98,984 research outputs found

    Betaine, organic acids and inulin do not affect ileal and total tract nutrient digestibility or microbial fermentation in piglets

    Get PDF
    The study was conducted to investigate the effects of betaine alone or combined with organic acids and inulin on ileal and total tract nutrient digestibilities and intestinal microbial fermentation characteristics in piglets. In total, 24 four-week-old barrows with an average initial body weight of 6.7 kg were used in two consecutive experiments with 12 piglets each. Betaine, organic acids and inulin at a level of 0.2, 0.4 and 0.2%, respectively, or combinations of these supplements were added to the basal diet. The supplementation of betaine, organic acids and inulin or any of their combinations did not affect ileal and total tract nutrient digestibilities. The microbial fermentation products both at the ileal and faecal level were not affected by any of the treatments. In conclusion, combining betaine with organic acids and inulin did not have any associated effects on the variables that were measured

    A note on the effect of supplementation with microbial phytase and organic acids on feed intake and growth performance of growing pigs

    Get PDF
    peer-reviewedThis experiment was designed to investigate the effects of supplementation with phytase, either alone or in combination with organic acids, on feed intake and growth of pigs from 8 to 89 kg live weight. Some 240 pigs were used in four experimental treatments comprising: (1) control, (2) control plus phytase, (3) control plus phytase plus liquid organic acids (formic, propionic), and (4) control plus phytase plus powdered organic acids (formic, fumaric, propionic). Feed intake and growth rate in the weaner stage were increased (P < 0.05) by phytase supplementation, with some additional benefits from organic acid inclusion. Interval to slaughter was reduced (P < 0.05) by phytase supplementation

    Electro-extractive fermentation for efficient biohydrogen production

    Get PDF
    Electrodialysis, an electrochemical membrane technique, was found to prolong and enhance the production of biohydrogen and purified organic acids via the anaerobic fermentation of glucose by Escherichia coli. Through the design of a model electrodialysis medium using cationic buffer, pH was precisely controlled electrokinetically, i.e. by the regulated extraction of acidic products with coulombic efficiencies of organic acid recovery in the range 50–70% maintained over continuous 30-day experiments. Contrary to\ud previous reports, E. coli produced H2 after aerobic growth in minimal medium without inducers and with a mixture of organic acids dominated by butyrate. The selective separation of organic acids from fermentation provides a potential nitrogen-free carbon source for further biohydrogen production in a parallel photofermentation. A parallel study incorporated this fermentation system into an integrated biohydrogen refinery (IBR) for the conversion of organic waste to hydrogen and energy

    The balance between fumarate and malate plays an important role in plant development and postharvest quality in tomato fruit

    Get PDF
    Organic acids, produced as intermediates of the tricarboxylic cycle, play a crucial role in the plant primary metabolism and are considered as being ones of the most important quality traits in edible fruits. Even if they are key metabolites in a multitude of cellular functions, little is known about their physiological relevance and regulation. Transgenic tomato (Solanum lycopersicum) plants expressing constitutively a bacterial maleate isomerase, which converts reversibly maleate to fumarate, were generated in order to improve our knowledge about the role of organic acids in the crop and fruit metabolism. Growth and reproduction were affected by the unbalance of tricarboxylic cycle intermediates, as a dwarf phenotype and a flowering delay were observed in the transgenic plants. In addition, a delay in chlorophyll synthesis, a decrease in the numbers of stomata and significant changes in some photosynthetic parameters indicated alterations in central primary metabolism. Postharvest was also impaired, as transgenic fruits showed increased water lost and deterioration, indicating a possible role of the organic acids in cell wall metabolism. Finally, preliminary metabolomics analysis pointed out important changes during fruit ripening in flavor-related metabolites, such as acids and sugars, revealing the importance of organic acids in fruit metabolism. Taken together, these data indicate a pivotal role of tricarboxylic cycle intermediates, such as malate or fumarate, as regulatory metabolites. Besides their role in quality fruit characteristics, they are involved in a multitude of functions including growth and photosynthesis.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method

    Get PDF
    An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer solution [5 mmol/L p-toluensulfonic acid (p-TSA) + 20 mmol/L bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (bisÂżtris) + 100 Âżmol/L sodium ethylenediaminetetraacetic (EDTA-2Na)] was used to improve the sensitivity of detection. The average spiked recoveries for the ten organic acids ranged from 82.9 to 127.9% with relative standard deviations of 1.44Âż4.71%. The linear ranges of determination were from 15 to 1,000 mg/L with correlation coefficients of 0.9995Âż0.9999. The metabolism of organic acids in cider, and the effect of nutrients including diammonium phosphate (DAP), thiamine, biotin, niacinamide and pantothenic acid on their metabolism, were studied using this method of analysis. We found that before cider brewing, additions of 200 mg/L DAP and 0.3 mg/L thiamine to apple juice concentrate results in a high quality cider

    Radiolysis of Macromolecular Organic Material in Mars-Relevant Mineral Matrices

    Get PDF
    The fate of organic material on Mars after deposition is crucial to interpreting the source of these molecules. Previous work has addressed how various organic compounds at millimeter depths in sediments respond to ultraviolet radiation. In contrast, this study addressed how highenergy particle radiation (200MeV protons, simulating the effect of galactic cosmic rays and solar wind at depths of <45 cm) inuences organic macromolecules in sediments. Specically, we report the generation of organicacid radiolysis products after exposure to radiation doses equivalent to geological time scales (17 Myr). We found that formate and oxalate were produced from a variety of organic starting materials and mineral matrices. Unlike ultravioletdriven reactions that can invoke Fenton chemistry to produce organic acids, our work suggests that irradiation of semiconductor surfaces, such as TiO2 or possible clay minerals found on Mars, forms oxygen and hydroxyl radical species, which can break down macromolecules into organic acids. We also investigated the metastability of benzoate in multiple mineral matrices. Benzoate was added to samples prior to irradiation and persisted up to 500 kGys of exposure. Our ndings suggest that organic acids are likely a major component of organic material buried at depth on Mars
    • 

    corecore