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Appendix A: Rejection Filtering Phase Estimation (RFPE)

We describe the Bayesian phase estimation algorithm, RFPE, introduced in [1] and employed in our experiment.
At a fundamental level, RFPE involves the exact same experimental setups as traditional iterative phase estimation.
The main differences arise in the way RFPE chooses experiments and also how the experimental data is processed.

The fundamental object in RFPE, as well as all other Bayesian approaches, is the prior distribution P (φ). It
describes the algorithms confidence that a particular eigenphase φ ∈ [0, 2π) corresponds to the eigenvector provided
to the algorithm. As experiments are performed, the prior distribution is then updated based on the likelihood of the
observed data.

Bayes’ theorem provides the correct way to update such prior beliefs when provided with evidence. The theorem
states that if an event E is observed for an experiment parametrized by M and θ then the updated prior distribution
should be

P (φ|E;M, θ) =
P (E|φ;M, θ)P (φ)∫
P (E|φ;M, θ)P (φ)dφ

, (A1)

where P (E|φ;M, θ) is known as the likelihood function and the updated prior distribution P (φ|E;M, θ) is known as
the posterior distribution.

The central challenge of Bayesian phase estimation is that even if the prior distribution is discretized then the
complexity of storing the prior distribution to sufficient accuracy can be immense. For example, if error on the order
of 10−9 is needed, then several gigabytes of memory will be needed to store the distribution. This makes it impractical
for use in Shor’s algorithm. Also, if the data arises from more than one eigenvalue then it is necessary to store multiple
hypotheses. This exponentially increases the number of hypotheses that need to be tracked, rendering such Bayesian
inference impractical.

RFPE avoids this problem by invoking a form of assumed density filtering that is based on rejection sampling. This
approach allows inference to be performed quickly in a memory limited environment without the need to compute
costly functions. The algorithm works by positing a model for the prior distribution, which for convenience is usually
taken to be a Gaussian. The goal of each update is then to find the best model for the posterior distribution within the
family of allowed models. The procedure involves drawing a sample from the prior distribution and then computing
the likelihood that the data would emerge if that eigenphase were correct. The sample is then randomly accepted
with probability equal to this likelihood. The mean and covariance matrix of these accepted samples can easily be
shown to match the posterior mean and covariance. Therefore these statistics provide the best model for the posterior
distribution within any family of distributions that are parametrized by their first two moments. This approach is
therefore well suited for experiment because it naturally outputs an estimation for its uncertainty in the form of the
covariance matrix, or variance, of the distribution.

The likelihoods used in this algorithm correspond to the measurement probabilities predicted by quantum mechanics
for the circuit in Fig. 1A of the main text. Specifically, if an experiment with parameters (M, θ) is performed, the
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measurement on the ancillary qubit will have outcome E ∈ {0, 1} with probability:

P (0|φ;M, θ) = cos2(πM [φ− θ]), (A2)

P (1|φ;M, θ) = sin2(πM [φ− θ]). (A3)

An important remaining issue is that of choosing the parameters M and θ that, given the prior distribution, optimize
the information gain from the experiment. In our experiment we have used the Particle Guess Heuristic (PGH) [2, 3],
which provides near-optimal values and does not require any precomputation. In this approach the experiment is
given by M = d1.25/σe, θ ∼ N (µ, σ). The fact that these parameters depend intimately on the current estimate of
the uncertainty means that RFPE is implicitly an adaptive protocol. Furthermore, the fact that RFPE uses prior
information means that the asymptotic optimality result of [2], which is based on the Cramer-Rao bound, does not
apply in this setting. It was further shown that this heuristic approximately saturates the Bayesian Cramer-Rao
bound [1] under the assumption of a Gaussian prior and thereby demonstrating that the PGH is asymptotically
near-optimal under these assumptions.

The full RFPE algorithm is described in Algorithm 2. For further details regarding, for example, the number of
particles required to achieve small errors and variance reduction strategies, we refer to [1].

