
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Current responsivity of semiconductor superlattice THz-photon detectors

Ignatov, Anatoly A.; Jauho, Antti-Pekka

Published in:
Journal of Applied Physics

Link to article, DOI:
10.1063/1.369728

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ignatov, A. A., & Jauho, A-P. (1999). Current responsivity of semiconductor superlattice THz-photon detectors.
Journal of Applied Physics, 85(7), 3643-3654. DOI: 10.1063/1.369728

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13718342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.369728
http://orbit.dtu.dk/en/publications/current-responsivity-of-semiconductor-superlattice-thzphoton-detectors(c311f466-a19c-4fe5-af26-52d37d4bfe6e).html


Current responsivity of semiconductor superlattice THz-photon detectors
Anatoly A. Ignatova) and Antti-Pekka Jauho
Mikroelektronik Centret, Technical University of Denmark, Building 345 East, DK-2800 Lyngby, Denmark

~Received 10 September 1998; accepted for publication 4 January 1999!

The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an
equivalent circuit model which takes into account the finite matching efficiency between a detector
antenna and the superlattice in the presence of parasitic losses. Calculations performed for currently
available superlattice diodes show that both the magnitudes and the roll-off frequencies of the
responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are
found to be eigenmodes of the system in the THz-frequency band. The expected room temperature
values of the responsivity~2–3 A/W in the 1–3 THz-frequency band! range up to several percents
of the quantum efficiencye/\v of an ideal superconductor tunnel junction detector. Properly
designed semiconductor superlattice detectors may thus demonstrate better room temperature
THz-photon responsivity than conventional Schottky junction devices. ©1999 American Institute
of Physics.@S0021-8979~99!03807-4#

I. INTRODUCTION

Theoretical investigations of high-frequency properties
of semiconductor superlattices have been carried out for al-
most thirty years starting from the trail-blazing works by
Esaki and Tsu.1,2 They proposed to prepare superlattices
made of different semiconductor materials in order to realize
an artificial periodical system that would allow to observe
Bloch oscillations due to Bragg reflection of electrons from
the boundaries of the Brillouin zone. Making use of the
semiclassical Boltzmann equation they found that the dc
current–voltage characteristics of the superlattice should
show a negative differential conductance in sufficiently
strong electric fields, namely, when the Bloch frequency
VB5eEd/\ ~wheree is the electron’s charge,E is the dc
electric field in the superlattice,d is the superlattice period,\
is the Planck’s constant! becomes comparable to the effec-
tive scattering frequencyn.1 They propose to make use of the
negative differential conductance for development of an os-
cillator in the THz-frequency band1 and also suggested that
the superlattice might possess promising properties as an ar-
tificial material for nonlinear mixing of photons.2

Later, several papers have proposed3–5 to probe Bloch
oscillations in a superlattice in a strong dc electric field by
applying an additional strong ac field. Self-induced
transparency,3 dc current suppression by a strong ac field
causing dynamical localization of carriers,3–16absolute nega-
tive conductance,3 and current harmonics generation with os-
cillating power dependence3,5 have been predicted to occur
in the presence of resonant interaction between Bloch oscil-
lating electrons and a strong THz-frequency radiation.

A profound analogy between the dynamics of electron
wave packets in periodic systems and the dynamics of super-
conducting Josephson junctions17,18 was put forward to ex-
plain the main features of the superlattice THz-frequency

response.18 It has been suggested, in particular, that the reso-
nant steps on the dc current–voltage characteristics of the
irradiated superlattices18 should occur in analogy with ‘‘Sha-
piro steps’’ normally observable in irradiated superconduct-
ing junctions.19 Several recent papers show that the curious
behavior of electrons in the superlattices may give rise to a
rich variety of new nonlinear phenomena occurring in the
THz-field irradiated superlattices.20–25

In a number of papers Esaki–Tsu negative differential
conductance was found to be experimentally realizable26,27

and has been carefully examined28–30 in the context of de-
velopment of new millimeter-wave band~0.03–0.3 THz! os-
cillators. On the other hand, the recent observations of a
strong dc current suppression indicating dynamical localiza-
tion of electrons,31 absolute negative conductance,32,33 and
Shapiro steps on the dc current–voltage curve of the THz-
field irradiated superlattices34 open the prospects for applica-
tions of the superlattices as novel solid state detectors oper-
ating in 1–10 THz-frequency band which the Bloch
frequency in the superlattices normally belongs to.35

It has recently been estimated36 that the room tempera-
ture current responsivity of a superlattice detector ideally
coupled to the THz photons can nearly reach the quantum
efficiency e/\v ~where v is the incident radiation fre-
quency! in the limit of high frequenciesv@n. This value of
the responsivity is being normally considered as a quantum
limit for detectors based on superconducting tunnel junctions
operating at low temperatures.19 For high frequencies the
mechanism of the THz-photons detection in superlattices
was described36 as a bulk superlattice effect caused by dy-
namical localization of electrons.

In this article we develop a self-consistent theory of the
superlattice current responsivity. We apply the Boltzmann
equation approach for describing the electron motion in the
superlattice miniband3 and assume an equivalent circuit for
the superlattice coupled to a broadband antenna~see Fig. 1!,
which is similar to the equivalent circuit used in resonant
tunneling37 and Schottky diode38 simulations. The suggested
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equivalent circuit of the device allows one to treat micro-
scopically the high-frequency response of the miniband elec-
trons and, simultaneously, take into account a finite matching
efficiency between the detector antenna and the superlattice
in the presence of parasitic losses. Our analytic results lead
to the identification of an important physical concept: the
excitation of hybrid plasma-Bloch39 oscillationsin the region
of positive differential conductance of the superlattice. The
numerical computations, performed for room temperature
behavior of currently available superlattice diodes, show that
both the magnitudes and the rolloff frequencies of the re-
sponsivity are strongly influenced by this effect. The excita-
tion of the plasma-Bloch oscillations gives rise to a resonant-
like dependence of the responsivity on the incident radiation
frequency, improving essentially the coupling of the super-
lattice to the detector antenna. We will also show that peak
current densities in the device and its geometrical dimen-
sions should be properly optimized in order to get maximum
responsivity for each frequency of the incident photons. Fi-
nally, we will present numerical estimates of the responsivity
for the 1–4 THz frequency band and compare its value with
the quantum efficiencye/\v of an ideal detector.

