1,003,080 research outputs found
Power Flow Modelling of Dynamic Systems - Introduction to Modern Teaching Tools
As tools for dynamic system modelling both conventional methods such as
transfer function or state space representation and modern power flow based
methods are available. The latter methods do not depend on energy domain, are
able to preserve physical system structures, visualize power conversion or
coupling or split, identify power losses or storage, run on conventional
software and emphasize the relevance of energy as basic principle of known
physical domains. Nevertheless common control structures as well as analysis
and design tools may still be applied. Furthermore the generalization of power
flow methods as pseudo-power flow provides with a universal tool for any
dynamic modelling. The phenomenon of power flow constitutes an up to date
education methodology. Thus the paper summarizes fundamentals of selected power
flow oriented modelling methods, presents a Bond Graph block library for
teaching power oriented modelling as compact menu-driven freeware, introduces
selected examples and discusses special features.Comment: 12 pages, 9 figures, 4 table
A dynamic modelling environment for the evaluation of wide area protection systems
This paper introduces the concept of dynamic modelling for wide area and adaptive power system protection. Although not limited to these types of protection schemes, these were chosen due to their potential role in solving a multitude of protection challenges facing future power systems. The dynamic modelling will be implemented using a bespoke simulation environment. This tool allows for a fully integrated testing methodology which enables the validation of protection solutions prior to their operational deployment. Furthermore the paper suggests a distributed protection architecture, which when applied to existing and future protection schemes, has the potential to enhance their functionality and avoid mal-operation given that safety and reliability of power systems are paramount. This architecture also provides a means to better understand the underlying dynamics of the aforementioned protection schemes and will be rigorously validated using the modelling environment
Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multi-wavelets
A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The time-varying modelling problem is then reduced to regression selection and parameter estimation, which can be effectively resolved by using a forward orthogonal regression algorithm. Two examples, one for an artificial signal and another for an EEG signal, are given to show the effectiveness and applicability of the new TVAR modelling method
Recommended from our members
Uncertainty modelling in power system state estimation
A method for uncertainty analysis in power system state estimation is proposed. The two-step method uses static weighted least-squares analysis to compute 'point' state estimates. Linear programming is then employed to obtain the upper and lower bounds of the uncertainty interval. It is shown that the method can provide useful additional information for both metered and nonmetered elements of the system. The effects of network parameter errors are also studied. For illustrative purposed, the proposed method is tested using the six-bus and IEEE 30-bus standard systems. Results show that the proposed method is an accurate and reliable tool for estimating the uncertainty bounds in power system state estimation
Integrating power flow modelling with building simulation
The inclusion of photovoltaic facades and other local sources of both heat and power within building designs has given rise to the concept of embedded generation: where some or all of the heat and power demands are produced close to the point of use. This paper describes recent work to simulate the heat and power flows associated with both an embedded generation system and the building it serves. This is achieved through the development of an electrical power flow model and its integration within the ESP-r simulation program
Parsimonious numerical modelling of deep geothermal reservoirs
Numerical modelling has been undertaken to help improve understanding of a deep geothermal system being considered for development in the vicinity of Eastgate (Weardale, County Durham, UK). A parsimonious numerical modelling approach is used, which allows the possibility to develop a workable formal framework, rigorously testing evolving concepts against data as they become available. The approach used and results presented in this study are valuable as a contribution to a wider understanding of deep geothermal systems. This modelling approach is novel in that it utilises the mass transport code MT3DMS as a surrogate representation for heat transport in mid-enthalpy geothermal systems. A three-dimensional heat transport model was built, based on a relatively simple conceptual model. Results of simulation runs of a geothermal production scenario have positive implications for a working geothermal system at Eastgate. The Eastgate Geothermal Field has significant exploitation potential for combined heat and power purposes; it is anticipated that this site could support several tens of megawatts of heat production for direct use and many megawatts of electrical power using a binary power plant
Research and innovation in power electronics systems applied to energy management
The Power Electronics Systems Group (GSEP) at University Carlos III de Madrid (Spain) offers its wide experience and background in consultancy, R&D projects with private and public funding and pre-industrial prototype building in four main topics: energy conversion (design, modelling and prototyping of equipments and systems), magnetic components modelling and design, photovoltaic systems and electromagnetic compatibility (EMC)
- âŠ