16,639 research outputs found

    Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2.

    Get PDF
    Parvalbumin-expressing, fast-spiking basket cells are important for the generation of synchronous, rhythmic population activities in the hippocampus. We found that GABAA receptor-mediated synaptic inputs from murine parvalbumin-expressing basket cells were selectively modulated by the membrane voltage- and intracellular chloride-dependent chloride channel ClC-2. Our data reveal a previously unknown cell type-specific regulation of intracellular chloride homeostasis in the perisomatic region of hippocampal pyramidal neurons

    Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn

    Get PDF
    In order to understand how nociceptive information is processed in the spinal dorsal horn we need to unravel the complex synaptic circuits involving interneurons, which constitute the vast majority of the neurons in laminae I–III. The main limitation has been the difficulty in defining functional populations among these cells. We have recently identified 4 nonoverlapping classes of inhibitory interneuron, defined by expression of galanin, neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) and parvalbumin, in the rat spinal cord. In this study we demonstrated that these form distinct functional populations that differ in terms of sst2A receptor expression and in their responses to painful stimulation. The sst2A receptor was expressed by nearly all of the nNOS- and galanin-containing inhibitory interneurons but by few of those with NPY and none of the parvalbumin cells. Many galanin- and NPY-containing cells exhibited phosphorylated extracellular signal-regulated kinases (pERK) after mechanical, thermal or chemical noxious stimuli, but very few nNOS-containing cells expressed pERK after any of these stimuli. However, many nNOS-positive inhibitory interneurons up-regulated Fos after noxious thermal stimulation or injection of formalin, but not after capsaicin injection; nor did parvalbumin cells express either activity-dependent marker after any of these stimuli. These results suggest that interneurons belonging to the NPY, nNOS and galanin populations are involved in attenuating pain, and for NPY and nNOS cells this is likely to result from direct inhibition of nociceptive projection neurons. They also suggest that the nociceptive inputs to the nNOS cells differ from those to the galanin and NPY populations

    Cortistain is expressed in a distinct subset of cortical interneurons

    Get PDF
    Cortistatin is a presumptive neuropeptide that shares 11 of its 14 amino acids with somatostatin. In contrast to somatostatin, administration of cortistatin into the rat brain ventricles specifically enhances slow wave sleep, apparently by antagonizing the effects of acetylcholine on cortical excitability. Here we show that preprocortistatin mRNA is expressed in a subset of GABAergic cells in the cortex and hippocampus that partially overlap with those containing somatostatin. A significant percentage of cortistatin-positive neurons is also positive for parvalbumin. In contrast, no colocalization was found between cortistatin and calretinin, cholecystokinin, or vasoactive intestinal peptide. During development there is a transient increase in cortistatin-expressing cells in the second postnatal week in all cortical areas and in the dentate gyrus. A transient expression of preprocortistatin mRNA in the hilar region at P16 is paralleled by electrophysiological changes in dentate granule cells. Together, these observations suggest mechanisms by which cortistatin may regulate cortical activity

    Neurochemical characterisation of lamina II inhibitory interneurons that express GFP in the PrP-GFP mouse