II. DESCRIPTION OF THE MODEL

For the description of the ac electron transport in a su-
perlattice we use a quasiclassical wave packet treatment of
the electron motion in a superlattice.1–3 The energy spectrum
of electrons in a miniband is taken in a tight-binding ap-
proximation:

e~p!5
D

2 F12cosS pzd

\ D G1
px

21py
2

2m
, ~1!

whereD is the superlattice miniband width,d is the super-
lattice period,pz is the quasimomentum of an electron along
the superlattice axis~perpendicular to the layers!, px ,py are
the quasimomentum components along the superlattice lay-
ers, andm is the effective mass of electrons along the super-
lattice layers.

The quasiclassical velocityvz(pz) of an electron moving
along the superlattice axis and the time derivative of the
quasimomentum are given by the expressions

vz~pz!5
]e~p!

]pz
5v0 sinS pzd

\ D , ~2!

ṗz5eEz~ t !, ~3!

wheree is the electron charge,v05Dd/2\ is the maximum
velocity of electrons along the superlattice axis, andEz(t) is
the time-periodic electric field directed along the superlattice
axis.

The electric current densityj z(t) is calculated from the
distribution function

j z~ t !5eE vz~pz! f ~p,t !
2dp

~2p\!3 , ~4!

which satisfies the time-dependent Boltzmann equation

] f ~p,t !

]t
1eEz~ t !

] f ~p,t !

]pz
5S ] f

]t D
coll

. ~5!

Below we use the relaxation-time approximation for the col-
lision integral1–3

S ] f

]t D
coll

52
f ~p,t !2 f 0~p!

t
, ~6!

wheret is the constant relaxation time for electron’s scatter-
ing, and f 0(p) is the equilibrium distribution function.

The relaxation-time approximation is, of course, an
oversimplification of the numerous scattering processes tak-
ing place in a real superlattice. Nevertheless, several papers40

have demonstrated that the phenomenon of dynamical local-
ization can be described very well within this approximation
when compared to the corresponding results obtained from a
full-scale Monte Carlo simulation. This circumstance lends
support to the simplified model for the collision integral. The
great advantage of Eqs.~5! and ~6! is that they allow an
analytical calculation of the time-dependent current, to be
used in the equivalent circuit analysis, and thus we can study
in detail various parametric dependencies of the calculated
quantities.

We would also like to emphasize here that the wave
packet description of electron motion in a superlattice is
valid if the following inequalities are fulfilled:3,41

eEd!D,DG , ~7!

\v!D,DG , ~8!

\n!D,DG , ~9!

whereDG is the width of the superlattice minigap,n51/t is
the electron’s collision frequency, andv is the characteristic
frequency of the external ac field. We also assume that the

FIG. 1. ~a! THz radiation coupled to ann-period semiconductor superlattice
by a coplanar broadband bowtie antenna,Pi and Pr are the incident and
reflected powers, respectively.~b! Equivalent circuit for a THz-photon de-
tector with a dc voltage bias source:B–miniband electrons capable to per-
form Bloch oscillations,C–superlattice capacitance,RS–parasitic series re-
sistance,ZA–bowtie antenna impedance,Vdc–dc bias voltage.
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electronic mean free pathl FP5v0t5Dd/2\n is smaller
than the superlattice lengthL in order to neglect the influ-
ence of the boundaries on the superlattice high-frequency
properties.

III. THEORETICAL FORMALISM

A. Path integral

The exact solution of Eqs.~5! and~6! for arbitrary time-
dependent electric field can be presented in the form of a
path integral:42

f ~p,t !5E
2`

t

ndt1exp@2n~ t2t1!#

3 f 0S pz2E
t1

t

eEz~ t2!dt2D . ~10!

Using Eqs.~4! and ~10! we find the time-dependent current
I (t) describing ac transport in a superlattice~SL! with elec-
tron performing ballistic motion in a miniband according to
the acceleration theorem and suffering scattering:2,3

I ~ t !52I pE
2`

t

ndt1exp@2n~ t2t1!#

3sinS e

N\ E
t1

t

V~ t2!dt2D , ~11!

where V(t)5LEz(t) is the voltage across the superlattice
perpendicular to the layers,L5Nd is the superlattice length,
N is the number of periods in the superlattice sample,I p

5S jp , S5pa2 is the area of the superlattice,a is the super-
lattice mesa radius, and

j p5e
v0

2 E 2dp

~2p\!3 cosS pzd

\ D f 0~p!, ~12!

is the characteristic current density. The integration overpz

in Eq. ~12! must be carried out over the Brillouin zone
2p\/d<pz<p\/d.

In particular, for a dc voltageVSL applied to the super-
lattice Eq. ~11! results in the Esaki–Tsu1 current–voltage
curve

I dc
SL~VSL!52I P

~VSL /VP!

11~VSL /VP!2 . ~13!

At peak voltageVSL5VP5N\n/e or, equivalently, at peak
electric fieldESL5EP5\n/ed, the current in the superlat-
tice reaches its maximum~peak! value I P , so thatj P can be
defined as the peak current density.

The peak current densityj P and the scattering frequency
n can be considered as the main parameters of the employed
model. They can readily be estimated from experimentally
measured or numerically simulated values ofI P andVP . For
both degenerate and nondegenerate electron gas one gets2,3

j P5en
v0

2
, ~14!

if D@kT,eF , wherekT is the equilibrium thermal excitation
energy,eF5\2(3p2n)2/3/(2meff) is the Fermi energy of de-

generate electrons,n5* f 0(p)2dp/(2p\)3 is the charge car-
rier density,meff5mzz

1/3m2/3 is the density of states effective
mass near the miniband bottom, andmzz52\2/Dd2 is the
effective mass of electrons along the superlattice axis. In
the particular case of the Boltzmann equilibrium distribu-
tion function Eq. ~12! yields3 j P5(env0/2)@ I 1(D/2kT)/
I 0(D/2kT)#, whereI 0,1 are the modified Bessel functions.

