InGaN nanowires are suitable building blocks for many future optoelectronic
devices. We show that a linear grading of the indium content along the nanowire
axis from GaN to InN introduces an internal electric field evoking a
photocurrent. Consistent with quantitative band structure simulations we
observe a sign change in the measured photocurrent as a function of photon
flux. This negative differential photocurrent opens the path to a new type of
nanowire-based photodetector. We demonstrate that the photocurrent response of
the nanowires is as fast as 1.5 ps