be F̂1,t(x) = n−1
∑n

j=1 I(λ̂1−t1 Xj ≤ x) and Ĝ1,t(x) = m−1
∑m

j=1 I(λ̂−t1 Yj ≤ x),

respectively. Observe that Ĥ1(t) = (nm)−1
∑n

i=1

∑m
j=1 I(λ̂−t1 Yj < λ̂1−t1 Xj). Hence, for

each 0 ≤ t ≤ 1, F̂1,t(x)≤spĜ1,t(x). At t = 0, we achieve the sp constraint by rescaling

only the sample from F . At t = 1, only the sample from G is rescaled, and for values

t ∈ (0, 1), both samples are simultaneously rescaled.

By the law of large numbers for U–statistics based on two samples (see Theorem 1

in McConnell (1987)) we have (nm)−1
∑n

i=1

∑m
j=1 I(Yj < Xj) → H1(1) < 1/2 a.s. Then,

with probability one, for n large enough, λ̂1 = 1, F̂1,t(x) = F (x) and Ĝ1,t(x) = G(x) for

each x. By the Donsker theorem, {n1/2(Fn(x)−F (x)) : x ∈ IR} and {m1/2(Gm(x)−G(x)) :

x ∈ IR} converge weakly to {W1(F (x)) : x ∈ IR} and to {W2(F (x)) : x ∈ IR}, respectively,

where W1 and W2 are two independent Brownian bridges. Similar results for F̂1,t and Ĝ1,t

are summarized in the following theorem.

Theorem 3.3. If H1(1) < 1/2 and m,n→∞, then, for each 0 ≤ t ≤ 1, {n1/2(F̂1,t(x)−
F (x)),m1/2(Ĝ1,t(y)−G(y)) : x, y ∈ IR} w→ {W1(F (x)),W2(G(y)) : x, y ∈ IR}.

Let â2 = nm/(mVar(G(X−)) + nVar(F (Y ))) and Û = âĤ1(1). By Theorem 4.5.1 of

Koroljuk and Borovskich (1994), if Var(G(X−)) > 0, Var(F (Y )) > 0 and m,n→∞, then

Û converges in distribution to N(0, 1). In fact, Ẑ = (n1/2(Fn(x) − F (x)),m1/2(Gm(y) −
G(y)), Û) converges jointly to Z = (W1(F (x)),W2(G(y)), U) if m/n→ c, with 0 ≤ c ≤ ∞.

Here, Z is distributed as trivariate normal with mean zero and covariance matrix Σ, where

Σ1,1 = F (x)(1− F (x)), Σ2,2 = G(y)(1−G(y)), Σ3,3=1, Σ1,2=0,

Σ1,3 = lim
n→∞

(
Var(G(X−)) + nm−1Var(F (Y ))

)−1/2
Cov(I(X ≤ x), G(X−)),

Σ2,3 = lim
n→∞

(
mn−1Var(G(X−)) + Var(F (Y ))

)−1/2
Cov(I(Y ≤ x), 1−G(Y )).

The asymptotic behavior of these estimators is substantially more complex when the

stochastic precedence between F and G is not strict. In the theorem below, we partition

this remaining problem into disjoint cases based on limiting conditions (c3.1) from Section

3.1, along with (c3.2) below:

(c3.2) For all x ≥ 0, limh→1+ supx≥0 |G(hx) − G(x) − x(h − 1)G′(x)|/(h − 1) = 0,

supx≥0 xG
′(x) <∞.
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Theorem 3.4. Suppose that H1(1) = 1/2, H ′1(1) > 0, m,n→∞, Var(G(X−)) > 0 and

Var(F (Y )) > 0. Then,

(a) â(θ̂1 − 1) + (H ′1(1))−1Û
Pr→ 0 and â(λ̂1 − 1) + (H ′1(1))−1Û+ Pr→ 0.

(b) If conditions c3.1 or c3.2 are satisfied, and if n/m→ c for some 0 ≤ c <∞, then

{n1/2(F̂1,t(x)− F (x)) : x ≥ 0} w→

{W1(F (x)) + (1− t)(Var(G(X−)) + cVar(F (Y )))1/2xF ′(x)(H ′1(1))−1U+ : x ≥ 0}

and {n1/2(Ĝ1,t(x)−G(x)) : x ≥ 0} w→

{c1/2W2(G(x))− t(Var(G(X−)) + cVar(F (Y )))1/2xG′(x)(H ′1(1))−1U+ : x ≥ 0}.

(c) If conditions c3.1 or c3.2 are satisfied, and if n/m→∞, then

{m1/2(F̂1,t(x)− F (x)) : x ≥ 0} w→

{(1− t)(Var(F (Y )))1/2xF ′(x)(H ′1(1))−1U+ : x ≥ 0}, and

{m1/2(Ĝ1,t(x)−G(x)) : x ≥ 0} w→

{W2(G(x))− t(Var(F (Y )))1/2xG′(x)(H ′1(1))−1U+ : x ≥ 0}.

If n/m → 0, we obtain infinitely more information on G, and in the case t = 0, the

limits are identical to those in the one-sample case. If n/m→∞, our information about

G is relatively sparse, and the rate of convergence is m1/2, which is slower than that of

the one-sample case. In case (b), we obtain the following two expressions for the MSEs:

MSE(F̂1,t)

= E[(W1(F (x)) + (1− t)(Var(G(X−)) + cVar(F (Y )))1/2xF ′(x)(H ′1(1))−1U+)2]

= F (x)(1− F (x)) + (1− t)Cov(G(X−), I(X ≤ x))xF ′(x)(H ′1(1))−1

+2−1(1− t)2(Var(G(X−)) + cVar(F (Y )))(xF ′(x))2(H ′1(1))−2,

(3.6)

MSE(Ĝ1,t)

= E[(c1/2W2(G(x))− t(Var(G(X−)) + cVar(F (Y )))1/2xF ′(x)(H ′1(1))−1U+)2]

= cG(x)(1−G(x))− c1/2tCov(1− F (Y ), I(Y ≤ x))xG′(x)(H ′1(1))−1

+2−1t2(Var(G(X−)) + cVar(F (Y )))(xG′(x))2(H ′1(1))−2.