B. Monochromatic excitation

We now suppose that in addition to the dc voltageVSL ,
an alternating sinusoidal voltage with a complex amplitude
Vv is applied to the superlattice:

V~ t !5VSL1
1
2 @Vv exp~ ivt !1Vv* exp~2 ivt !#. ~15!

Generally,VSL ,Vv can be found from an analysis of the
equivalent circuit given in Fig. 1. We write the ac voltage
amplitude asVv5uVvueic; both uVvu andc can be obtained
self-consistently taking account of reflection of the THz pho-
tons from the superlattice and their absorption in the series
resistorRS .

Making use Eq.~11! we obtain3

I ~ t !52I PE
0

`

ndt1 exp~2nt1!sinFeVSL

N\
t11F~ t,t1!G ,

~16!

where

F~ t,t1!5
e

N\v
3

1

2
$ iVv exp~ ivt !

3@exp~2 ivt1!21#1c.c.%. ~17!

According to Eq.~16!, electrons in a superlattice miniband
perform damped Bloch oscillations with the frequencyVB

5eVSL /N\5eESLd/\, and the phaseF(t,t1) modulated by
the external ac voltage.

In the limit of Vv→0 Eq.~16! reduces to the dc current–
voltage curve given by Eq.~13!. On the other hand, when the
frequency of the ac voltage is small,vt!1, we get

F~ t,t1!5
et1
N\

3
1

2
@Vv exp~ ivt !1c.c.#, ~18!

which corresponds to a slow modulation of the Bloch fre-
quency by external voltage. In this case the current in the
superlattice follows instantaneously the time-dependent ac
voltage according to the dc current–voltage curve.

Equation ~16! contains, as special cases the following
results:~i! a harmonic voltageV(t) (VSL50) leads to dy-
namical localization, and current harmonics generation with
oscillating power dependence;3 ~ii ! dc current–voltage char-
acteristics of the irradiated superlatticeI dc(VSL ,Vv)
5(v/2p)* I (t)dt shows resonance features~Shapiro steps!
leading to absolute negative conductance;3,5,7,18 ~iii ! and to
generation of dc voltages~per one superlattice period! that
are multiples of\v/e.13
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C. Method of perturbations

Let us assume that the external ac voltageVv is so small
that perturbation theory holds, while the dc voltageVSL ap-
plied to the superlattice keeps its finite value. Expanding Eq.
~16! aroundVSL at Vv→0 in a Taylor series, we obtain the
time-dependent electric current in the form:

I ~ t !5I dc
SL~VSL!1 1

2 @Gac
SL~v,VSL!Vveivt1c.c.#

1DI dc
SL~v,VSL!, ~19!

where

Gac
SL~v,VSL!5G0F1~v,VSL!, ~20!

is the superlattice ac conductance,3 G052I P /VP is the su-
perlattice conductance atv→0, VSL→0:

F1~v,VSL!5
11 ivt2~VSL /VP!2

@11~VSL /VP!2#@~11 ivt!21~VSL /VP!2#
,

~21!

is a dimensionless function describing the dependence of the
superlattice conductance both on frequency and applied dc
voltage~field!, and

DI DV
SL ~v,VSL!5 1

4 uVvu2F2~v,VSL!, ~22!

where

F2~v,VSL!5
I dc

SL~VSL1N\v/e!22I dc
SL~VSL!1I dc

SL~VSL2N\v/e!

~N\v/e!2 ,

52
4I P

VP
2

~VSL /VP!@31~vt!22~VSL /VP!2#

@11~VSL /VP!2#@11~VSL /VP1vt!2#@11~VSL /VP2vt!2#
, ~23!

is the change in the dc current in a superlattice caused by
THz photons.3

At v→0 Eq. ~20! yields the dc differential conductance
of the superlattice

Gac
SL~v→0,VSL!5dIdc

SL~VSL!/dVSL

5G0

12~VSL /VP!2

@11~VSL /VP!2#2 , ~24!

while atVSL→0 one gets the well-known Drude formula for
the ac conductivity of the electron gass~v!

s~v!5
s0

11 ivt
, ~25!

where the small-field dc conductivity of the superlattices0

can be given in terms of the dc conductances05G0L/S or,
equivalently, in terms of peak current density and the peak
electric field

s052
j P

EP
. ~26!

According to Eqs.~15! and~19! the ac powerPabs
SL absorbed

in the superlattice is

Pabs
SL5 1

2 ReGac
SL~v,VSL!uVvu2, ~27!

where the real part of the superlattice conductance can be
presented in analogy with Eq.~23! in a finite difference
form3,43

ReGac
SL~v,VSL!

5
e

2N\v
@ I dc

SL~VSL1N\v/e!2I dc
SL~VSL2N\v/e!#

5
2I P

VP

11~vt!22~VSL /VP!2

@11~VSL /VP1vt!2#@11~VSL /VP2vt!2#
.

~28!

We note here that our calculations assume uniform dc/ac
electric fields inside the superlattice. This assumption is jus-
tified for the subthreshold dc electric fieldsVSL<VP , and/or
for ac field frequencies larger than the transit-time frequency
of space-charge wavesv>v0 /L in the superlattice.39

D. Stimulated emission and positive photocurrent

Equation~28! for the superlattice conductance demon-
strates a possibility of resonant interaction of the THz pho-
tons with electrons performing damped Bloch oscillations in
the superlattice. Forvt@1 the condition for the resonance
has a formv56(VSL /VP)/t, which can be equivalently
expressed asv56VB . At dc electric fields ESL

>EPA11(vt)2 the real part of the superlattice conductance
starts to be negative which corresponds to negative absorp-
tion ~stimulated emission! of the THz photons. In the limit
vt@1 photons with frequencyv.VB are absorbed and the
ones having frequencyv,VB are emitted.

Equation~22! describes the dc current change in the su-
perlattice under the influence of the THz photons. The stan-
dard result of the classical rectification theory19

DI dc
SL~v→0,VSL!5 1

4 uVvu2I dc
SL9~VSL!, ~29!

where
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I dc
SL9~VSL!524

I P

VP
2

~VSL /VP!@32~VSL /VP!2#

@11~VSL /VP!2#3 , ~30!

is the second derivative of the dc current–voltage curve of
the superlattice, is obtained from Eq.~22! when the electron
system relaxes during one period of the ac field.