Algorithm 1. Bayesian update via Rejection Filtering

Input: experimental data E, mean µ and variance σ of the prior distribution, experiment parameters M and θ, number of
particles NPart, scale κE .
Output: mean µ′ and variance σ′ of the posterior distribution.

function UPDATERF (E,µ, σ,M, θ,NPart, κE)
µacc, µ

′
acc, Vacc, V

′
acc, Nacc = 0. . Initialize accumulators.

for i ∈ 1→ NPart do
x ∼ N (µ, σ). . Sample a particle according to prior distribution.
x = x mod 2π.
x′ = x+ π mod 2π.
u ∼ Uniform(0, 1). . Accept the particle with probability P (E|x).
if P (E|x) ≥ κEu then

µacc = µacc + x.
Vacc = Vacc + x2.
V ′acc = Vacc + x′2.
Nacc = Nacc + 1.

end if
end for
µ′ = µacc/Nacc. . Calculate mean and variance of the posterior distribution using accepted particles.

σ′ = min
(√

(Vacc − µ2
acc)/(Nacc − 1),

√
(V ′acc − µ2

acc)/(Nacc − 1)
)

.

return (µ′, σ′).
end function

Algorithm 2. Rejection Filtering Phase Estimation (RFPE)

Input: Initial prior distribution N (µ0, σ0), total number of experiments NSteps, number of particles NPart, scale κE .
Output: the phase estimation µ and its uncertainty σ.

µ = µ0, σ = σ0. . Initialize the mean µ and variance σ of the distribution.
for i ∈ 1→ NSteps do
M = d1.25/σe, θ ∼ N (µ, σ). . Get approximate optimal parameters M and θ for the experiment via PGH.
Get data E from the experiment using parameters M and θ.
(µ, σ) = UPDATERF (E,µ, σ,M, θ,NPart, κE). . Perform a Bayesian update via Rejection Filtering.

end for
return (µ, σ).
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Appendix B: Iterative Phase Estimation Algorithm (IPEA)

In the standard implementation of IPEA less significant digits of the unknown phase are evaluated first using the
circuit in Fig. 1A. The information obtained by the measurement is transferred to the quantum circuit and allows to
refine the measurement of more significant digits via an Rz rotation on an ancillary qubit. This procedure increases
the probability of obtaining the correct phase value. If the phase has a binary expansion with a finite number of
digits, say n bits, the algorithm is deterministic and requires n iterations of the experiment.

Each digit of the eigenphase is iteratively inferred, starting from the least significant one. The exponent M is chosen
so that, if we want to obtain φ with n bits precision, at the j-th iteration we have Mj = 2n−j . Supposing that φ has
the finite binary expansion φ = 0.φ1 . . . φn, the first iteration step is performed using θ1 = 0 and M1 = 2n−1, which
from Eq. A2 and Eq. A3 results in P (0) = cos2(π 0.φn). The data obtained from the measurement is 0 if φn = 0 and
1 if φn = 1, inferring the last bit of φ deterministically. For the j-th iteration we choose θj = 0.0φn−j+2 . . . φn−1φn
so that, with a same reasoning as before, the digit φn−j+1 is exactly determined from the projective measurement of
the ancilla. Iterating this process n times we can reconstruct the whole binary expansion of φ.

In presence of experimental noises, the probability of measuring the correct value of the k-th bit for single-shot
measurements, given in Ref.[4], is

Pk(∆x, T2) =

(
1 + e−∆2

x−a2kT2

)
2

, (B1)

where the errors considered here are a dephasing with decoherence time T2 and Rx(δ) errors on the control qubit
for the state preparation and measurement projection, with the angle δx Gaussianly distributed with variance ∆x. a
is a system depended parameter [4]. The susceptibility of the algorithm to experimental noise is evident from Eq.B1.
The success probability can be increased repeating the measurements for each qubit and adopting a majority voting
scheme, as we do in our implementation, but still maintains an exponential scaling with the noise level. Moreover,
if an error occurs, IPEA is not able to correct it and has limited capability to recover from it. Therefore, as noise
become significant, errors cumulate and make the algorithm fail.

