8,312 research outputs found
A QPTAS for the Base of the Number of Triangulations of a Planar Point Set
The number of triangulations of a planar n point set is known to be ,
where the base lies between and The fastest known algorithm
for counting triangulations of a planar n point set runs in time.
The fastest known arbitrarily close approximation algorithm for the base of the
number of triangulations of a planar n point set runs in time subexponential in
We present the first quasi-polynomial approximation scheme for the base of
the number of triangulations of a planar point set
Uniform Infinite Planar Triangulations
The existence of the weak limit as n --> infinity of the uniform measure on
rooted triangulations of the sphere with n vertices is proved. Some properties
of the limit are studied. In particular, the limit is a probability measure on
random triangulations of the plane.Comment: 36 pages, 4 figures; Journal revised versio
On the Number of Pseudo-Triangulations of Certain Point Sets
We pose a monotonicity conjecture on the number of pseudo-triangulations of
any planar point set, and check it on two prominent families of point sets,
namely the so-called double circle and double chain. The latter has
asymptotically pointed pseudo-triangulations, which lies
significantly above the maximum number of triangulations in a planar point set
known so far.Comment: 31 pages, 11 figures, 4 tables. Not much technical changes with
respect to v1, except some proofs and statements are slightly more precise
and some expositions more clear. This version has been accepted in J. Combin.
Th. A. The increase in number of pages from v1 is mostly due to formatting
the paper with "elsart.cls" for Elsevie
Transforming triangulations on non planar-surfaces
We consider whether any two triangulations of a polygon or a point set on a
non-planar surface with a given metric can be transformed into each other by a
sequence of edge flips. The answer is negative in general with some remarkable
exceptions, such as polygons on the cylinder, and on the flat torus, and
certain configurations of points on the cylinder.Comment: 19 pages, 17 figures. This version has been accepted in the SIAM
Journal on Discrete Mathematics. Keywords: Graph of triangulations,
triangulations on surfaces, triangulations of polygons, edge fli
Percolation and coarse conformal uniformization
We formulate conjectures regarding percolation on planar triangulations
suggested by assuming (quasi) invariance under coarse conformal uniformization
Triangulating the Square and Squaring the Triangle: Quadtrees and Delaunay Triangulations are Equivalent
We show that Delaunay triangulations and compressed quadtrees are equivalent
structures. More precisely, we give two algorithms: the first computes a
compressed quadtree for a planar point set, given the Delaunay triangulation;
the second finds the Delaunay triangulation, given a compressed quadtree. Both
algorithms run in deterministic linear time on a pointer machine. Our work
builds on and extends previous results by Krznaric and Levcopolous and Buchin
and Mulzer. Our main tool for the second algorithm is the well-separated pair
decomposition(WSPD), a structure that has been used previously to find
Euclidean minimum spanning trees in higher dimensions (Eppstein). We show that
knowing the WSPD (and a quadtree) suffices to compute a planar Euclidean
minimum spanning tree (EMST) in linear time. With the EMST at hand, we can find
the Delaunay triangulation in linear time.
As a corollary, we obtain deterministic versions of many previous algorithms
related to Delaunay triangulations, such as splitting planar Delaunay
triangulations, preprocessing imprecise points for faster Delaunay computation,
and transdichotomous Delaunay triangulations.Comment: 37 pages, 13 figures, full version of a paper that appeared in SODA
201
Planar maps, circle patterns and 2d gravity
Via circle pattern techniques, random planar triangulations (with angle
variables) are mapped onto Delaunay triangulations in the complex plane. The
uniform measure on triangulations is mapped onto a conformally invariant
spatial point process. We show that this measure can be expressed as: (1) a sum
over 3-spanning-trees partitions of the edges of the Delaunay triangulations;
(2) the volume form of a K\"ahler metric over the space of Delaunay
triangulations, whose prepotential has a simple formulation in term of ideal
tessellations of the 3d hyperbolic space; (3) a discretized version (involving
finite difference complex derivative operators) of Polyakov's conformal
Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes,
thus also establishing a link with topological 2d gravity.Comment: Misprints corrected and a couple of footnotes added. 42 pages, 17
figure
- …