13,983 research outputs found

    Open Quantum Systems. An Introduction

    Full text link
    We revise fundamental concepts in the dynamics of open quantum systems in the light of modern developments in the field. Our aim is to present a unified approach to the quantum evolution of open systems that incorporates the concepts and methods traditionally employed by different communities. We present in some detail the mathematical structure and the general properties of the dynamical maps underlying open system dynamics. We also discuss the microscopic derivation of dynamical equations, including both Markovian and non-Markovian evolutions.Comment: 100 pages, 3 figures. Updated version with typos corrected. Preprint version of the published boo

    Current in open quantum systems

    Full text link
    We show that a dissipative current component is present in the dynamics generated by a Liouville-master equation, in addition to the usual component associated with Hamiltonian evolution. The dissipative component originates from coarse graining in time, implicit in a master equation, and needs to be included to preserve current continuity. We derive an explicit expression for the dissipative current in the context of the Markov approximation. Finally, we illustrate our approach with a simple numerical example, in which a quantum particle is coupled to a harmonic phonon bath and dissipation is described by the Pauli master equation.Comment: To appear in Phys. Rev. Let

    Resonances in open quantum systems

    Full text link
    The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are, generally, complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scattering wavefunctions into which the system is embedded. This causes an {\it external mixing} (EM) of the states. Mathematically, EM is related to the existence of singular (the so-called exceptional) points (EPs). The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wavefunctions. At and near an EP, the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally mixed at this parameter value. The S-matrix and therewith the cross section do contain, in the one-channel case, almost no information on the EM of the states. The situation is completely different in the case with two (or more) channels where the resonance structure is strongly influenced by the EM of the states and interesting features of non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates of a non-Hermitian Hamilton operator which are embedded in one common continuum and influenced by two adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian quantum physics as well as for applications.Comment: Title of the paper is changed. The Introduction is broaden. The difference of the non-Hermitian formalism for the description of open quantum systems in our paper to the description of PT-symmetric systems is underlined. Paper published: Phys.Rev.A 95, 022117 (2017

    Scarring in open quantum systems

    Get PDF
    We study scarring phenomena in open quantum systems. We show numerical evidence that individual resonance eigenstates of an open quantum system present localization around unstable short periodic orbits in a similar way as their closed counterparts. The structure of eigenfunctions around these classical objects is not destroyed by the opening. This is exposed in a paradigmatic system of quantum chaos, the cat map.Comment: 4 pages, 4 figure

    Localization in open quantum systems

    Full text link
    In an isolated single-particle quantum system a spatial disorder can induce Anderson localization. Being a result of interference, this phenomenon is expected to be fragile in the face of dissipation. Here we show that dissipation can drive a disordered system into a steady state with tunable localization properties. This can be achieved with a set of identical dissipative operators, each one acting non-trivially only on a pair of neighboring sites. Operators are parametrized by a uniform phase, which controls selection of Anderson modes contributing to the state. On the microscopic level, quantum trajectories of a system in a localized steady regime exhibit intermittent dynamics consisting of long-time sticking events near selected modes interrupted by jumps between them.Comment: 5 pages, 5 figure

    Dynamics of open quantum systems

    Get PDF
    The coupling between the states of a system and the continuum into which it is embedded, induces correlations that are especially large in the short time scale. These correlations cannot be calculated by using a statistical or perturbational approach. They are, however, involved in an approach describing structure and reaction aspects in a unified manner. Such a model is the SMEC (shell model embedded in the continuum). Some characteristic results obtained from SMEC as well as some aspects of the correlations induced by the coupling to the continuum are discussed.Comment: 16 pages, 5 figure

    Pure Stationary States of Open Quantum Systems

    Full text link
    Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipative quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are suggested. We consider stationary states for the Lindblad equation. We discuss bifurcations of pure stationary states for open quantum systems which are quantum analogs of classical dynamical bifurcations.Comment: 7p., REVTeX
    corecore