(3.7)

The variable t ∈ [0, 1] determines which samples are rescaled to achieve the sp con-

straint, and by how much. From the properties of F̂1,t and Ĝ1,t, it is not immediately

clear what value of t should be used to construct the two-sample estimators. If we judge
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the estimators based on the MSE criterion, we might seek the value of t that minimizes

ρMSE(F̂1,t) + (1− ρ)MSE(Ĝ1,t), for some fixed value of ρ ∈ (0, 1) which depends on the

precision required in estimating F relative to the precision in estimating G. In the case

ρ = 1/2, the value of t which minimizes

MSE(F̂1,t) +MSE(Ĝ1,t) = F (x)(1− F (x)) + cG(x)(1−G(x))

+(1− t)Cov(G(X−), I(X ≤ x))xF ′(x)(H ′1(1))−1

+2−1(1− t)2(Var(G(X−)) + cVar(F (Y )))(xF ′(x))2(H ′1(1))−2

−c1/2tCov(1− F (Y ), I(Y ≤ x))xG′(x)(H ′1(1))−1

+2−1t2(Var(G(X−)) + cVar(F (Y )))(xG′(x))2(H ′1(1))−2

= A+ (1− t)B + 2−1(1− t)2C +Dt+ 2−1Et2,

(3.8)

is t=(B+C-D)/(C+E). If the distributions F and G are continuous, this value can be esti-

mated by t̂(x) = (B̂+Ĉ−D̂)/(Ĉ+Ê), where B̂ = ˆCov(G(X−), I(X ≤ x))xf̂(x)(Ĥ ′1(1))−1,

Ĉ = (V̂ar(G(X−)) + cVar(F (Y )))(xf̂(x))2(Ĥ ′1(1))−2, D̂ = c1/2 ˆCov(1 − F (Y ), I(Y ≤
x))xĝ(x)(Ĥ ′1(1))−1, Ê = 2−1(V̂ar(G(X−)) + cV̂ar(F (Y )))(xĝ(x))2Ĥ ′1(1)−2, ˆCov(G(X−),

I(X ≤ x)) = n−1
∑n

i=1Gm(Xi)I(Xi ≤ x) - n−1
∑n

i=1Gm(Xi)Fn(x), ˆCov(1−F (Y ), I(Y ≤
x)) =m−1

∑m
j=1(1−Fn(Yj))I(Yj ≤ x) -n−1

∑m
j=1(1−Fm(Yj))Gm(x), Ĥ ′1(1)=

∫∞
0
f̂(t)ĝ(t)t dt,

V̂ar(G(X−)) = n−1
∑n

i=1G
2
m(Xi) -(n−1

∑n
i=1Gm(Xi))

2, V̂ar(F (Y )) = m−1
∑m

j=1 F
2
n(Yj)

- (m−1
∑m

j=1 Fn(Yj))
2, and f̂(t) and ĝ(t) are density estimators of f(t) = F ′(t) and

g(t) = G′(t), respectively.

4 Estimation via Data Translation

In this section, we present an alternative estimator for F (denoted by F̂2) based on

transforming the data with a location rather than a scale change to achieve stochastic

precedence. If needed, the data X1, ..., Xn are minimally shifted by some constant amount

to the left until the edf based on the shifted data stochastically precedes G. In the two

sample case where G is also unknown, we simultaneously shift the data Y1, ..., Ym (from

G) by a constant to the right until the sp-constraint holds.

While the methods employed in the present section can be applied to problems in-

volving positive random variables (on which we focused in Section 3), they also apply

more broadly. Here, we assume only that F≤spG, with F and G being continuous cdfs

on the real line. We treat one- and two-sample problems below. In Section 5, we com-

pare these estimators with those developed in Section 3, showing that both offer potential

improvement over Fn, but that neither uniformly dominates the other.
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4.1 The One-sample case

Let us assume that G is known and that a random sample X1, ..., Xn is available from F .

As before, the results we derive here hold somewhat more generally than for estimation

under a stochastic precedence constraint. We will obtain a consistent estimator of F under

the assumption that F satisfies the constraint E[φ(X)] ≤ 0, where φ(.) is an arbitrary

non-decreasing function on [0,∞). When φ(x) = G(x−) − 1/2, the inequality F≤spG is

equivalent to E[φ(X)] ≤ 0. Define

θn = sup{t ∈ IR : n−1
n∑
j=1

φ(t+Xj) ≤ 0}. (4.9)

We have that n−1
∑n

j=1 φ(θn + Xj−) ≤ 0 ≤ n−1
∑n

j=1 φ(θn + Xj+). Let λn = min(θn, 0),

and define our estimator of F as a function of λn:

F̂2(x) = n−1
n∑
j=1

I(λn +Xj ≤ x). (4.10)

By shifting the data an amount λn, we have F̂2 stochastically preceding G. The

location-shift statistic λn is analogous to the scale-shift statistic from Section 3.1. The

properties of the estimators are similar, as well, but they are not identical in any case of

interest. This fact is made clear in the theorems below.