At dc bias fieldsESL,EPA31(vt)2 the current change
in the irradiated superlattice is negative which corresponds to
the onset of suppression of the current due to dynamical
localization of carriers.3–14,16 In the opposite caseESL

.EPA31(vt)2 a positive current change~positive photo-
current! occurs. It is important to note that the condition of
occurrence of the positive photocurrent implies, according to
Eqs. ~22! and ~27!, the existence of stimulated emission of
photons from the superlattice,Pabs

SL,0.
The increase of the dc current in superlattices caused by

stimulated emission of THz photons has recently been ob-
served in experiments.34 These experimental results lend
support to the validity of the theoretical formalism employed
in this article for the analysis of the superlattice THz-field
response.

IV. CURRENT RESPONSIVITY

A. Equivalent circuit calculation

We define the current responsivity19 of the superlattice
detector as the current changeDI induced in the external dc
circuit per incoming ac signal powerPi :

Ri~v,VSL!5
DI

Pi
. ~31!

This definition takes into account both the parasitic losses in
the detector and the finite efficiency for impedance matching
of the incoming signal into the superlattice diode. In what
follows we use both the frequencyf 5v/2p and the angular
frequencyv notations.

According to Eqs.~22! and ~27!, in the small-signal ap-
proximation both the dc current changeDI dc

SL and the power
Pabs

SL absorbed in the superlattice are proportional to the
square modulus of the complex voltageuVvu2. This circum-
stance permits us to calculateuVvu2 self-consistently for
given values of the incoming power, making use a linear ac
equivalent circuit analysis and, then, find the current respon-
sivity Ri(v,VSL).

The results of the calculation of the superlattice current
responsivityRi(v,VSL) are presented in the following form:

Ri~v,VSL!5
Ri

~0!~v,VSL!A~v,VSL!

11RS@dIdc
SL~VSL!/dVSL#

, ~32!

where

Ri
~0!~v,VSL!

52
e

N\n

~VSL /VP!@31~vt!22~VSL /VP!2#

@11~VSL /VP!2#@11~vt!22~VSL /VP!2#
,

~33!

is the superlattice current responsivity under conditions of a
perfect matching and neglecting parasitic losses,RS→0.36

The factorA(v,VSL) in Eq. ~32! describes the effect of
the electrodynamical mismatch between the antenna and the
superlattice and the signal absorption in the series resistance

A~v,VSL!5F12UZA2@Zac
SL~v,VSL!1RS#

ZA1@Zac
SL~v,VSL!1RS#

U2G
3

ReZac
SL~v,VSL!

ReZac
SL~v,VSL!1RS

. ~34!

The first factor in Eq.~34! describes the reflection of the THz
photons due to mismatch of the antenna impedanceZA and
the total impedance of the deviceZac

SL(v,VSL)1RS , with the
second one being responsible for sharing of the absorbed
power between the active part of the device described by the
impedanceZac

SL(v,VSL) and the series resistanceRS .
The superlattice impedance is defined as

Zac
SL~v,VSL!51/@Gac

SL~v,VSL!1 ivC#, ~35!

where Gac
SL(v,VSL) is the superlattice conductance,C

5e0S/4pL is the capacitance of the superlattice, ande0 is
the average dielectric lattice constant.

Finally, the last factor in the denominator of Eq.~32!
describes the redistribution of the external bias voltageVdc

between the dc differential resistance of the superlattice
@dIdc

SL(VSL)/dVSL#
21 and the series resistanceRS , with the

dc voltage drop on the superlatticeVSL being determined by
the solution of the well-known load equation19

Vdc5VSL1I dc
SL~VSL!RS . ~36!

B. Classical rectification at high frequencies

Suppose now that the following set of inequalities is
satisfied

vt!1, ~37!

RS!R0 , ~38!

v@1/AR0RSC, ~39!

which implies that the frequency of the incident radiationv
is small in comparison with the scattering frequency of elec-
tronsn, series resistanceRS is small in comparison with the
small-field dc resistance of the superlatticeR051/G0 , and
the appropriateRC time of the device is high enough. In this
case Eq.~32! gives

Ri~v,VSL!52I dc
SL9~VSL!3

ZA

~11ZA /RS!2 3
1

~vRSC!2 .

~40!

Equation~40! was obtained by Sollneret al.37 following Tor-
rey’s and Whitmer’s approach38 developed for analysis of
classical crystal rectifiers. They also took account of the mis-
match between the antenna impedanceZA and the device
impedance. It was applied to analyze detection of photons by
resonant tunneling diodes in the THz-frequency range. This
expression demonstrates that the responsivity of the classical
rectifier at high frequencies is proportional to the second de-
rivative of the dc current–voltage curve, and hence strongly
decreases with increasing of frequency,Ri(v,VSL)}v22.
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The factor 1/RSC in Eq. ~40! defines the rolloff fre-
quency for the current responsivity and, consequently, ca-
pacitance of the device should be minimized in order to in-
crease the responsivity in the high frequency range. The fast
decrease of the responsivity with increasing of frequency can
be attributed to imperfect matching of the device to the an-
tenna impedance when incoming photons either are reflected
from the device or are absorbed in the series resistor.

In our case Eq.~40! shows that the current responsivity
of the superlattice can reach its maximum~negative! value at
bias voltageVSL.0.4VP , i.e., in the region of the positive
conductance. Furthermore, the responsivity of the superlat-
tice does not depend on the length of the device because
VP}L and C}1/L, and, finally, the responsivity is propor-
tional to the current densityj P . Consequently, in order to
increase the responsivity in the high-frequency range one
should employ highly conductive superlattice samples for
which inequalities@Eqs. ~37!–~39!# may not be satisfied. In
this case the interaction of the superlattice with the incoming
radiation can be essentially changed by excitation of the
eigenmodes in the superlattice device.

C. Superlattice dielectric function: Hybridization of
Bloch and plasma oscillations

Let us analyze the condition of optimized matching of
the superlattice to the incident radiation going back to the
general Eq.~32!. Assuming the limit of negligible series re-
sistanceRS→0 this condition can be obtained from the so-
lution of the equation

Zac
SL~v,VSL!5ZA , ~41!

for the complex frequencyv(VSL). This solution determines
the resonant line position and the linewidth at which the
absorption in the superlattice tends to its maximum value.