Appendix C: Experimental setup

1. The silicon device and experimental details

The device is a silicon-on-insulator chip fabricated on a silicon-on-insulator material system using 248 nm deep-UV
photolithography and dry etching. Light is horizontally coupled into and out of the device via spot-size converters
with 300 µm long inverse taper with a 200 nm wide tip beneath a 4 × 4 µm2 polyimide waveguide. Approximately
8 dB coupling loss per facet was observed between the chip and a single-mode lensed fiber with a 3 µm mode-diameter.
Inside the chip, the photons propagate in integrated single-mode waveguides, designed with a width of 450 nm and
thickness of 220 nm and covered with a 1 µm silicon dioxide upper cladding. Multi-mode interferometers (MMIs)
with a footprint of 2.8 µm× 28 µm were used to realize integrated beam-splitters with near 50% reflectivity.

To stabilise the temperature of the silicon device, the chip was mounted and wire-bonded on a PCB that was glued
by thermal hypoxy on a Peltier device connected to a heat-sink. The temperature was controlled by a PID algorithm.

The input/output optical fibers were automatically recoupled before each scan of the algorithms to maximize the
coupling efficiency between waveguides and fibers.

The device integrates key functionalities for photonic quantum information processing, such as sources to generate
an entangled photon-pair and arbitrary single- and two-qubit gates. The photons are generated in two spiral waveguide
sources via spontaneous four-wave mixing (SFWM), achieved exploiting the intrinsic χ(3) non-linearity in silicon [5, 6].
The two spirally-wrapped waveguide sources were designed with a 1.2 cm length to enhance the photon-pair generation.
In the device the qubits are realized encoding the information in the path of the photons [7]. The sources were pumped
using a continuous-wave (CW) bright laser at 1551.9 nm, amplified by an erbium doped fiber amplifier (EDFA), with
an emerging power of ∼ 10 mW . Using a fiber-polarization controller before the silicon device we ensured that the
transverse-electric (TE) polarised CW light was injected into the device, after the background was removed through
the use of array waveguide gratings wavelength division multiplexers (WDM).

Equivalently to the scheme presented in [6], the two coherently pumped sources generate a pair of path-entangled
photons, i.e. signal and idler photons, via the SFWM process. The wavelengths of the signal and idler photons are
selected at 1545.5 nm and 1558.3 nm, respectively. Considering the use in this experiment of non resonant SFWM
photon pair sources and of a CW laser, the generation probability of multi-photon-pair events is negligible. The
output photons, after evolving through the integrated device, were coupled into single-mode fibers, separated apart
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FIG. 1. Schematic representation of the experimental set-up. The light from a CW laser light source is amplified through an
EDFA. The pump is filtered through an AWG and the polarisation adjusted through a manual polarisation controller, then
focused inside the chip and collected by lensed-fibres. The emerging light is then filtered through AWG, where the single
photons channel and the the pump are separated. While the CW light is detected by standard photo-diodes for monitoring the
coupling, the single photons are detected through super-conductive nano-wire single photon detectors SNSPDs, whose pulses
are analysed by a time interval analyser connected to a classical computer. The classical computer is also used to control the
on-chip thermo-optic phase shifters.

from the pump light by off-chip AWG with a 0.9 nm bandwidth and > 90 dB extinction. Photons were finally
detected using superconducting PhotonSpotTM nano-wires single-photon detectors (SNSPDs), with system detection
efficiency higher than 85%, sub-100Hz dark counts, approximately 70 ps FWHM timing jitter and recovery times of
approximately 50 ns. The coincidence counts were recorded by the use of a time interval analyser (Picoharp 300 by
PicoQuantTM) with an integration time of 10 s per data point and a coincidence window of approximately 400 ps. A
maximal photon-pair rate of approximately (200 Hz) was observed.

The active and reconfigurable quantum operations inside the silicon device rely on thermo-optical phase shifters,
which are formed by metal resistive heaters on top of the silicon waveguides isolated by a dioxide layer in between.
The heat locally dissipated in the waveguide induces the refractive index change responsible of the phase-shift. The
heaters can be independently driven and controlled by home-designed multichannel electronics interfaced with a
classical computer. This allows to control the phase with a precision of approximately 0.01 rad, as reported in more
details later on.