The difference between F̂1 and F̂2 is best appreciated through an example. The two

estimators, and the edf Fn, are graphed in Figure 2 against the true distribution (F =

G) from which a sample of size ten was drawn from a Weibull distribution with shape

parameter α=2 and scale parameter β=1, so that F (x) = 1 − exp(−x2), x > 0. For

illustration, we choose G = F . The edf, graphed as a solid-line step function in Figure

2, clearly disagrees with the constraint of stochastic precedence for this sample. That

is, while Fn clearly violates the sp constraint relative to G, the alternative estimators F̂1

and F̂2, which differentially shift Fn up and to the left, minimally satisfy the constraint

within each of their respective classes. The scale transformation estimator, F̂1, is graphed

as a dashed-line step function while F̂2, is graphed as a dotted-line step function. F̂1 is

shifted left of Fn by multiplying all the observed data by 0.8253 to ensure G has stochastic

precedence over F̂1. F̂2 is shifted to the left by subtracting 0.1732 from each observation.

Naturally, the estimators are the same at x = 0.1732/(1 − 0.8253) = 0.9914, where the

translations are identical. The disagreement between F̂1 and F̂2 is much more dramatic

at values of x for which F (x) is close to 1.

Theorem 4.1 below states that if stochastic precedence is strict, F̂2 has the same

asymptotic limit as Fn. Theorem 4.2 examines the asymptotic limit of F̂2 in the case that
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Figure 2: Weibull cdf (gray line), Fn (solid line), F̂1 (dashed line), and F̂2 (dotted line)

under sp constraint.

stochastic precedence is not strict, and relies on the following limiting condition:

(c4.2) For all x ∈ IR, limh→0 supx≥0(|F (x+h)−F (x)−hF ′(x)|)/h = 0, supx≥0 F
′(x) <∞.

Theorem 4.1. If E[φ(X)] < 0, then {n1/2(F̂2(x) − F (x)) : x ∈ IR} w→ {W (F (x)) : x ∈
IR}.

Theorem 4.2. Define ζ(t) = E[φ(t+X)]. If E[φ(X)] = 0 and ζ ′(0) > 0, then

(i) n1/2θn + (ζ ′(0))−1Un
Pr→ 0 and n1/2λn + (ζ ′(0))−1U+

n
Pr→ 0.

(ii) Under (c4.1) or (c4.2), {n1/2(F̂2(x)−Fn(x)) : x ≥ 0} w→ {W (F (x))+F ′(x)(ζ ′(1))−1U+ :

x ∈ IR}.

By Lemma A.1, when φ(x) = G(x−)− 1/2, the MSE of F̂2 defined in (3.4) simplifies to

E[(W (F (x)) + F ′(x)(ζ ′(0))−1U+)2] = F (x)(1− F (x))

+F ′(x)(ζ ′(0))−1Cov(G(X−), I(X ≤ x)) + 2−1(F ′(x))2(ζ ′(0))−2Var(G(X−)). (4.11)

The MSE in (4.11) neither dominates or is dominated by the MSE for the scale-

translation estimator. For example, if X and Y have a Uniform(0, 1) distribution, we
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have from Section 3 that MSE(F̂1(x)) = x(1 − x) + x2(x − (5/6)). For the location-

translation estimator, MSE(F̂2(x)) = x(1 − x)/2 + 1/24. The integrated MSE for F̂2 =

1/8, which is slightly smaller than the IMSE for F̂1. On the other hand, when X and Y

have identical exponential distributions, the IMSE for F̂2 is slightly larger than that of

F̂1. In the case µ = 1, then MSE(F̂1(x)) = e−x(1 − e−x) + xe−2x(2e−x − 2 + x/6) and

MSE(F̂2(x)) = e−x(1− e−x) + e−2x(e−x− 5/6). Here, IMSE(F̂1) = 0.1183 < IMSE(F̂2) =

0.1389.

4.2 The Two-sample case

Next, we consider the estimation of F in the case in which G is also unknown. We assume

that an independent random sample Y1, ..., Ym from G is available, along with the original

sample X1, ..., Xn from F . We proceed similarly to Section 3.2, but, in this case, we

need not assume that the r.v.s are nonnegative. Let H2(t) = P (Y < t + X), and define

Ĥ2(t) = (nm)−1
∑n

i=1

∑m
j=1 I(Yj < t+Xj). Analogous to (3.6), define

θ̂2 = sup{t ∈ IR : H2(t) ≤ 1/2}, (4.12)

and define λ̂2 = min(θ̂2, 0). We define the two-sample estimator of F and G to be

F̂2,t(x) = n−1
∑n

i=1 I((1 − t)λ̂2 + Xi ≤ x) and Ĝ2,t(x) = m−1
∑m

j=1 I(−tλ̂2 + Yj ≤ x).

Note that, by definition, F̂2,t(x)≤spĜ2,t(x). At t = 0, only data from F are shifted (to the

left), and at t = 1, only data from G are shifted (to the right). For values of t ∈ (0, 1),

both samples are shifted. Theorem 4.3 below follows by the law of the large numbers for

U–statistics: Ĥ2(0−) → E[G(X−)] < 1/2, so λ̂2 = 0 for n large enough. Along with

limiting conditions (c4.1) from Section 4.1, we have

(c4.2) For allx ∈ IR, limh→0 supx∈IR |G(x+h)−G(x)−hG′(x)|/h=0, supx∈IRG
′(x) <∞.

Theorem 4.3. If H2(0) < 1/2, and m,n → ∞, then {n1/2(F̂2,t(x) − F (x)) : x ∈ IR} w→
{W (F (x)) : x ∈ IR}.

