21,310 research outputs found

    Parasitic suppressing circuit

    Get PDF
    A circuit for suppressing parasitic oscillations across an inductor operating in a resonant mode is described. The circuit includes a switch means and resistive means connected serially across the inductor. A unidirectional resistive-capacitive network is also connected across the inductor and to the switch means to automatically render the switch means conducting when inductive current through the inductor ceases to flow

    Dual Shapiro steps of a phase-slip junction in the presence of a parasitic capacitance

    Full text link
    Bloch oscillations in a single Josephson junction in the phase-slip regime relate current to frequency. They can be measured by applying a periodic drive to a DC-biased, small Josephson junction. Phase-locking between the periodic drive and the Bloch oscillations then gives rise to steps at constant current in the I-V curves, also known as dual Shapiro steps. Unlike conventional Shapiro steps, a measurement of these dual Shapiro steps is impeded by the presence of a parasitic capacitance. This capacitance shunts the junction resulting in a suppression of the amplitude of the Bloch oscillations. This detrimental effect of the parasitic capacitance can be remedied by an on-chip superinductance. Additionally, we introduce a large off-chip resistance to provide the necessary dissipation. We investigate the resulting system by a set of analytical and numerical methods. In particular, we obtain an explicit analytical expression for the height of dual Shapiro steps as a function of the ratio of the parasitic capacitance to the superinductance. Using this result, we provide a quantitative estimate of the dual Shapiro step height. Our calculations reveal that even in the presence of a parasitic capacitance, it should be possible to observe Bloch oscillations with realistic experimental parameters.Comment: 5+3 pages; 3 figure

    On-Site Wireless Power Generation

    Full text link
    Conventional wireless power transfer systems consist of a microwave power generator and a microwave power receiver separated by some distance. To realize efficient power transfer, the system is typically brought to resonance, and the coupled-antenna mode is optimized to reduce radiation into the surrounding space. In this scheme, any modification of the receiver position or of its electromagnetic properties results in the necessity of dynamically tuning the whole system to restore the resonant matching condition. It implies poor robustness to the receiver location and load impedance, as well as additional energy consumption in the control network. In this study, we introduce a new paradigm for wireless power delivery based on which the whole system, including transmitter and receiver and the space in between, forms a unified microwave power generator. In our proposed scenario the load itself becomes part of the generator. Microwave oscillations are created directly at the receiver location, eliminating the need for dynamical tuning of the system within the range of the self-oscillation regime. The proposed concept has relevant connections with the recent interest in parity-time symmetric systems, in which balanced loss and gain distributions enable unusual electromagnetic responses.Comment: 10 pages, 13 figure

    The saturation of SASI by parasitic instabilities

    Full text link
    The Standing Accretion Shock Instability (SASI) is commonly believed to be responsible for large amplitude dipolar oscillations of the stalled shock during core collapse, potentially leading to an asymmetric supernovae explosion. The degree of asymmetry depends on the amplitude of SASI, which nonlinear saturation mechanism has never been elucidated. We investigate the role of parasitic instabilities as a possible cause of nonlinear SASI saturation. As the shock oscillations create both vorticity and entropy gradients, we show that both Kelvin-Helmholtz and Rayleigh-Taylor types of instabilities are able to grow on a SASI mode if its amplitude is large enough. We obtain simple estimates of their growth rates, taking into account the effects of advection and entropy stratification. In the context of the advective-acoustic cycle, we use numerical simulations to demonstrate how the acoustic feedback can be decreased if a parasitic instability distorts the advected structure. The amplitude of the shock deformation is estimated analytically in this scenario. When applied to the set up of Fernandez & Thompson (2009a), this saturation mechanism is able to explain the dramatic decrease of the SASI power when both the nuclear dissociation energy and the cooling rate are varied. Our results open new perspectives for anticipating the effect, on the SASI amplitude, of the physical ingredients involved in the modeling of the collapsing star.Comment: 14 pages, 16 figures, accepted for publication in ApJ. Minor changes following the referee report

    Current responsivity of semiconductor superlattice THz-photon detectors

    Get PDF
    The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed for currently available superlattice diodes show that both the magnitudes and the roll-off frequencies of the responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are found to be eigenmodes of the system in the THz- frequency band. The expected room temperature values of the responsivity (2-3 A/W in the 1-3 THz-frequency band) range up to several percents of the quantum efficiency e/ωe/\hbar\omega of an ideal superconductor tunnel junction detector. Properly designed semiconductor superlattice detectors may thus demonstrate better room temperature THz-photon responsivity than conventional Schottky junction devices.Comment: Revtex file, uses epsf, 11 pages. 11 eps-figures; EPS-files generated by scanner, original higher resolution line drawings available from [email protected] by regular mail or fa

    Active topolectrical circuits

    Full text link
    The transfer of topological concepts from the quantum world to classical mechanical and electronic systems has opened fundamentally new approaches to protected information transmission and wave guidance. A particularly promising technology are recently discovered topolectrical circuits that achieve robust electric signal transduction by mimicking edge currents in quantum Hall systems. In parallel, modern active matter research has shown how autonomous units driven by internal energy reservoirs can spontaneously self-organize into collective coherent dynamics. Here, we unify key ideas from these two previously disparate fields to develop design principles for active topolectrical circuits (ATCs) that can self-excite topologically protected global signal patterns. Realizing autonomous active units through nonlinear Chua diode circuits, we theoretically predict and experimentally confirm the emergence of self-organized protected edge oscillations in one- and two-dimensional ATCs. The close agreement between theory, simulations and experiments implies that nonlinear ATCs provide a robust and versatile platform for developing high-dimensional autonomous electrical circuits with topologically protected functionalities.Comment: 10 pages, 4 figures, includes supplementary material. This version adds 2D experiment
    corecore