2. State evolution and scheme for arbitrary controlled-unitaries

The logic circuit for the iterative phase estimation algorithms, both RFPE and IPEA, requires a controlled-unitary
between the two qubits, as shown in Fig. 1a of the main text. In this section we describe in more details the
entanglement-based scheme we used to obtain arbitrary controlled operation in the quantum photonic device.
Coherently pumping the two spiral SFWM sources, a pair of photons is generated in a superposition between them.
Using a Fock representation, the photon number state generated is written as (|0200〉+ |0020〉)/

√
2. Two MMIs beam-

splitters following the sources probabilistically split the photons. Post-selecting the cases where the signal photon is
collected from the two upper modes and the idler from the four bottom modes, analogously to the scheme shown in
[6, 8, 9], the state becomes:

|1010〉+ |0101〉√
2

. (C1)

To encode the qubit in the photons’ path, for each photon we use the convention |0〉 ↔ |10〉 and |1〉 ↔ |01〉 to convert
the number state to the logic state. Using this convention, the state obtained from the sources can be rewritten as
the maximally-entangled Bell state (|0〉C |0〉P + |1〉C |1〉P )/

√
2.

Inserting an additional degree of freedom to the path of the idler photon, we obtain the entangled state (|0〉C |0〉T |0〉P +
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|1〉C |1〉T |1〉P )/
√

2. The two components associated to the second qubit go through one Rz and one Ry gate to prepare
the qubit in the same state |ψ〉T for both pairs of paths. These two components then go through two different

operations: Î for the upper pair of modes in the target register and Û for the bottom ones, obtaining an entangled
state of the form:

|0〉C |ψ〉T |0〉P + |1〉C(Û |ψ〉T )|1〉P√
2

. (C2)

To obtain a superposition of these two different operations, we erase the path information between the two components
of the target state. This is obtained employing two waveguide crossings and combining the modes in two MMI beam-
splitters, giving

(|0〉C |ψ〉T + |1〉CÛ |ψ〉T )|0〉P + (|0〉C |ψ〉T − |1〉CÛ |ψ〉T )|1〉P
2

. (C3)

Finally, projecting the third qubit into |0〉P , the final state can be represented as

|0〉C |ψ〉T + |1〉CÛ |ψ〉T√
2

(C4)

which is equivalent to apply the desired arbitrary control-unitary operation.
We remark that this is a post-selected scheme, which makes it not scalable. However, it enables a wide range of

experiment previously inaccessible to integrated quantum photonics.

Appendix D: Estimating and simulating phase errors in the integrated photonic device

The quantum photonic experimental setup used in this experiment adopts thermo-optical phase shifters to imple-
ment both the quantum state preparation and unitary evolution of the qubits. The phase shifters are integrated
on-chip as metallic thin-film tracks (depicted with golden rods in Fig. 1B), coating the top of the silicon waveguides.
When supplied with DC current, the phase shifters act as non-Ohmic resistive heaters, thus changing locally the
refractive index of the waveguide [10]. Each of the heaters is driven and controlled independently using multi-channel
current drivers, in order to reduce electrical cross-talk among the heaters. Cross-talk is expected because of a shared
ground connection in the quantum photonic circuit design. Each driver was hosted in a board featuring 12 bits DAC,
controlled by the experiment software via RS-232 interface.

Thermal cross-talk among the phase shifters may also occur in a thermo-optically controlled device, because of heat
flowing across the dioxide layer and the electrical connections to waveguides other than the targeted one. Thermally
induced, unwanted changes in the refractive index of other optical paths alter the implemented phase shifts in a non-
controllable way, introducing systematic errors in the setup. In order to compensate for this effect, different calibrations
for different chip configurations were preliminary run. For each configuration, all the heaters are constantly driven at
a certain current, set to implement an appropriate state preparation and/or gate operation, except the heater to be
calibrated. This heater is supplied with a range of currents (and thus electrical power, Pel), as oscillations in optical
power Pop at the output of the corresponding optical path are recorded. The collected data can be fitted according
to the non-linear function

