7,619 research outputs found

    Direct Application of the Phase Estimation Algorithm to Find the Eigenvalues of the Hamiltonians

    Get PDF
    The eigenvalue of a Hamiltonian, H\mathcal{H}, can be estimated through the phase estimation algorithm given the matrix exponential of the Hamiltonian, exp(iH)exp(-i\mathcal{H}). The difficulty of this exponentiation impedes the applications of the phase estimation algorithm particularly when H\mathcal{H} is composed of non-commuting terms. In this paper, we present a method to use the Hamiltonian matrix directly in the phase estimation algorithm by using an ancilla based framework: In this framework, we also show how to find the power of the Hamiltonian matrix-which is necessary in the phase estimation algorithm-through the successive applications. This may eliminate the necessity of matrix exponential for the phase estimation algorithm and therefore provide an efficient way to estimate the eigenvalues of particular Hamiltonians. The classical and quantum algorithmic complexities of the framework are analyzed for the Hamiltonians which can be written as a sum of simple unitary matrices and shown that a Hamiltonian of order 2n2^n written as a sum of LL number of simple terms can be used in the phase estimation algorithm with (n+1+logL)(n+1+logL) number of qubits and O(2anL)O(2^anL) number of quantum operations, where aa is the number of iterations in the phase estimation. In addition, we use the Hamiltonian of the hydrogen molecule as an example system and present the simulation results for finding its ground state energy.Comment: 10 pages, 3 figure

    Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip

    Get PDF
    Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, non-fault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a Silicon quantum photonic device. The approach is verified to be well suited for pre-threshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed

    Quantum Enhanced Multiple Phase Estimation

    Full text link
    We study the simultaneous estimation of multiple phases as a discretised model for the imaging of a phase object. We identify quantum probe states that provide an enhancement compared to the best quantum scheme for the estimation of each individual phase separately, as well as improvements over classical strategies. Our strategy provides an advantage in the variance of the estimation over individual quantum estimation schemes that scales as O(d) where d is the number of phases. Finally, we study the attainability of this limit using realistic probes and photon-number-resolving detectors. This is a problem in which an intrinsic advantage is derived from the estimation of multiple parameters simultaneously.Comment: Accepted by Physical Review Letter

    Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control

    Full text link
    Optical phase estimation is a vital measurement primitive that is used to perform accurate measurements of various physical quantities like length, velocity and displacements. The precision of such measurements can be largely enhanced by the use of entangled or squeezed states of light as demonstrated in a variety of different optical systems. Most of these accounts however deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab-initio phase estimation where the initial phase is unknown. Here we report on the realization of a quantum enhanced and fully deterministic phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian estimation feedback algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing.Comment: 5 figure

    Adaptive phase estimation is more accurate than non-adaptive phase estimation for continuous beams of light

    Get PDF
    We consider the task of estimating the randomly fluctuating phase of a continuous-wave beam of light. Using the theory of quantum parameter estimation, we show that this can be done more accurately when feedback is used (adaptive phase estimation) than by any scheme not involving feedback (non-adaptive phase estimation) in which the beam is measured as it arrives at the detector. Such schemes not involving feedback include all those based on heterodyne detection or instantaneous canonical phase measurements. We also demonstrate that the superior accuracy adaptive phase estimation is present in a regime conducive to observing it experimentally.Comment: 15 pages, 9 figures, submitted to PR
    corecore