Using Eqs.~20! and ~35! one can transform Eq.~41! to
the following form:

e~v,ESL!5
e0

ivCZA
, ~42!

where

e~v,ESL!5e01
4ps0

iv
F1~v,ESL!, ~43!

is the dielectric function of the superlattice, with the dc field
ESL being applied to the device,39 andF1(v,ESL) is defined
by Eq. ~21!.

In the high-frequency limite0 /CZAv→0 the solution of
Eq. ~41! coincides with the solution of the equation

e~v,ESL!50, ~44!

describing the eigenfrequenciesv6
H of the hybrid plasma-

Bloch oscillations in a superlattice:39

v6
H ~ESL!

56vPF 1

11~ESL /EP!2 1S n

vP
D 2

~ESL /EP!2G1/2

1 in,

~45!

wherevP is the plasma frequency of electrons in a superlat-
tice. The plasma frequencyvP can be given in terms of the
small-field dc conductivitys0 or, equivalently, in terms of
the peak current densityj P

vP5S 4ps0n

e0
D 1/2

5S 8p j Ped

e0\ D 1/2

. ~46!

Equation ~46! reduces in the particular case of wide-
miniband superlattices (D@kT,eF) to the standard formula
vP5(4pe2n/e0mzz)

1/2.
In the limiting case of small applied dc electric fields

ESL /EP→0 one finds from Eq.~45! the plasma frequency
v6

H→6vP , while in the opposite caseESL /EP→`, the
Bloch frequencyv6

H→6VB56eESLd/\ is recovered. The
scattering frequencyn in Eq. ~45! is responsible for the line-
width of the plasma-Bloch resonance.

We have calculated the hybrid plasma-Bloch oscillation
frequency f H5v1

H /2p, using Eqs.~45! and ~46!, for the
typical values of the superlattice parameters28–30 e0.13, d
.50 Å, EP.10 kV/cm, f n5n/2p51.2 THz for different
values of the current densitiesj p ~Fig. 2!. For small values of
the current densitiesj P.10 kA/cm2 the frequency of the hy-
brid oscillation increases with applied voltage in all ranges of
the parameterVSL /VP . On the other hand, for higher values
of the current densitiesj P.(50– 1000) kA/cm2 the hybrid
oscillation’s frequency starts to decrease with increasing bias
voltage in the subthreshold voltage rangeVSL<VP . Then, at
superthreshold voltagesVSL>VP , vH starts to increase
again tending to the Bloch frequency. It is important to note
that at high values of the dc current densitiesj P the hybrid
plasma-Bloch oscillations become well defined eigenmodes
of the system (f H> f n). Therefore, an essential improvement
of the matching efficiency between antenna and the superlat-

FIG. 2. The calculated hybrid plasma-Bloch oscillation frequencyf H is
plotted as a function of the normalized superlattice voltage dropVSL /VP for
different values of the peak current densitiesj P510, 50, 100, 300, 500, and
1000 kA/cm2. Typical values of the superlattice parameters~d550 Å, EP

510 kV/cm, e0513! were used for the calculations.
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tice can be expected in the high-frequency range due to a
resonant excitation of this eigenmode in the device.

D. High-frequency limit

In the high-frequency case, when the signal frequency
f 5v/2p is larger than the scattering frequencyf n5n/2p,
description of the superlattice response based on the classical
rectification theory is no longer valid. Let us employ Eq.~33!
in order to analyze the high-frequency limit of the responsiv-
ity in the ideal case of the perfect matching and neglecting
the series resistance. Atv@n,VB , i.e., in the frequency
band where ac field absorption and negative photocurrent are
predominated in the superlattice response, Eq.~33! yields the
frequency-independent value for the current responsivity

Ri
~0!~v→`,VSL!52

e

N\n

VSL /VP

11~VSL /VP!2 . ~47!

At positive biasVSL /VP.0 the responsivity is negative~re-
duction of the dc current occurs due to dynamical localiza-
tion of carriers3–14,16!. The dc voltage dependence of the re-
sponsivity reproduces the dc Esaki–Tsu current–voltage
curve.1 The responsivity reaches its maximum valueRi max

(0)

52e/(2N\n)521/(2VP) at VSL5VP . For high values of
the applied voltagesVSL@VP we getRi

(0)(v→`,VSL→`)
521/VSL .

Let us compare the high-frequency limit of the respon-
sivity of the superlattice with the quantum efficiencyRmax

5e/\v which is believed to be a fundamental restriction for
the responsivity of superconductor tunnel junctions.19 This
quantum efficiency~or quantum limit! corresponds to the

tunneling of one electron across the junction for each signal
photon absorbed,19 with a positive sign of the responsivity.

In our case the mechanism of the photon detection is
different ~see Fig. 3!. Electrons move against the applied dc
electric force due to absorption of photons. AtVSL5VP the
responsivity is negative, indicating that one electron is sub-
tracted from the dc current flowing through the superlattice
when the energy 2eVP is absorbed from the external ac field.
One half of this energy is needed for the electron to over-
come the potential barrier which is formed by the dc force,
with another half being delivered to the lattice due to energy
dissipation. If the applied dc voltage is strong enough, i.e.,
VSL@VP , dissipation plays no essential role in the superlat-
tice responsivity. In this case the energyeVSL should be
absorbed from the ac field in order to subtract one electron
from the dc current simply due to the energy conservation
law.

In order to demonstrate typical frequency scales in-
volved in the problem we plot in Fig. 4 the frequency depen-
dence of the responsivity2Ri

(0)(v,VSL) for a superlattice
with d550 Å, N540, L50.2mm, EP51 kV/cm, D520
meV, f n5n/2p50.12 THz at subthreshold voltageVSL

50.99 VP as a function of the frequencyf 5v/2p. This
example roughly corresponds to the superlattice samples ex-
perimentally investigated in Ref. 34. The responsivity de-
creases in the regionf , f n and, then, tends to the constant
value determined by Eq.~47!. At frequency f QL52Nn/2p
the value of the responsivity equals the quantum efficiency
e/h f .

