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We study scarring phenomena in open quantum systems. We show numerical evidence that individual
resonance eigenstates of an open quantum system present localization around unstable short periodic orbits in
a similar way as their closed counterparts. The structure of eigenfunctions around these classical objects is not
destroyed by the opening. This is exposed in a paradigmatic system of quantum chaos, the cat map.
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Open quantum systems are very important in many areas
of physics. For example, they play a central role in the study
of quantum to classical correspondence �1�, microlasers
�2,3�, quantum dots �4�, chaotic scattering �5�, and more.
However, there are several properties of these systems that
are less known if compared to those of closed ones.

Quantum evolution in open systems is given by nonuni-
tary matrices, whose eigenstates �resonances� are nonor-
thogonal and the eigenvalues are complex with modulus less
than or equal to one. One of the main conjectures about the
properties of the spectrum is that the mean density of reso-
nances follows the fractal Weyl law �6�. This law predicts
that the number of eigenstates that have a finite decay rate
goes as N���−�d−1�, where d is a fractal dimension of the
classical strange repeller. This result has been tested in some
systems �7,8�. As a consequence, the majority of the eigen-
functions become degenerate with their eigenvalue modulus
tending to zero as the size of the opening �the number of
decay channels� relative to � increases. These are the short-
lived eigenstates, which cannot be associated to any classical
trapped set �instead, they can be related to the trajectories
that escape from the system before the Ehrenfest time�. On
the other hand, the number of remaining eigenstates �the
long-lived ones� tends to zero. However, they contain the
most relevant classical information, resembling the classical
repeller. This was noticed in �9�, where they were coined
quantum fractal eigenstates. Moreover, this investigation was
recently extended �10,11� by looking at the right and left
resonances of the open baker’s map. It was found that the
probability density averaged for several right eigenstates is
supported by the classical Cantor set �the repeller�, showing
self-similarity both in the q and p representation. Finally, in
the more specific context of optical microcavities, the forma-
tion of long-lived scarred modes has been observed �3�. This
behavior has been associated to avoided resonance crossings.
Nevertheless, almost nothing else is known about the mor-
phology of individual resonances.

We are interested in the study of quantum systems which
are classically chaotic. In closed quantum chaotic systems,
the morphology of the eigenfunctions has been extensively
studied. One of the most important and striking properties is
scarring �12�. This consists of the localization, i.e., the prob-
ability enhancement of given individual eigenfunctions along
short unstable periodic orbits �POs�. This effect has been
discovered in the Bunimovich stadium billiard �13� and a
great amount of work has been done since then �14�, giving
rise to what is known as “scar theory.”

In this Rapid Communication we explore quantitatively
the localization properties of resonances. We have studied
the overlaps of wave functions highly localized on the vicin-
ity of POs �scar functions� �15–17� with the eigenfunctions
of an open quantum system in order to unveil the quantum
mechanical manifestation of short POs. These values become
higher than when the overlap is calculated with the eigen-
functions of the closed system. The � smoothed fractal na-
ture does not destroy structures of this kind. This effect is
even greater when the area of the opening grows, thus it
cannot be ascribed to a perturbative origin. We provide one
with an interpretation of these results.

One of the most studied open systems corresponds to two-
dimensional torus maps, where a band along the q or p di-
rection is cut by means of a projection. The corresponding

quantum dynamics is given by a nonunitary matrix M̄ = PM

�or equivalently, M̄�=MP, which is related to M̄ by a time
reversal operation�, where M is the closed map and P is the
projector on the complement of the opening. This quantum
evolution is characterized by decaying eigenstates �i, whose
corresponding eigenvalues zi have complex energies. It is
usual to define �zi�2=exp�−�i�, where �i�0 is called the de-
cay rate. We have studied a paradigmatic model of quantum
chaos, the cat map, which is a linear automorphism on the
two-torus generated by the 2�2 symplectic matrix M,
modulus 1. We have used

M = �2 3

1 2
� . �1�

When quantizing the torus we have a finite Hilbert space of
dimension N=1 /2�� and a discrete N lattice of position and
momenta in the unit interval. The quantum cat map in the
position representation is given by the matrix M whose ele-
ments are �18�

Mkj = � i

n
�1/2

exp�2�i

n
�k2 − jk + j2�	 . �2�

Finally, we choose to apply the projector P after M to obtain

the nonunitary matrix M̄ that gives the evolution of the open
cat map.

