Oxygen vacancies, especially their distribution, are directly coupled to the
electromagnetic properties of oxides and related emergent functionalities that
have implication in device applications. Here using a homoepitaxial strontium
titanate thin film, we demonstrate a controlled manipulation of the oxygen
vacancy distribution using the mechanical force from a scanning probe
microscope tip. By combining Kelvin probe force microscopy imaging and
phase-field simulations, we show that oxygen vacancies can move under a
stress-gradient-induced depolarisation field. When tailored, this nanoscale
flexoelectric effect enables a controlled spatial modulation. In motion, the
scanning probe tip thereby deterministically reconfigures the spatial
distribution of vacancies. The ability to locally manipulate oxygen vacancies
on-demand provides a tool for the exploration of mesoscale quantum phenomena,
and engineering multifunctional oxide devices.Comment: 35 pages, Main text and the supplementary information combine