Pop = B +A cos[
2π

T
(Pel − PΦ)] (D1)

where B is a background, A is the maximum amplitude of the signal, T its period, and PΦ is the offset power
value for the heater in such a configuration, all obtained from the model fit. Detailed calibrations are reported
in Suppl.Fig.2 for three examplary phase shifters, where we also report the relevant statistical parameters of each
fit. The fits were performed using the built-in functions from Mathematica R©, that estimate the parameters using
a (non-linear) least-squares approach, where the optimization is performed using a numerical global optimization
method (“RandomSearch”). All fits show R2 values close to one, thus suggesting that the model can adequately
reproduce the data observed from the measurements. Also, we report high t-statistics and low p-values for most
of the parameters, testing the significance of all the parameters adopted in the model, with the exception of the
aforementioned backgroundB parameter in those cases where the fringe visibility is particularly high (i.e. no significant
background is present). In conclusion, the data analysis gives evidence of the suitability of the model in Eq. D1 to
describe the physics of our device.
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FIG. 2. Characterization for the implemented phase on three exemplary phase shiifters on the device, chosen as a worst case
(Ay0), an average case (By0) and a best case (Az0). For each phase shifter, we report in column, from top to bottom: i) the
nonlinear fit of raw experimental data, collected applying electrical power to the phase shifter, while measuring the optical
power outputted at the corresponding optical port (vertical axis). The fitting is performed using the nonlinear Eq. D1. The
value of R2 is reported in the plot for each separate case. ii) A plot of the residuals corresponding to the nonlinear fits mentioned
before. iii) A table of the parameters obtained in the same nonlinear fit is displayed. For each free parameter in the nonlinear
model, we report an estimate of both the fitted value, as well as its statistical uncertainty (Standard Error), and a test of its
significance (t-Statistic and P-value). iv) For clarity, we report also the linear dependence of the phase shift implemented by
each heater against the corresponding electrical power applied.

After the calibration, the targeted phase ϕ̄ for a heater is obtained driving the heater with Pel such that:

ϕ̄ =
2π

T
(Pel − PΦ) (D2)

and therefore, propagation of stochastic errors in Pel, T, PΦ affects ϕ̄. From experimental non linear fits, relative
statistical uncertainties are σPΦ/Pmax ' 0.2% and σT /T ' 1.1%. Therefore, inaccuracies in the current supplied by
the driver to each heater (±0.005 mA), affecting the actual value of Pel, can be neglected as they are less than 0.04%
for all the heaters, in the standard configuration used for phase estimation experiments in this paper.

Confining the propagation of errors to only T, PΦ, and averaging over the full interval of Pel adopted in the
experiment (appr. 5−80mW , slightly different for each heater due to calibration), an average precision σexp ' 0.01 rad
can be estimated for the phases, as experimentally implemented by the heaters. In conclusion, systematic errors in the
setup can be drastically reduced via an accurate calibration procedure. Nevertheless, in our experiment the effective
phase ϕ implemented by each of the phase shifters is affected intrinsically by a stochastic uncertainty σexp. This
can be estimated from the fits of experimental data. A natural way to investigate the role of imperfect calibration
in our device is then to synthetically replace each of the ϕ̄, implementing the correct state and unitary preparation,
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State Preparation

CU Gate

FIG. 3. Simulation of the quantum photonic device performances in terms of the average state preparation fidelity (violet) and
CU -gate fidelity (green) for different levels of Gaussian noise in the phase shifters, as described by σphase spanning the full
interval of values tested in the experiments reported in the main paper. The behaviour for the simulated fidelity of the two
operations is very similar, with small discrepancies.

with a phase value sampled from a Gaussian distribution characterized by a variance σphase > σexp. An increase
in the stochastic noise introduced (σphase) corresponds to a decrease in the fidelities for state preparation and gate
implementation. A simulation of this dependency is reported in Fig. 3

Appendix E: Photonic implementation of RFPE

In the original proposals both IPEA and RFPE algorithms require a single-shot measurement from the experiment [1,
4, 11]. However, in quantum photonics and other quantum platforms, e.g. diamond NV− centres, measurements
usually return a number N of samples distributed according to the output distribution rather than single-shot data,
where N depends linearly on the integration time for the data collections. In our experiment photon counts were
collected along 10s integration time, leading to typical total counts of ∼ 2000 for each measure, well beyond the
single-shot case. These types of measurements are clearly more informative than the single-shot ones. Nevertheless,
phase estimation algorithm (and particularly adaptive implementations) are designed to extract information from
single measurements. A challenge in optical implementations is then to convert bulk measures into single-shot data,
effectively preserving their enhanced information.