However, the semiclassical approach employed in the

FIG. 3. Real space energy diagram illustrating THz-photon (f @n/2p) de-
tection in the superlattice: dc electric fieldESL is applied to then-period
semiconductor superlattice with the miniband widthD. Under the action of
the dc field electrons perform Bloch oscillations with the spatial amplitude
D/eESL . At critical dc electric voltage~field! VSL5VP5N\n/e (eESLd
5\n) electrons move against the dc electric force due to absorption of
photons climbing up the Wannier–Stark ladder. The energy 2eVP should be
absorbed from external ac field in order to subtract one electron from the
external circuit. One half of this energy is needed for the electron to over-
come the potential barrier which is formed by the dc force, with the other
half being delivered to the lattice due to energy dissipation. A quasiclassical
description of the process is valid iff !D/\ when allowed transitions be-
tween different Wannier–Stark state exist.

FIG. 4. The calculated current responsivity2Ri
(0)( f ) of the ideally coupled

superlattice withd550 Å, N540,EP51 kV/cm, D520 meV at subthresh-
old voltageVSL50.99VP and the quantum efficiencye/h f are plotted as a
function of the frequencyf 5v/2p. At frequencyf QL52Nn/2p the value
of the responsivity equals the quantum efficiency. The calculation of the
responsivity is valid up to the frequencyf D5D/h which should be smaller
than f QL52Nn/2p within the framework of the employed model. In a wide-
miniband superlatticeD→2N3\n the responsivity can approach the quan-
tum efficiency in the high-frequency limit.
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present article is restricted by the inequalityf < f D5D/h.
This inequality simply requires that there must be an allowed
transition between different Wannier–Stark states in the su-
perlattice miniband due to photon absorption as illustrated in
Fig. 3. It is important to note thatf D / f QL5l FP/L<1 ~where
l FP5v0t5Dd/2\n is the electron’s mean free path! in our
calculations and, therefore, the current responsivity of the
whole sample is always less than the quantum efficiency
e/h f . In a wide-miniband superlattice withD→2N\n ~or,
equivalently, in a short superlattice sample withL→l FP) the
responsivity is approaching the quantum efficiency in the
high-frequency limit.

As was mentioned above, an increase of the lengthL of
a detector may have an advantage in the reduction of the
parasitic capacitanceC}1/L, and, hence, in the increasing of
the rolloff frequency 1/RSC of the device. It is interesting to
note that in case ofN superconductor tunnel junctions con-
nected in series the resulting responsivity is expected to be
e/N\v, implying that one photon should have been ab-
sorbed in each junction in order to add one electron to the dc
circuit.19 In the case of a superlattice samples consisting ofN
unit cells ~periods! the resulting responsivity can be pre-
sented as2e/2N\n5(2e/N\v)3(v/2n). For v.2n the
responsivity of the unit superlattice cell starts to be larger
than the quantum efficiencye/\v. This conclusion can be
readily understood if one realizes that due to absorption of
one photon in the miniband electrons can ‘‘jump’’ over sev-
eral superlattice periods as illustrated in Fig. 3.

V. RESULTS AND DISCUSSION

In this section we shall investigate the current responsiv-
ity of the superlattice making use of Eq.~32! which takes
into account both the finite matching efficiency between the
antenna and the superlattice and the parasitic losses in the
superlattice diode. We present our results using the dimen-
sional value ofRi(v,VSL) ~given in units of A/W! and also
introducing the normalized responsivity

RiN~v,VSL!5Ri~v,VSL!/~e/\v!, ~48!

which permits us to compare directly the responsivity
Ri(v,VSL) of the superlattice with the quantum efficiency
e/\v. In our calculations we use the typical geometrical
dimensions of the superlattice samples investigated in the
experiments44–46 and also assume that the bowtie antenna
impedance ZA550V does not depend on THz-photon
frequency.34

A. Excitation of the plasma-Bloch oscillations

For demonstration of the frequency dependence of the
superlattice current responsivity in the THz-frequency band
we will focus on the GaAs/Ga0.5Al0.5As superlattices spe-
cially designed to operate as millimeter wave oscillators at
room temperature. In Ref. 44 wide-miniband superlattice
samples withd550 Å, D.113 meV, n.1017cm23, were
investigated experimentally. They demonstrated a well-
pronounced Esaki–Tsu negative differential conductance for
ESL>EP.4 kV/cm with the high peak current of the order
of j P.130 kA/cm2. The measured value of the peak current
is in good agreement with the estimatej P

.(80– 160) kA/cm2 for n.(1 – 2)31017, T5300 K based
on Eq. ~12!, if one assumes an equilibrium Boltzmann dis-
tribution for the charge carriers. From the peak electric field
and current we find the scattering and plasma frequencies
f n.0.5 THz, f P52 THz, respectively, assuminge0513 for
the average dielectric lattice constant. The maximum fre-
quency for the semiclassical approach to be valid for these
samples isf D.27 THz. Figure 5 shows the frequency de-
pendence of the normalized current responsivity calculated
for three values of the peak current density in the superlat-
tice, i.e., j P513, 130, and 300 kA/cm2 and for three values
of the peak electric field,EP54, 9, and 13 kV/cm. We also
use the typical values for the superlattice lengthL50.5mm
~superlattice consists of 100 periods!, and assumea52 mm
for the superlattice mesa radius.44–46 We chooseRS510V
for the series resistance of the device in the THz-frequency
band, i.e., the same value as for resonant tunneling diodes
having the same radius of mesas.37 The calculations are per-
formed in the region of the positive differential conductance
for dc bias voltage close to the peak voltage (VSL

50.95VP).

FIG. 5. The frequency dependence of the normalized current responsivity
uRiNu5uRi /(e/\v)u of the superlattice THz-photon detector~a52 mm, L
50.5mm, RS510V, VSL50.95VP! is calculated for three values of the
peak current density~j P513, 130, and 300 kA/cm2! and for three values of
the peak electric field~EP54, 9, and 13 kV/cm!. The relevant positions of
the hybrid plasma-Bloch frequenciesf H are indicated for each curve by
arrows showing characteristic resonance~high peak current densities! and
rolloff ~low peak current densities! behavior.
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For EP54 kV/cm (f n.0.5 THz) Fig. 5 demonstrates
well-pronounced resonant behavior of the normalized re-
sponsivity as a function of frequency. The resonance fre-
quency and the maximum value of the responsivity rise if the
peak current density increases. Forj p5300 kA/cm2 the nor-
malized responsivity reaches its maximum value2RiN

.0.02 (2Ri. 2A/W) at frequencyf .2.5 THz. For higher
values of the peak electric fieldsEP59 kV/cm (f n

.1.08 THz), andEP513 kV/cm (f n.1.57 THz) the reso-
nance linewidths are broadened due to implicit increase of
the scattering frequencies. In particular, forEP513 kV/cm,
j P5300 kA/cm2 the normalized responsivity has an almost
constant value2RiN.0.006 (2Ri.0.6 A/W) up to f
.2.5 THz and, then, rapidly decreases.