Theorem 4.4. Suppose that H2(0) = 1/2, H ′2(0) > 0, m,n→∞, Var(G(X−)) > 0 and

Var(F (Y )) > 0. Then,

(a) âθ̂2 + (H ′2(0))−1Û
Pr→ 0 and âλ̂2 + (H ′2(0))−1Û+ Pr→ 0.

(b) If conditions (c4.1) or (c4.2) hold, and if n/m→ c for some 0 ≤ c <∞, then

{n1/2(F̂2,t(x)− F (x)) : x ∈ IR} w→

{W1(F (x)) + (1− t)(Var(G(X−)) + cVar(F (Y )))1/2F ′(x)(H ′2(0))−1U+ : x ∈ IR}
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and {n1/2(Ĝ2,t(x)−G(x)) : x ∈ IR} w→

{c1/2W2(G(x)) +t(Var(G(X−)) + cVar(F (Y )))1/2G′(x)(H ′2(0))−1U+ : x ∈ IR}.

(c) If conditions (c4.1) or (c4.2) hold, and if n/m→∞, then

{m1/2(F̂2,t(x)− F (x)) : x ∈ IR} w→

{(1− t)(Var(F (Y )))1/2F ′(x)(H ′2(0))−1U+ : x ∈ IR} and

{m1/2(Ĝ2,t(x)−G(x)) : x ∈ IR} w→

{W2(G(x)) + t(Var(F (Y )))1/2G′(x)(H ′2(0))−1U+ : x ∈ IR}.

As we discussed in the last section, the MSE criteria can be used to find an optimal

value of t ∈ [0, 1]. The derivation and expression for t̂ is similar to that in Section 3.

5 Discussion

In this section, we discuss the properties of the nonparametric estimators derived in

Sections 3 and 4. Examples from those sections suggest that there is no strict rank-

ing of the estimators according to the integrated mean squared error criterion. When

E(G(X)) = 1/2, the two estimators have different asymptotic variances, and these both

differ from that of Fn. The examples show that each of the sp estimators can improve

upon, but does not dominate Fn with regard to the mean squared error criterion in (3.4).

To further examine the relationship between respective IMSEs, we consider comparisons

based on distributions that are commonly applied to reliability and life-testing problems:

the Gamma, Weibull and Lognormal distributions.

For the Gamma distribution, the IMSE can be computed directly for each of the

estimators. To compare IMSE of F̂1 versus F̂2, we let X ∼ Gamma(r, λ), where r is the

shape parameter and 1/λ is the scale parameter. Let Y ∼ Exponential(1), the special

case for which (r, λ) = (1, 1). Note that for X≤spY , E[G(X)] ≤ 1/2 implies that λ ≥
1/(21/r−1). Because the IMSE is based on asymptotic variances for which E[G(X)] = 1/2,

we compare the estimators at values of (r, λ) for which λ = 1/(21/r − 1). Relative Error

(R.E.) for F̂ is defined as IMSE(F̂ )/IMSE(Fn), and is plotted in Figure 3 as a function

of the Gamma scale parameter λ. Both estimators improve significantly on Fn, with F̂1

exhibiting a greater amount of improvement than F̂2.

Analytic solutions for IMSE are not possible in the case that data have Weibull or

Lognormal distributions. Figures 4 and 5 show the computed IMSE for simulations based
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on the Weibull and Lognormal distributions, respectively. The results of each figure are

based on simulations of 250,000. For Figure 4, samples of n=20 were generated from a

Weibull(a, b) distribution, where a is the shape parameter and b is the scale parameter

that is set to b = 1 here. For the generated samples X1, ..., X20, a is set to 3, and we

assume Y is distributed Weibull(a,1), with a ∈ (1, 3) so that X≤spY . For the simulated

Weibull data, both estimators outperform Fn, and F̂2 has smaller IMSE than F̂1

In Figure 5, we compute the IMSE based on samples of size n=20 generated from a Log-

normal distribution. We examine the IMSE in the case X is distributed Lognormal(µ = 0,

σ = 1) and Y is distributed Lognormal(µ = a, σ = 1), with a ∈ (0, 0.4). From the Ex-

ample in Section 1, we see that stochastic precedence holds for a ≥ 0. In contrast to the

simulated Weibull data, F̂1 has smaller IMSE than F̂2 in this comparison.

These results confirm the fact that neither estimator dominates the other, and that

both estimators can offer substantial improvement over Fn if stochastic precedence is

known to exist between two distributions. However, the amount of improvement depends

on the underlying distribution of the data, and is not easily characterized analytically.

The approach we have taken to the estimation of F , given F≤spG, is unabashedly

ad hoc. It is an approach that has considerable intuitive appeal when F and G are con-

tinuous. Both of the approaches we have considered can be applied to failure time (i.e.,

nonnegative) data, though we consider this to be the natural domain of applicability of

F̂1. For measurement (i.e., real valued) data, F̂2, based on a change in location, is clearly

the more suitable. Since most applications in reliability involve positive random variables,

both approaches constitute new and usable techniques for analyzing reliability data when

stochastic precedence is a reasonable assumption. Because there is no universally accepted

approach to constrained nonparametric estimation, it is common to seek to exploit the

specific structure of the constrained class one is working with. Our approach has been to

transform the data in a minimal way so that the empirical distribution of the transformed

data will satisfy the sp constraint. The theoretical results we have derived show that this

approach is quite efficacious, yielding estimators which satisfy the assumed constraint for

any sample size and which inherit many of the good properties of Fn (and Gm) asymptot-

ically. We note that both of these approaches to estimation have limitations. The first is

for models for which P (X < 0) > 0, and neither is recommended for discrete data. Due

to these observations, and because there are a number of other approaches which might

yield competitive estimators, we plan to report on the relative performance of alternative

approaches in sequel to the present paper.