In photonic experiments the standard way to extract single-shot data from bulk measurements of a qubit is to
classically collapse the corresponding binomial distribution adopting a majority voting scheme, thus deciding each
single-shot datum according to the most frequent outcome. That is, if the number of photons measured in the state
|0〉 is higher that those in |1〉 then the output data is D = 0, otherwise it is D = 1. This method makes use of some
of the information contained in the bulk measurement, enhancing the stability and robustness to experimental noise
of the algorithm subtending the measurements. Historically all photonic implementations of IPEA, including ours,
have been performed using this scheme [8, 12, 13].

While the advantages of using a majority voting scheme are clearly maintained for phase estimation protocol, the
validity of the approach for RFPE is more subtle. In fact, a majority voting scheme does not produce single-shot
data D ∈ {0, 1} distributed according to the distribution Pr(D|φ;M, θ) = cos2(πM [φ − θ] + Dπ/2), thus making
likely suboptimal the RFPE algorithm, which adopts the likelihood function Pr(D|φ;M, θ). For this reason, the
adoption of a majority voting scheme can be potentially problematic. When estimating phases from a photonic
device, it slows down the inference process because of inefficiencies in the information extracted. When instead the
task is to benchmark photonic implementations against experimental platforms based upon single-shot measurements,
a majority voting introduces biases. This is because each run always observes the most likely measurement outcome
and feeds it into the learning process, instead of reproducing the measurement statistics expected from random single
instances. On one side, this reduces the possibility to retrieve contradictory results from the measurements, speeding
up the inference. At the same time, however, it handicaps adaptive algorithms like RFPE, that are optimized for the
case when at each step a single measure is sampled from the likelihood function.

It is therefore important to compare majority voting with other strategies that could be used to implement RFPE
in a photonic environment, whose measurements reproduce better random samples from the true likelihood function,
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FIG. 4. Performance of RFPE using two different strategies: sampling N values from the output distribution measured or
using majority voting. The case N = 1 corresponds to single-shot measurements. Simulated data are averaged over 200 runs.

as ideally expected from the algorithm. Results are reported in Fig. 4.
As an alternative approach, we considered to näıvely sampleN times the value for each single datum from the measured
statistics of the photons. This effectively resembles the true likelihood function Pr(D|φ;M, θ) = Pr(D|φtrue;M, θ).
For a high number of photons this is equivalent to sampling the single-shot data from the true distribution of the
outputs (in the absence of systematic experimental errors), which is equivalent to the likelihood P (D|φtrue;M, θ). The
case where one only photon is sampled randomly from this distribution then coincides with the assumed likelihood
function given in the main body for RFPE. The case where a very large number of photons is sampled corresponds
to inferring on the actual data observed, which we process within this framework by using RFPE iteratively on N
samples drawn from the empirical likelihood. Cases that process many sampled photons are not expected to inherit
the asymptotic optimality given by the particle guess heuristic adopted in RFPE [1, 2].

We compare the performance of these approaches in Fig. 4. The first thing to note is that majority voting outper-
forms the N = 1 version of RFPE, requiring polynomially fewer measurements to achieve the same fixed accuracy.
This is expected: the inference process in RFPE benefits here from data whose uncertainties are greatly reduced
compared to the N = 1 case.

On the other hand, we observe that small numbers of sampled measurements N = 2, 3, 4, 5 all outperform majority
voting. This indicates how already a few random samples give access to a richer information than provided by majority
voting at the beginning of the learning process. However, examining later times it is evident how for these same cases
RFPE fails to learn in the median for these records. This diminished robustness is results from taking aggressive
experiments in RFPE that lead to posteriors that violate the Gaussian assumptions. It can be corrected by taking
shorter experiments or using the variance reduction strategies in [1]; however, both constitute adapting RFPE to
better process data that naturally arise from photonics experiments

To conclude, these results suggest that though the majority voting approaches commonly used in photonics exper-
iments lead to data records that are atypical of those expected from many quantum computing experiments (N = 1
case), majority voting provides qualitatively similar results while partially exploiting the enhanced information ex-
traction of photonic measurements. This, together with the facility to make the comparison with IPEA via the same
measurement approach, justifies the use of majority voting for the scope of this work. Finally, considering how all the
strategies compared in this paragraph do not fully exploit the entire predictive power of the observed data records
and the power of the Bayesian approach implies that there is still space to improve RFPE performances for quantum
photonics platform. If we wish to fully assess the power of photonic quantum devices, we need to modify algorithms
like RFPE to use likelihood functions that are appropriate for the bulk measurements seen in photonics experiments
and transition away from using majority voting as a surrogate for performing proper statistical inference on the data.

