65,039 research outputs found

    First principles study of intrinsic point defects in hexagonal barium titanate

    Get PDF
    Density functional theory (DFT) calculations have been used to study the nature of intrinsic defects in the hexagonal polymorph of barium titanate. Defect formation energies are derived for multiple charge states and due consideration is given to finite-size effects (elastic and electrostatic) and the band gap error in defective cells. Correct treatment of the chemical potential of atomic oxygen means that it is possible to circumvent the usual errors associated with the inaccuracy of DFT calculations on the oxygen dimer. Results confirm that both mono- and di-vacancies exist in their nominal charge states over the majority of the band gap. Oxygen vacancies are found to dominate the system in metal-rich conditions with face sharing oxygen vacancies being preferred over corner sharing oxygen vacancies. In oxygen-rich conditions, the dominant vacancy found depends on the Fermi level. Binding energies also show the preference for metal-oxygen di-vacancy formation. Calculated equilibrium concentrations of vacancies in the system are presented for numerous temperatures. Comparisons are drawn with the cubic polymorph as well as with previous potential-based simulations and experimental results

    Variation of magnetic properties of Sr2_2FeMoO6_6 due to oxygen vacancies

    Get PDF
    Oxygen vacancies can be of utmost importance for improving or deteriorating physical properties of oxide materials. Here, we studied from first-principles the electronic and magnetic properties of oxygen vacancies in the double perovskite Sr2_2FeMoO6_6 (SFMO). We show that oxygen vacancies can increase the Curie temperature in SFMO, although the total magnetic moment is reduced at the same time. We found also that the experimentally observed valence change of the Fe ions from 3+3+ to 2+2+ in the x-ray magnetic circular dichroism (XMCD) measurements is better explained by oxygen vacancies than by the assumed mixed valence state. The agreement of the calculated x-ray absorption spectra and XMCD results with experimental data is considerably improved by inclusion of oxygen vacancies.Comment: submitted to PRB but rejected, major revision, submitting to JPC

    Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite

    Full text link
    The dependencies on strain and oxygen vacancies of the ferroelectric polarization and the weak ferromagnetic magnetization in the multiferroic material bismuth ferrite, BiFeO_3, are investigated using first principles density functional theory calculations. The electric polarization is found to be rather independent of strain, in striking contrast to most conventional perovskite ferroelectrics. It is also not significantly affected by oxygen vacancies, or by the combined presence of strain and oxygen vacancies. The magnetization is also unaffected by strain, however the incorporation of oxygen vacancies can alter the magnetization slightly, and also leads to the formation of Fe^{2+}. These results are discussed in light of recent experiments on epitaxial films of BiFeO_3 which reported a strong thickness dependence of both magnetization and polarization.Comment: 9 pages, 3 figure

    Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity

    Get PDF
    Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implication in device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. The ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena, and engineering multifunctional oxide devices.Comment: 35 pages, Main text and the supplementary information combine
    • …
    corecore