One of the important extensions of our results that merits some commentary is the

applicability of the approaches we have studied to censored data. While we are not in
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a position to present comprehensive results in this case, we have obtained preliminary

results that demonstrate the feasibility and efficacy of our approach in censored data

problems.

We have limited our investigation to the one sample problem using the rescaling ap-

proach of Section 3.1. We find that the approach generalizes quite easily, producing an

estimator of the underlying distribution F based on a censored X sample when F sat-

isfies an sp constraint relative to a known G. Under explicit smoothness conditions on

the distribution G, we show that the estimator F̃ based on rescaled censored data, is

asymptotically equivalent to the Kaplan-Meier estimator when the sp constraint is strict.

In the remaining case, we identify the weak limit of the estimating process and compare

its performance to the standard, unconstrained estimator F̃ .

As in the uncensored case, evidence is presented supporting the superiority of the

constrained estimator. For example, if X and Y ∼ U(0, 1), then MSE(Fn(x)) = 2−1x(2−
x), MSE(F̃ (x)) = 2−1x(2 − x) + x(1 − x) ln(1 − x) + 2−2x2, IMSE(Fn(x)) = 1/3 and

IMSE(F̃ (x)) = 41/180 < 1/3. If X and Y ∼ exponential(µ = 1), then MSE(Fn(x)) =

2−1(1−e−2x), MSE(F̃ (x)) = 2−1(1−e−2x)−x2e−2x, IMSE(Fn(x)) = 1/3 and IMSE(F̃ (x)) =

7/27. In both of these cases, the constrained estimator F̃ is seen to outperform the KME

in terms of the global IMSE criterion. Detailed results of the derivation for the constrained

estimator with censored data can be found in Appendix B.

Appendices

A Asymptotic Results

Lemma A.1. Let (Z1, Z2) be a bivariate normal random vector with zero means. Then,

E[Z1 max(Z2, 0)] = 2−1E[Z1Z2] and E[(max(Z2, 0))2] = 2−1E[Z2
2 ].

Proof: Since (Z1, Z2) and (−Z1,−Z2) have the same distribution, E[Z1 max(Z2, 0)] =

E[−Z1 max(−Z2, 0)] = E[Z1 min(Z2, 0)]. From this and the fact that x = max(x, 0) +

min(x, 0), the first formula follows. The second formula follows from the fact that x2 =

(max(x, 0))2 + (min(x, 0))2. 2

Now, we apply limit theorems for M–estimators. Asymptotic properties of M–estimators

when h(x, θ) is nondecreasing in θ are in several references, for example Lemma 4 of Huber

(1964). We will need generalizations of this theorem.

Theorem A.2. Let {Zn(θ) : θ ∈ IR} be a sequence of stochastic processes. Let θ0 ∈ IR.
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Let {an} be a sequence of real numbers converging to infinity. Let θn = sup{t : Zn(t) ≤ 0}.
Assume that:

(i) As a function on θ, Zn(θ) is non increasing.

(ii) There exists a positive constant b such that for each τ ∈ IR, anE[Zn(θ0 + a−1n τ) −
Zn(θ0)]→ bτ.

(iii) anZn(θ0) = OP (1).

(iv) For each τ ∈ IR, an(Zn(θ0 + a−1n τ)− Zn(θ0)− E[Zn(θ0 + a−1n τ)− Zn(θ0)])
Pr→ 0.

Then, an(θn − θ0) + b−1anZn(θ0)
Pr→ 0.

Proof: Given τ > 0, we prove that

(A.1) Pr{ban(θn − θ0) + anZn(θ0) < −τ} → 0 and

(A.2) Pr{ban(θn − θ0) + anZn(θ0) ≤ τ} → 1.

This implies the claim.

It is well known that if sequence of nondecreasing functions converges to a continuous

function, then it does so uniformly on compact sets. This is also true for a sequence of

nondecreasing random functions converging in probability to a continuous function. This

implies that for each 0 < M <∞,

(A.3) sup
|τ |≤M

|an(Zn(θ0 + a−1n τ)− Zn(θ0))− τb|
Pr→ 0.

Given t, we have that {θn < t} ⊂ {Zn(t) > 0}. So,

(A.4) Pr{ban(θn − θ0) + anZn(θ0) < −τ}

= Pr{θn < θ0 − a−1n b−1(τ + anZn(θ0))} ≤ Pr{Zn(θ0 − a−1n b−1(τ + anZn(θ0))) > 0}

By condition (iii) and (A.3)

|an(Zn(θ0 − a−1n b−1(τ + anZn(θ0)))− Zn(θ0)) + (τ + anZn(θ0))|
Pr→ 0.

Thus, anZn(θ0 − a−1n b−1(τ + anZn(θ0)))
Pr→ −τ . This and (A.4) imply (A.1). Finally,

given t, we have that {Zn(t) > 0} ⊂ {θn ≤ t}. So, Pr{ban(θn − θ0) + anZn(θ0) ≤ τ} ≥
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Pr{Zn(θ0 − a−1n b−1(−τ + anZn(θ0))) > 0}, and as before we have anZn(θ0 − a−1n b−1(−τ +

anZn(θ0)))
Pr→ τ, which implies (A.2). 2

In the previous theorem, condition (ii) is implied by E[Zn(θ)] = Z(θ) does not depend

on n and Z ′(θ0) > 0.

The next corollary is similar to Lemma 4 in Huber (1964). In that paper it is shown

that the M–estimator is asymptotically normal. We show that the M–estimator minus a

linear approximation goes to zero in probability.