The frequency behavior of the normalized responsivity
originates from excitation of the plasma-Bloch oscillations in
the superlattice. We indicate in Fig. 5 the positions of the
hybrid frequenciesf H5uv6

H u/2p with arrows. For small
peak electric fields~low values of the scattering frequencies!
the hybrid frequency corresponds to the maximum of the
normalized responsivity. For higher values of the peak field
~higher values of the scattering frequencies! it corresponds to
the rolloff frequency at which the responsivity starts to de-
cline.

Frequency dependence of the responsivity for different
applied dc fields,VSL50.3, 0.6, and 0.95VP is illustrated in
Fig. 6 for j P5130 kA/cm2. The same geometrical dimen-
sions and circuit parameters of the superlattice device have
been chosen for calculations as previously. The normalized
responsivity decreases with decreasing of the bias field tend-
ing to zero atVSL→0. On the other hand, the position of
maximum responsivity shifts to lower values with increasing
of the bias field in full agreement with Eq.~45!.

B. Optimized superlattice length

The enhancement of the normalized responsivity re-
quires an optimum matching efficiency of the superlattice to
the broadband antenna and minimization of the parasitic

losses in the series resistor. These requirements impose an
optimum length of the superlattice for each chosen frequency
of the incoming THz photons and series resistance.

We show in Fig. 7 the dependence of the normalized
responsivity on the number of the superlattice periods forf
52.5 THz. We used for calculationa52 mm, j P

5130 kA/cm2, VSL50.95VP , and three values of the series
resistanceRS510, 30, and 50V. For all three values of the
series resistance the responsivity displays a well pronounced
maximum for the optimum number of the superlattice peri-
odsN5Nmax. The value ofNmax increases with increasing of
the series resistance (Nmax.40 for RS510V, Nmax.60 for
RS530V, and forNmax.90 for RS550V!. This result can
be readily understood by recalling that a larger volume of the
superlattice minimizes parasitic losses for higher values of
the series resistance because of reduction of the sample’s
capacitance.

For incoming photon higher frequencies the parasitic
losses in the superlattice device play an even more important
role leading to a further increase ofNmax. Figure 8 shows the
dependence of the normalized responsivity on the number of
the superlattice periods forf 53.9 THz and the same super-
lattice parameters as in Fig. 7. In this case~Nmax.70 for

FIG. 6. The frequency dependence of the normalized current responsivity
uRiNu5uRi /(e/\v)u of the superlattice THz-photon detector~a52 mm, L
50.5mm, RS510V, EP54 kV/cm, JP5130 kA/cm2! is calculated for
three values of the applied dc voltageVSL50.3, 0.6, and 0.95VP . The
hybrid plasma-Bloch frequenciesf H ~indicated for each dc voltage by ar-
rows! are found to be in good agreement with positions of maximum values
of the responsivity.

FIG. 7. The dependence of the normalized current responsivityuRiNu
5uRi /(e/\v)u of the superlattice THz-photon detector~a52 mm, EP

54 kV/cm, j P5130 kA/cm2! is calculated atf 52.5 THz for three values of
the series resistance~RS510, 30, and 50V! as a function of number of the
superlattice periodsN.

FIG. 8. The dependence of the normalized current responsivityuRiNu
5uRi /(e/\v)u of the superlattice THz-photon detector~a52 mm, EP

54 kV/cm, j P5130 kA/cm2! is calculated atf 53.9 THz for three values of
the series resistance~RS510, 30, and 50V! as a function of number of the
superlattice periodsN.
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RS510V, Nmax.110 for RS530V, andNmax.180 for RS

550V!. We can conclude, therefore, that the bulk mecha-
nism of the superlattice high-frequency response provides
important benefits for operation of the superlattice detectors
in the THz-frequency band.

C. Responsivity dependence on bias voltage

Experimental studies of interaction of high-frequency
fields with the miniband electrons in semiconductor superlat-
tices having a relatively small (j P.10 kA/cm2) current den-
sities were performed45,46 for frequencies f 590 GHz, f
5450 GHz, andf 53.5 THz. A field-induced reduction of
the current through the superlattice was reported, with a dif-
ferent bias dependence below and above a characteristic fre-
quency~1 THz!. Distinct bias dependence of the responsivity
was attributed to quasistatic (vt!1) and dynamic (vt
@1) interaction of the miniband electrons with ac fields at
frequencies below and above 1 THz, respectively. The intra-
miniband relaxation time (t.10213s) was estimated from
experimental data.46

In Fig. 9 we plot the dc bias dependence of the respon-
sivity at f 5450 GHz andf 53.9 THz for the superlattice pa-
rameters corresponding to experiments46 ~j P.10 kA/cm2,
EP.13 kV/cm, a.2.5mm, L.0.5mm, RS.20V! to-
gether with the dc Esaki–Tsu current–voltage curve. In a full
agreement with the observations,46 at f 5450 GHz responsiv-
ity reaches its maximum value atVSL.0.5VP ~roughly cor-
responding to the position of the maximum of the second
derivative of the dc current–voltage curve!, while for 3.9
THz radiation the position of the maximum is shifted to the
peak voltageVP . This can be readily understood if one takes

into account that forvt>1 the model of the classical recti-
fication is no longer valid. In this case the current change
under THz-photon irradiation is described by Eq.~22! giving
the second derivative of the current in the finite difference
form taking account of finite photon energies. At high fre-
quencies vt→` this equation yields DI dc

SL(v,VSL)
}I dc

SL(VSL), i.e., the bias-field dependence of the responsivity
should reproduce the dc current–voltage curve showing the
maximum value atVSL.VP .