    Get PDF
    Background Inhibitory interneurons in the superficial dorsal horn play important roles in modulating sensory transmission, and these roles are thought to be performed by distinct functional populations. We have identified 4 non-overlapping classes among the inhibitory interneurons in the rat, defined by the presence of galanin, neuropeptide Y, neuronal nitric oxide synthase (nNOS) and parvalbumin. The somatostatin receptor sst2A is expressed by ~50% of the inhibitory interneurons in this region, and is particularly associated with nNOS- and galanin-expressing cells. The main aim of the present study was to test whether a genetically-defined population of inhibitory interneurons, those expressing green fluorescent protein (GFP) in the PrP-GFP mouse, belonged to one or more of the neurochemical classes identified in the rat.<p></p> Results The expression of sst2A and its relation to other neurochemical markers in the mouse was similar to that in the rat, except that a significant number of cells co-expressed nNOS and galanin. The PrP-GFP cells were entirely contained within the set of inhibitory interneurons that possessed sst2A receptors, and virtually all expressed nNOS and/or galanin. GFP was present in ~3-4% of neurons in the superficial dorsal horn, corresponding to ~16% of the inhibitory interneurons in this region. Consistent with their sst2A-immunoreactivity, all of the GFP cells were hyperpolarised by somatostatin, and this was prevented by administration of a selective sst2 receptor antagonist or a blocker of G-protein-coupled inwardly rectifying K+ channels.<p></p> Conclusions These findings support the view that neurochemistry provides a valuable way of classifying inhibitory interneurons in the superficial laminae. Together with previous evidence that the PrP-GFP cells form a relatively homogeneous population in terms of their physiological properties, they suggest that these neurons have specific roles in processing sensory information in the dorsal horn.<p></p&gt

    Dedicated hippocampal inhibitory networks for locomotion and immobility

    Get PDF
    Network activity is strongly tied to animal movement; however, hippocampal circuits selectively engaged during locomotion or immobility remain poorly characterized. Here we examined whether distinct locomotor states are encoded differentially in genetically defined classes of hippocampal interneurons. To characterize the relationship between interneuron activity and movement, we usedin vivo, two-photon calcium imaging in CA1 of male and female mice, as animals performed a virtual-reality (VR) track running task. We found that activity in most somatostatin-expressing and parvalbumin-expressing interneurons positively correlated with locomotion. Surprisingly, nearly one in five somatostatin or one in seven parvalbumin interneurons were inhibited during locomotion and activated during periods of immobility. Anatomically, the somata of somatostatin immobility-activated neurons were smaller than those of movement-activated neurons. Furthermore, immobility-activated interneurons were distributed across cell layers, with somatostatin-expressing cells predominantly in stratum oriens and parvalbumin-expressing cells mostly in stratum pyramidale. Importantly, each cell's correlation between activity and movement was stable both over time and across VR environments. Our findings suggest that hippocampal interneuronal microcircuits are preferentially active during either movement or immobility periods. These inhibitory networks may regulate information flow in “labeled lines” within the hippocampus to process information during distinct behavioral states.SIGNIFICANCE STATEMENTThe hippocampus is required for learning and memory. Movement controls network activity in the hippocampus but it's unclear how hippocampal neurons encode movement state. We investigated neural circuits active during locomotion and immobility and found interneurons were selectively active during movement or stopped periods, but not both. Each cell's response to locomotion was consistent across time and environments, suggesting there are separate dedicated circuits for processing information during locomotion and immobility. Understanding how the hippocampus switches between different network configurations may lead to therapeutic approaches to hippocampal-dependent dysfunctions, such as Alzheimer's disease or cognitive decline.</jats:p

    A quantitative study of neurochemically-defined populations of inhibitory interneurons in the superficial dorsal horn of the mouse spinal cord

    Get PDF
    Around a quarter of neurons in laminae I-II of the dorsal horn are inhibitory interneurons. These play an important role in modulating somatosensory information, including that perceived as pain or itch. Previous studies in rat identified four largely non-overlapping neurochemical populations among these cells, defined by expression of galanin, neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) or parvalbumin. The galanin cells were subsequently shown to coexpress dynorphin. Several recent studies have used genetically-modified mice to investigate the function of different interneuron populations, and it is therefore important to determine whether the same pattern applies in mouse, and to estimate the relative sizes of these populations. We show that the neurochemical organisation of inhibitory interneurons in mouse superficial dorsal horn is similar to that in the rat, although a larger proportion of these neurons (33%) express NPY. Between them, these four populations account for ∼75% of inhibitory cells in laminae I-II. Since ∼25% of inhibitory interneurons in this region belong to a novel calretinin-expressing type, our results suggest that virtually all inhibitory interneurons in superficial dorsal horn can be assigned to one of these five neurochemical populations. Although our main focus was inhibitory neurons, we also identified a population of excitatory dynorphin-expressing cells in laminae I-II that are largely restricted to the medial part of the mid-lumbar dorsal horn, corresponding to glabrous skin territory. These findings are important for interpretation of studies using molecular-genetic techniques to manipulate the functions of interneuron populations to investigate their roles in somatosensory processing