Corollary A.3. Let {Xi}∞i=1 be a sequence of i.i.d. random variables. Let h : IR×IR→ IR

be function such that h(·, θ) : IR → IR is measurable for each θ and h(x, ·) : IR → IR is

nondecreasing for each x. Let θ0 ∈ IR. Let θn = sup{t : n−1
∑n

j=1 h(Xj, t) ≤ 0}. Assume

that:

(i) Z(θ0) = 0 and Z ′(θ0) > 0, where Z(θ) := E[h(X, θ)].

(ii) E[h2(X, θ0)] <∞.

(iii) limθ→θ0 E[(h(X, θ)− h(X, θ0))
2] = 0.

Then, n1/2(θn − θ0)+(Z ′(θ0))
−1n−1/2

∑n
j=1(h(Xj, θ0)− E[h(Xj, θ0)])

Pr→ 0.

Proof: We apply Theorem A.2 with Zn(θ) = n−1
∑n

j=1 h(Xj, θ). We have that

Var(n1/2(Zn(θ0 + n−1/2τ)− Zn(θ0))) = E[(h(X, θ0 + τn−1/2)− h(X, θ0))
2] −(E[h(X, θ0 +

τn−1/2)− h(X, θ0)])
2, which converges to zero. 2

To obtain asymptotic properties of F̂ in the two-sample case, we apply formulas for

U–statistics. If h : IR2 → IR, then the Hoeffding decomposition can be written as

(A.5) n−1m−1
n∑
i=1

m∑
j=1

(h(Xi, Yj)− E[h(Xi, Yj)])

= n−1
n∑
i=1

(h1(Xi)− E[h1(Xi)]) +m−1
m∑
j=1

(h2(Yj)− E[h2(Yj)])

+n−1m−1
n∑
i=1

m∑
j=1

(h(Xi, Yj)− h1(Xi)− h2(Yj) + E[h(Xi, Yj)]),

where h1(x) = E[h(x, Y )] and h2(y) = E[h(X, y)]. Since this is a decomposition into

orthogonal components, we have that
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(A.6) Var(n−1m−1
n∑
i=1

m∑
j=1

h(Xi, Yj))

= n−1Var(h1(X)) +m−1Var(h2(Y )) + n−1m−1Var(h(X, Y )− h1(X)− h2(Y ))

≤ (3m−1n−1 +m−1 + n−1)Var(h(X, Y )).

We also have that if Var(h1(X)), Var(h2(Y )) > 0 and min(n,m)→∞, then

(A.7) b−1n

n∑
i=1

m∑
j=1

(h(Xi, Yj)− E[h(Xi, Yj)])
d→ N(0, 1),

where b2n = Var(
∑n

i=1

∑m
j=1 h(Xi, Yj)) (see Theorem 4.5.1 of Koroljuk and Borovskich

(1994)). We will use the fact that

lim
min(n,m)→∞

b2n
n−1Var(h1(X)) +m−1Var(h2(Y ))

= 1

.

Corollary A.4. Let {Xi}∞i=1 and let {Yj}∞j=1 be two independent sequences of i.i.d.r.v.’s

with possibly different distributions. Let h : IR3 → IR be function such that h(·, ·, θ) :

IR2 → IR is measurable for each θ and h(x, y, ·) : IR → IR is nondecreasing for each

x, y. Let θ0 ∈ IR. Let {m} be a sequence of positive integers converging to infinity. Let

θn = sup{t : n−1m−1
∑n

i=1

∑m
j=1 h(Xi, Yj, t) ≤ 0}, and assume that:

(i) Z(θ0) = 0 and Z ′(θ0) > 0, where Z(θ) := E[h(X1, Y1, θ)].

(ii) Var(h1(X1)),Var(h2(Y1)) > 0, where h1(x) = E[h(x, Y1, θ0)] and

h2(y) = E[h(X1, y, θ0)].

(iii) limθ→θ0 E[(h(X1, Y1, θ)− h(X1, Y1, θ0))
2] = 0.

Then,

an(θn − θ0) + (Z ′(θ0))
−1ann

−1m−1
n∑
i=1

m∑
j=1

(h(Xi, Yj, θ0)− E[h(Xi, Yj, θ0)])
Pr→ 0,

where a2n = nm/(mVar(h1(X)) + nVar(h2(Y ))).

Proof: We apply Theorem A.2 with Zn(θ) = n−1m−1
∑n

i=1

∑m
j=1 h(Xi, Yj, θ0). By (A.6),

Var(an(Zn(θ0 +n−1/2τ)−Zn(θ0))) ≤ (3m−1n−1 +m−1 +n−1)a2nVar(h(X1, Y1, θ0 +n−1/2τ)-

h(X1, Y1, θ0)), which converges to zero. 2
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B Treating Censored Data

We restrict attention to the one sample problem. Suppose we observe (Z1, δ1), ..., (Zn, δn)

where Zi = min(Xi, Yi), δi=I {Xi ≤ Yi}, and X1, ..., Xn
iid∼ F and Y1, ..., Yn

iid∼ K are

independent samples from a lifetime distribution F and a censoring distribution K, re-

spectively. Suppose further that F≤spG. Let Fn represent the Kaplan–Meier estimator

of F .

In the rescaling case, we define

θn = sup{t ≥ 0 :

∫ ∞
−∞

G(tx) dFn(x) ≤ 1/2}.