Appendix F: Rescaling the decoherence time T2

In the decoherence model used T2 represents the decoherence time in units of time required to perform each of
the M controlled gates that would be needed to obtain the controlled-UM operation in a scalable manner. Its
value in standard units thus depends on the particular architecture exploited. For example, in a superconductive
qubits architecture the operational time for a three qubit controlled-U (using a single Trotter step) is typically
' 1.5 µs [13]. From our study, this implies that a fully scalable 16-bits IPEA implementation starts to be impractical
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FIG. 5. Upper bound on error probability of inferring a single bit in a phase estimation experiment given 500 shots and
P0 = 2/3. The data shows substantial suppression of errors until Pe ≈ 1/3 and then rapidly diverges thereafter.

in superconductive devices with decoherence time approximately lower than 50 µs. Given that the relaxation time
of state-of-the-art superconductive qubits is on the same order of magnitude, this highlights how the implementation
of IPEA on current pre-fault tolerant devices is very limited. An equivalent implementation of IPEA on a solid-state
electron-spin system would require approximately 50 µs for a single controlled-U [14], and thus 1.5 ms total time for
a fully scalable 16-bits IPEA. For such systems, typically observed decoherence times T2 are of the order of tens of
ms.

Appendix G: Analysis of Breakdown of Majority Voting in IPEA

To provide an understanding of why IPEA breaks down so dramatically in the presence of substantial noise, it is
instructive to examine a simple model. Here we consider the model of depolarizing noise, which is similar to that of
T2 we considered but for convenience we assume that the strength of the noise is independent of the evolution time.
In particular, let P be the probability of measuring 1 in an experiment and let us assume without loss of generality
that P ≥ 1/2. If we define the probability in absentia of noise to be P0 and the probability of an error occurring to
be Pe < 1 then

P = P0(1− Pe) + Pe/2. (G1)

Now let b be the value of a bit inferred from such an experiment and let n be the number of shots used to infer this
value by majority voting. The Chernoff bound then reads

P (b = 0|P0 > 1/2) ≤ e
−n
2P (P−1/2)2

. (G2)

Note that the assumptions that underlie the Chernoff bound are met because P0 > 1/2 and Pe < 1 because P is a
monotonic function of P0. As Pe tends to 1, P approaches 1/2. This causes the exponent in the Chernoff bound to
tend to 0. Thus we no longer gain exponential suppression from n in this limit; whereas, for small Pe the exponent

is approximately 1
2

(P0−1/2)2

P0
−O(Pe). Thus the exponential suppression of errors expected from majority voting will

hold so long as Pe is small and P0 is bounded away from 1/2.
Now if we assume that the number of bits needed is nbits then the mean number of bits that are incorrect is

nbitse
−n
2P (P−1/2)2

, assuming P0 > 1/2 for each bit being inferred. If we solve for the case where the mean number of
erroneous bits is at most 1 we find that

P0 ≥
1

2
+

√
nbits ln(nbits) + ln2(nbits)− ln(nbits)

n(Pe − 1)
, (G3)
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suffices to guarantee that this condition is met. This shows that the critical signal that we have to have in order to
have a reasonable probability of inferring all of the bits rapidly diverges as Pe approaches 1. Furthermore, as the
number of bits inferred increases the number of shots needed for each inferred bit must increase; although this increase
is modest with respect to the number of bits required.

To visualize how this affect plays out, we consider a plot of the probability of erring in the inference of a bit using
a sample of 500 shots (which is easily achievable in our apparatus). We further assume a value of P0 = 2/3, which
again is roughly typical of phase estimation experiments. We observe that this simple analysis from the Chernoff
bound qualitatively reproduces the curves observed in the main body for the error as a function of T2 or the heater
variance. This suggests that the rapid breakdown of IPEA can be understood as a simple consequence of majority
voting and the inability of IPEA to detect inference errors and adapt after such an error occurs.
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