It is important to note that with increasing peak current
densities this behavior qualitatively changes. Figure 10 dem-
onstrates the bias-field dependence of the responsivity for the
same frequencies and superlattice parameters as Fig. 9 and
for j P.130 kA/cm2. First, we emphasize that the responsiv-
ity is considerably higher than in the previous case both for
450 GHz and 3.9 THz radiation. Second, for 450 GHz radia-
tion the responsivity reaches its maximum value atVSL

.VP and not atVSL.0.5VP as previously. For the high peak
current densities the superlattice impedance variation due to
applied dc voltage essentially changes the coupling effi-
ciency between antenna and superlattice. This leads to a
qualitatively different behavior of the responsivity for low
and high peak current densities: the latter can manifest in
experiments a more efficient coupling of radiation into the
superlattice.

D. Optimized peak current density

For a given superlattice geometry the current responsiv-
ity of the superlattice can also be enhanced by choosing an
optimum value of the peak current densities. This circum-
stance is illustrated in Fig. 11 where we plot the responsivity

FIG. 9. ~a! Normalized Esaki–TsuI –V characteristics of a superlattice
THz-photon detector experimentally investigated in Ref. 41~a52 mm, EP

513 kV/cm, j P510 kA/cm2, L50.5mm, RS520V!. Current responsivity
is calculated for this detector for~b! 450 GHz and~c! 3.9 THz radiation as
a function of the normalized dc voltageVSL /VP .

FIG. 10. ~a! Normalized Esaki–TsuI –V characteristics of a high current
density superlattice THz-photon detector~a52 mm, EP54 kV/cm, j P

5130 kA/cm2, L50.5mm, RS520V!. Current responsivity is calculated
for this detector for~b! 450 GHz and~c! 3.9 THz radiation as a function of
the normalized dc voltageVSL /VP .
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as a function of the peak current density forVSL50.99VP ,
EP.4 kV/cm, a.2.5mm, L.0.5mm, RS.10V and for
three frequencies of radiation, i.e.,f 51, 2, and 3 THz. For
different frequencies the responsivity reaches its peaks at dif-
ferent values ofj P

max(f ) which increases with increasing of
the radiation frequency.

This behavior can also be explained by excitation of the
plasma-Bloch oscillations in the superlattice by THz photons
if one takes into account the resonant conditionf
5 f H( j P

max), where the hybrid frequencyf H5uv6
H /2pu is

given by Eq. ~45! ~see also Fig. 2!. Calculated values
j P
max(1 THz).60 kA/cm2, j P

max(2 THz).220 kA/cm2, and
j P
max(3 THz).540 kA/cm2 are shown in Fig. 11 by arrows.

They are in good agreement with the positions of the peaks
found from calculations based on the general Eq.~32!.

We can conclude, therefore, that high current density
superlattices should be used in order to achieve the large
responsivity values~2–3 A/W! in the 1–3 THz frequency
band. The high current densities can be obtained by choosing
wide miniband and/or highly doped samples. For example,
according to Eq.~14! in superlattices withD.130 meV26 the
peak current densityj P.1000 kA/cm2 can be reached forn
.331017cm23. In this case the equilibrium thermal excita-
tion energy (kT.26 meV) and the Fermi energy of degen-
erate electrons (eF.27 meV) are considerably smaller than
the miniband width. Hence, Eq.~14! can be employed for the
peak current density estimates both for room and low tem-
perature conditions.

Finally we would like to note that the measurements of
the responsivity of resonant-tunneling~double-barrier! het-
erostructure diodes reported in Ref. 37 were carried out at
frequencies as high as 2.5 THz. The reported value of the
responsivity was of the order of severalmA/W. As has been
mentioned,37 this value is smaller by over an order of mag-
nitude than the responsivity of THz-frequency Schottky di-
odes in this frequency band. We believe that an optimized
superlattice detector as discussed above may have some ad-

vantages over these devices due to rather high expected cur-
rent responsivity in the THz-frequency band.

VI. CONCLUSIONS

In conclusion, we have calculated the current responsiv-
ity of a semiconductor superlattice detector in the THz-
frequency band based on equivalent circuit modeling. Using
a path integral solution of the Boltzmann equation within the
relaxation-time approximation for the collision integral we
have obtained an analytical expression for the responsivity,
taking account of~i! frequency dependent superlattice re-
sponse to a THz field caused by dynamical localization of
electrons,~ii ! a finite matching efficiency between a detector
antenna and the superlattice, and~iii ! the presence of para-
sitic losses in the device caused by a series~contact! resis-
tance.

We find that the responsivity of the superlattice ideally
coupled to the incident radiation tends to a finite value with
increasing radiation frequency. This value is simply deter-
mined by the energy conservation law governing the THz-
photons absorption in the presence of scattering processes.

Excitation of plasma-Bloch oscillations in the superlat-
tice ~which are found to represent eigenmodes of the system
in the THz-frequency band! can essentially enhance both the
magnitude and the rolloff frequencies of the responsivity due
to resonant coupling of radiation into the superlattice. The
excitation of the plasma-Bloch oscillations can manifest it-
self as a resonance-like dependence of the normalized re-
sponsivity on the THz-photon frequency and~or! as a spe-
cific dependence of the responsivity on bias fields for
superlattices showing high peak current densities.

Changes in peak current density and in superlattice
length can affect drastically the coupling efficiency and para-
sitic losses in the superlattice device. These parameters are
found to play an important role in the THz-field detector
performance and need to be optimized for each value of the
radiation frequency and series resistance. For higher frequen-
cies the optimum length of the superlattice detector tends to
increase demonstrating a benefit of a bulk-type mechanism
of the THz-photon detection.

In currently available superlattices possessing the opti-
mized length and the peak current the responsivity is ex-
pected to be as high asuRi u.(2 – 3) A/W in the 1–3 THz-
frequency band. These values of the responsivity range up to
several percents of the quantum efficiencye/\v of an ideal
superconductor tunnel junction for this frequency range. The
analysis of the current responsivity performed in this article
does not necessarily assume cooling of the superlattice: the
estimated values of the current responsivity of superlattices
can be expected at even room temperature.
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