Let λn = min(θn, 1). We define our estimator of F as F̃n(x) = Fn(x/λn).It is well known

(see, e.g., Breslow and Crowley (1974), Gill (1981)) that supt>0 |Fn(t)− F (t)| → 0 a.s.,

and that {n1/2(Fn(t)−F (t)) : t ≥ 0} w→ {Z(t) : t ≥ 0}, where {Z(t) : t ≥ 0} is a Gaussian

process with mean zero and covariance E (Z(s)Z(t)) = C(s)(1 − F (s))(1 − F (t)), and

where s < t and C(s) =
∫ s
0

((1−F (t))2(1−K(t)))−1dF (t). Assuming that G is absolutely

continuous, we have that, (using integration by parts)

Zn(t) ≡
∫ ∞
−∞

G(tx) dFn(x) =

∫ ∞
−∞

G(tx) d(Fn(x)− 1)

= G(tx)(Fn(x)− 1))|∞−∞ −
∫ ∞
−∞

tg(tx)(Fn(x)− 1)dx =

∫ ∞
−∞

tg(tx)(1− Fn(x))dx,

where g(x) = G′(x). Hence, we have that

|
∫ ∞
−∞

G(x) dFn(x)− E[G(X)]| ≤
∫ ∞
−∞

tg(tx)|Fn(x)− F (x)|dx→ 0 a.s.

This implies, by the argument in the proof of Theorem 3.1, the following theorems.

Theorem B.1. Assume E[G(X)] = 1/2 and that G is absolutely continuous with

g(x) = G′(x), then {n1/2(F̃ (x)− F (x)) : x ≥ 0} w→ {Z(x) : x ≥ 0}, where {Z(x) : x ≥ 0}
is the limit distribution of the normalized Kaplan–Meier estimator.

Theorem B.2. Assume E[G(X)] = 1/2 and that G is twice differentiable with

bounded first and second derivatives and limε→0

∫∞
−∞ |g((1 + ε)x) − g(x))|dx = 0. Define

b =
∫∞
−∞ xf(x)g(x) dx, U = −n1/2

∫∞
−∞ g(x)Z(x) dx. Then

(i) n1/2(θn−1)+b−1Un
Pr→ 0 and n1/2(λn−1)+b−1U+

n
Pr→ 0, and Û = n1/2(

∫∞
−∞G(x) dFn(x)−

E[
∫∞
−∞G(x) dFn(x)]) = −n1/2

∫∞
−∞ g(x)(Fn(x)− E[Fn(x)]) dx.
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(ii) If limh→1+(|F (hx)−F (x)−x(h− 1)F ′(x)|)/(h− 1) = 0, then n1/2(F̃ (x)−F (x))
w→

Z(x) + xF ′(x)b−1U+

(iii) If limh→1+ supx≥0(|F (hx)− F (x)− x(h− 1)F ′(x)|)/(h− 1) = 0, and

supx≥0 xF
′(x) < ∞, then {n1/2(F̃ (x) − F (x)) : x ≥ 0} w→ {Z(x) + xF ′(x)b−1U+ :

x ≥ 0}.

Proof. We apply Theorem A.2. Hypothesis (i) in Theorem A.2 is trivially satisfied.

As to condition (ii),

n1/2E[Zn(1 + n−1/2τ)− Zn(1)]

= n1/2

∫ ∞
−∞

((1 + n−1/2τ)g((1 + n−1/2τ)x)− g(x))(1− E[Fn(x)])dx

=

∫ ∞
−∞

τg((1+n−1/2τ)x)(1−E[Fn(x)])dx+n1/2

∫ ∞
−∞

(g((1+n−1/2τ)x)−g(x))(1−E[Fn(x)])dx

→
∫ ∞
−∞

τg(x)(1− F (x))dx+

∫ ∞
−∞

τxg′(x)(1− F (x))dx = τ

∫ ∞
−∞

τg(x)f(x)dx.

As to condition (ii),

n1/2|Zn(1 + n−1/2τ)− Zn(1)− E[Zn(1 + n−1/2τ)− Zn(1)]|

≤ n1/2

∫ ∞
−∞

((1 + n−1/2τ)g((1 + n−1/2τ)x)− g(x))|Fn(x)− E[Fn(x)]|dx

≤ OP (1)

∫ ∞
−∞
|(1 + n−1/2τ)g((1 + n−1/2τ)x)− g(x))|dx = op(1).

Theorem A.2 applies because∫ ∞
−∞
|g((1 + n−1/2τ)x)− g(x))|dx→ 0, and

∫ ∞
−∞

n−1/2g((1 + n−1/2τ)x)dx = n−1/2((1 + n−1/2τ)−1G(((1 + n−1/2τ)x)|∞−∞

= n−1/2(1 + n−1/2τ)−1 → 0.

By Lemma A.1, MSE(F̃ ) = E[(Z(x) +xF ′(x)b−1U+)2] = C(x)(1−F (x))2 - b−1xF ′(x)×∫∞
0
g(t)C(t ∧ x)(1 − F (x))(1 − F (t)) dt +2−1(b−1xF ′(x))2

∫∞
0

∫∞
0
g(s)g(t)C(s ∧ t)(1 −

F (s))(1− F (t)) ds dt. 2
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C Remaining Proofs

Proof of Theorem 3.2: To prove (i), we apply Corollary A.3 with h(x, t) = φ(tx). We

need to prove that limθ→1E[(h(X, θ)−h(X, 1))2] = 0. We have that limθ→1−E[(φ(θX)−
φ(X))2] = E[(φ(X)−φ(X−))2] and limθ→1+E[(φ(θX)−φ(X))2] = E[(φ(X+)−φ(X))2].

Since ζ is continuous, E[φ(X+) − φ(X−)] = 0, and φ(X+) − φ(X−) is nonnegative,

thus, E[(φ(X+) − φ(X−))2] = 0. From this, condition (iii) in Corollary A.3 is satisfied.

Therefore, by Corollary A.3, n1/2(θn − 1) + (ζ ′(1))−1Un
Pr→ 0.

