45,794 research outputs found

    Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes

    Full text link
    Ultrafast photocurrent measurements are performed on individual carbon nanotube PN junction photodiodes. The photocurrent response to sub-picosecond pulses separated by a variable time delay {\Delta}t shows strong photocurrent suppression when two pulses overlap ({\Delta}t = 0). The picosecond-scale decay time of photocurrent suppression scales inversely with the applied bias VSD, and is twice as long for photon energy above the second subband E22 as compared to lower energy. The observed photocurrent behavior is well described by an escape time model that accounts for carrier effective mass.Comment: 8 pages Main text, 4 Figure

    Optical control of internal electric fields in band-gap graded InGaN nanowires

    Full text link
    InGaN nanowires are suitable building blocks for many future optoelectronic devices. We show that a linear grading of the indium content along the nanowire axis from GaN to InN introduces an internal electric field evoking a photocurrent. Consistent with quantitative band structure simulations we observe a sign change in the measured photocurrent as a function of photon flux. This negative differential photocurrent opens the path to a new type of nanowire-based photodetector. We demonstrate that the photocurrent response of the nanowires is as fast as 1.5 ps

    Optical quenching and recovery of photoconductivity in single-crystal diamond

    Full text link
    We study the photocurrent induced by pulsed-light illumination (pulse duration is several nanoseconds) of single-crystal diamond containing nitrogen impurities. Application of additional continuous-wave light of the same wavelength quenches pulsed photocurrent. Characterization of the optically quenched photocurrent and its recovery is important for the development of diamond based electronics and sensing

    Theory of magnetoelectric photocurrent generated by direct interband transitions in semiconductor quantum well

    Get PDF
    A linearly polarized light normally incident on a semiconductor quantum well with spin-orbit coupling may generate pure spin current via direct interband optical transition. An electric photocurrent can be extracted from the pure spin current when an in-plane magnetic field is applied, which has been recently observed in the InGaAs/InAlAs quantum well [Dai et al., Phys. Rev. Lett. 104, 246601 (2010)]. Here we present a theoretical study of this magnetoelectric photocurrent effect associated with the interband transition. By employing the density matrix formalism, we show that the photoexcited carrier density has an anisotropic distribution in k space, strongly dependent on the orientation of the electron wavevector and the polarization of the light. This anisotropy provides an intuitive picture of the observed dependence of the photocurrent on the magnetic field and the polarization of the light. We also show that the ratio of the pure spin photocurrent to the magnetoelectric photocurrent is approximately equal to the ratio of the kinetic energy to the Zeeman energy, which enables us to estimate the magnitude of the pure spin photocurrent. The photocurrent density calculated with the help of an anisotropic Rashba model and the Kohn-Luttinger model can produce all three terms in the fitting formula for measured current, with comparable order of magnitude, but discrepancies are still present and further investigation is needed.Comment: 13 pages, 9 figures, 2 table

    Enhanced Photodetection in Graphene-Integrated Photonic Crystal Cavity

    Full text link
    We demonstrate the controlled enhancement of photoresponsivity in a graphene photodetector by coupling to slow light modes in a long photonic crystal linear defect cavity. Near the Brillouin zone (BZ) boundary, spectral coupling of multiple cavity modes results in broad-band photocurrent enhancement from 1530 nm to 1540 nm. Away from the BZ boundary, individual cavity resonances enhance the photocurrent eight-fold in narrow resonant peaks. Optimization of the photocurrent via critical coupling of the incident field with the graphene-cavity system is discussed. The enhanced photocurrent demonstrates the feasibility of a wavelength-scale graphene photodetector for efficient photodetection with high spectral selectivity and broadband response
    • …
    corecore