research

Triangulating the Square and Squaring the Triangle: Quadtrees and Delaunay Triangulations are Equivalent

Abstract

We show that Delaunay triangulations and compressed quadtrees are equivalent structures. More precisely, we give two algorithms: the first computes a compressed quadtree for a planar point set, given the Delaunay triangulation; the second finds the Delaunay triangulation, given a compressed quadtree. Both algorithms run in deterministic linear time on a pointer machine. Our work builds on and extends previous results by Krznaric and Levcopolous and Buchin and Mulzer. Our main tool for the second algorithm is the well-separated pair decomposition(WSPD), a structure that has been used previously to find Euclidean minimum spanning trees in higher dimensions (Eppstein). We show that knowing the WSPD (and a quadtree) suffices to compute a planar Euclidean minimum spanning tree (EMST) in linear time. With the EMST at hand, we can find the Delaunay triangulation in linear time. As a corollary, we obtain deterministic versions of many previous algorithms related to Delaunay triangulations, such as splitting planar Delaunay triangulations, preprocessing imprecise points for faster Delaunay computation, and transdichotomous Delaunay triangulations.Comment: 37 pages, 13 figures, full version of a paper that appeared in SODA 201

    Similar works

    Full text

    thumbnail-image

    Available Versions