    The Energetic Cost of Activation of White Muscle Fibres from the Dogfish Scyliophinus Canicula

    Get PDF
    Link to the publisher's site: http://jeb.biologists.org/The energetic cost of activation was measured during an isometric tetanus of white muscle fibres from the dogfish Scyliorhinus canicula. The total heat production by the fibres was taken as a measure of the total energetic cost. This energy consists of two parts. One is due to crossbridge interaction which produces isometric force, and this part varies linearly with the degree of filament overlap in the fibres. The other part of the energy is that associated with activation of the crossbridges by Ca2+, mainly with uptake of Ca2+ into the sarcoplasmic reticulum by the ATP-driven Ca2+ pump. Total heat production was measured at various degrees of filament overlap beyond the optimum for force development. Extrapolation of heat versus force production data to evaluate the heat remaining at zero force gave a value of 34±5 % (mean ± S.E.M., N=24) for activation heat as a percentage of total heat production in a 2.0 s isometric tetanus. Values for 0.4 and 1.0 s of stimulation were similar. Comparison with values in the literature shows that the energetic cost of activation in dogfish muscle is very similar to that of frog skeletal muscle and it cannot explain the lower maximum efficiency of dogfish muscle compared with frog muscle. The proportion of energy for activation (Ca2+ turnover) is similar to that expected from a simple model in which Ca2+ turnover was varied to minimize the total energy cost for a contraction plus relaxation cycle.Peer reviewe

    Selective expression of KCNS3 potassium channel α-subunit in parvalbumin-containing GABA neurons in the human prefrontal cortex

    Get PDF
    The cognitive deficits of schizophrenia appear to be associated with altered cortical GABA neurotransmission in the subsets of inhibitory neurons that express either parvalbumin (PV) or somatostatin (SST). Identification of molecular mechanisms that operate selectively in these neurons is essential for developing targeted therapeutic strategies that do not influence other cell types. Consequently, we sought to identify, in the human cortex, gene products that are expressed selectively by PV and/or SST neurons, and that might contribute to their distinctive functional properties. Based on previously reported expression patterns in the cortex of mice and humans, we selected four genes: KCNS3, LHX6, KCNAB1, and PPP1R2, encoding K+ channel Kv9.3 modulatory α-subunit, LIM homeobox protein 6, K+ channel Kvβ1 subunit, and protein phosphatase 1 regulatory subunit 2, respectively, and examined their colocalization with PV or SST mRNAs in the human prefrontal cortex using dual-label in situ hybridization with 35S- and digoxigenin-labeled antisense riboprobes. KCNS3 mRNA was detected in almost all PV neurons, but not in SST neurons, and PV mRNA was detected in >90% of KCNS3 mRNA-expressing neurons. LHX6 mRNA was detected in almost all PV and >90% of SST neurons, while among all LHX6 mRNA-expressing neurons 50% expressed PV mRNA and >44% expressed SST mRNA. KCNAB1 and PPP1R2 mRNAs were detected in much larger populations of cortical neurons than PV or SST neurons. These findings indicate that KCNS3 is a selective marker of PV neurons, whereas LHX6 is expressed by both PV and SST neurons. KCNS3 and LHX6 might be useful for characterizing cell-type specific molecular alterations of cortical GABA neurotransmission and for the development of novel treatments targeting PV and/or SST neurons in schizophrenia. © 2012 Georgiev et al
    corecore