We have that n1/2(λn− 1) + (ζ ′(1))−1U+
n = n1/2(min(θn, 1)− 1) + max(0, (ζ ′(1))−1Un)

= −max(−n1/2(θn−1), 0)+max(0, (ζ ′(1))−1Un). From the inequality |x+−y+| ≤ |x−y|,
we have |n1/2(λn − 1) + (ζ ′(1))−1U+

n | ≤ |n1/2(θn − 1) + (ζ ′(1))−1Un|
Pr→ 0.

To prove (ii), we can partition n1/2(F̂1(x)−F (x)) into four distinct elements: n1/2(F̂1(x)−
F (x))=[n1/2(Fn(x)−F (x))]+ [n1/2(λ−1n −1)xF ′(x)]+ [n1/2(Fn(λ−1n x)−Fn(x)−F (λ−1n x)+

F (x))]+ [n1/2(F (λ−1n x)− F (x)− x(λ−1n − 1)F ′(x))]= [I] + [II] + [III] + [IV ].

By (i), I+II converges weakly to W (F (x))+xF ′(x)(ζ ′(1))−1U+. Since F is continuous

at x, |III| Pr→ 0. By hypothesis, |IV | ≤ n1/2|λ−1n − 1|o(1)
Pr→ 0; hence, part (ii) follows.

Observe that

sup
x≥0

|F (λ−1n x)− F (x)− (λ−1n − 1)xF ′(x)|
λ−1n − 1

Pr→ 0

and uniform convergence holds in this case. 2

Proof of Theorem 3.4: We apply Corollary A.4 with h(x, y, t) = I(y < tx). We have

that h1(x) = G(tx−) and h2(y) = 1 − F (t−1y). Since H ′1(1) > 0, Pr{Y = X} = 0 and

limt→0E[(h(x, y, t)−h(x, y, 1))2] = 0, which implies condition (iii) in Corollary A.4 holds.

Therefore, claim (a) follows. The rest of the claims follow by doing a decomposition

similar to that in the one sample case. Observe that if n/m → c < ∞, then â−1n1/2 =

(Var(G(X−)) + m−1nVar(F (Y )))1/2 → (Var(G(X−)) + cVar(F (Y )))1/2 and n1/2(λn −
1)xF ′(x)

d→ −(Var(G(X−)) + cVar(F (Y )))1/2xF ′(x)(H ′1(1))−1U+.

If n/m → ∞, then â−1m1/2 = (Var(F (Y )))1/2. Thus, m1/2(Fn(x) − F (x))
Pr→ 0 and

m1/2(λn − 1)xF ′(x)
d→ −(Var(F (Y )))1/2xF ′(x)(H ′1(1))−1U+. In case (c) we have the

following decomposition:

n1/2(F̂1,t(x)− F (x))

= n1/2(Fn(x)− F (x)) + n1/2(λt−1n − 1)xF ′(x)

+n1/2(Fn(λt−1n x)− Fn(x)− F (λt−1n x) + F (x))

+n1/2(F (λt−1n x)− F (x)− x(λt−1n − 1)F ′(x))

' n1/2(Fn(x)− F (x)) + n1/2(t− 1)(λn − 1)xF ′(x).
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This decomposition and previous limits imply (c). The proof for (b) follows by re-

peating previous arguments. 2

Proof of Theorem 4.1: By the law of the large numbers, with probability one,

n−1
∑n

j=1 φ(Xj) → E[φ(X)] < 0. So, for n large enough, θn ≥ 0, λn = 0 and F̂n = Fn. 2

Proof of Theorem 4.2: By Theorem A.2, n1/2θn + (ζ ′(0))−1Un
Pr→ 0, and n1/2λn+

(ζ ′(0))−1U+
n = n1/2(min(θn, 0) − 1) + max(0, (ζ ′(0))−1Un) = −max(−n1/2θn, 0)+

max(0, (ζ ′(0))−1Un). From the inequality |x+ − y+| ≤ |x − y|, we have |n1/2λn + U+
n |

≤ |n1/2θn + Un|
Pr→ 0. This implies (i). As to (ii), we have that

n1/2(F̂2(x)− F (x)) = n1/2(Fn(x)− F (x)) + (H ′2(0))−1F ′(x)U+
n

+n1/2(Fn(x− λn)− Fn(x)− F (x− λn) + F (x))

+n1/2(F (x− λn)− F (x) + λnF
′(x))

−F ′(x)
(
H ′(0))−1U+

n + n1/2λn
)

= I + II + III + IV + V.

We have that I and II converge jointly and III, IV, V
Pr→ 0. 2

Proof of Theorem 4.4: By Theorem A.2, âθn+(H ′2(0))−1Un
Pr→ 0. This implies (a). For

(b), we have that n1/2(F̂2,t(x)−F (x))= n1/2(Fn(x)−F (x)) + (H ′2(0))−1U+
n +n1/2(Fn(x−

(1−t)λn) -Fn(x)−F (x−(1−t)λn)+F (x)) +n1/2(F (x−(1−t)λn)−F (x)−(1−t)λnF ′(x))

-
(
H ′2(0))−1U+

n − n1/2(1− t)λnF ′(x)
)
≡ I + II + III + IV + V. We have that I and II

converge jointly and III, IV, V
Pr→ 0. The rest of the proof follows similarly. 2
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Figure 3: Relative Error of F̂1, F̂2 with respect to Fn for X ∼ Gamma(r, λ̂) and Y ∼
Exponential(1).

Figure 4: IMSE for F̂1 (solid line), F̂2 (curved dotted line) and Rn (dashed line) based on

Weibull data.

31



Figure 5: IMSE for F̂1 (solid line), F̂2 (curved dotted line) and Rn (dashed line) based on

Lognormal data with n=20.
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