The main resource that we use to investigate localization
is the scar function, which not only applies to maps but also
to general flows. These functions have been deeply studied in
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the literature �15–17�. They are wave functions highly local-
ized on the stable and unstable manifolds of POs, and on the
energy given by a Bohr-Sommerfeld quantization condition
on the trajectory. We are going to use a formulation suitable
for a Poincaré surface of section, or more directly for maps
of the two-torus �examples of this can be found in �16��. We
define the “tube functions” for maps, ��tube

maps
, as a sum of
coherent states centered at the fixed points of a given PO 	,
each one having a phase �17�. Then, a dynamical average is
performed, and we have the following expression for the scar
function:

��scar
maps
 = �

l=−T

T

eiS	l/� cos��l

2T
�Ml��tube

maps
 , �3�

where T stands for the number of iterations of the map up to
the Ehrenfest time TE=ln � /
 �
 is the Lyapunov exponent�,
and S	 is the classical action of 	. We have used Eq. �3� to
construct functions highly localized on the vicinity of the
periodic points of the closed cat map. In Fig. 1�a� we can see
the structure of the scar function corresponding to the PO
given by �q , p�= �0.5,0.5�, one of the shortest of this map,
for N=225. The maximum probabilities correspond to the
darkest regions. Panel 1�b� of the same figure displays this
function in a logarithmic scale of gray, showing the way it
extends along the stable and unstable manifolds of the cor-
responding orbit.

In the following we are going to describe the behavior of
localization in the open system by means of the maximum
overlaps of the scar function with its resonances. We explore
different values of N and two different shapes of the projec-

tor P. For simplicity we define a map M̄a= PaM, where Pa
corresponds to the projection on the complement of a band
parallel to the p direction of width �q and centered at q

=q0. We also define the map M̄b= PbM, where we now con-
sider two symmetric bands each one having a �q /2 width,
and centered at q=q0 and q=1−q0. This is shown in the left
and right insets of Fig. 3. In Figs. 1�c� and 1�d� we show the

right and left eigenstates of the M̄a map that have maximum
overlap with the scar function displayed in Fig. 1�a� �here
q0=0.225 and �q=0.25�. The left resonance localizes on the
unstable manifold, while the right one does it on the stable

manifold. The same can be found in panel 1�e� but for the M̄b
map �q0=0.1625�. We can see that the symmetric cut local-
izes the resonance on the stable and unstable manifolds of
the trajectory. Finally, in panel 1�f� the eigenfunction of the
closed cat map with maximum overlap with the scar function
of panel 1�a� is shown.

First, we systematically analyze the behavior of localiza-
tion as a function of �. For that purpose, in Fig. 2 we show
the maximum overlaps of the scar function with the right and
left eigenstates of the open cat map, as a function of N �for
clarity of the exposition we show the running average of
these values in a window of size �N=10�. It is evident that
these values are greater for the open system, both for the
right �dotted� and left �dashed� resonances. On the other
hand, we can see the insets, where the order number �max of
the eigenstate with maximum overlap with the scar function

is plotted vs N �they were ordered in ascending eigenvalue
modulus�. It is clear that the maximum overlap corresponds
to resonances with the smaller decay rates �larger eigenvalue
moduli�. This guarantees that we are looking at wave func-
tions which have a support on the classical repeller and do
not belong to the null subspace. In Fig. 2�a� we can see the

results for the M̄a map, while in 2�b� they correspond to M̄b,
where q0 and �q values are taken the same as in the particu-
lar case of Fig. 1. The difference between the two maps turns
out to be very important. In fact, the greater overlaps were
obtained when opening in a symmetric fashion rather than
with a single strip. Finally, we mention that the overlaps of
the scar function with the left or the right resonances of the
open map differ. These eigenstates are supported by different
trapped classical sets, so in principle, there is no reason for
them to coincide. Anyway, we think that the detailed expla-
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FIG. 1. �a� Scar function of the PO given by �q , p�= �0.5,0.5�
for N=225. The horizontal axis corresponds to the position q
� �0,1� and the vertical axis to the momentum p� �0,1� coordi-
nate. �b� Logarithmic version of �a�. Black lines correspond to the
stable and unstable manifolds of the orbit. �c� Right eigenvector of

the M̄a map, which has the maximum overlap with the scar function
shown in �a�. �d� Same as previous panel but for the left eigenstate.

�e� Same as �c� in the M̄b map case. �f� Eigenfunction of the closed
system having maximum overlap with the scar function of panel
�a�. See the text for more details.
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nation of this difference is an interesting open problem.
But then a natural question arises: how does the relation-

ship between the shape and the size of the projection influ-
ence the intensity of scarring? For instance, this is relevant if
we want to obtain highly localized resonances with the mini-
mum amount of losses. This happens in many applications,
the cases of two-dimensional billiards that can be used as
optical microcavities for lasers or that can be attached to
perfect leads, being some examples. To answer this we have
further investigated the behavior of localization by fixing the
� value, and studying how the width of the opening influ-
ences it for both Pa and Pb operators. The results are shown
in Fig. 3, where we display the average of xmax taken from
N=350 to N=360, as a function of the width of the opening

�q. In all cases we take q0=0.225 for M̄a and q0=0.1625 for

M̄b. The overlaps were calculated with the right �dotted� and

left �dashed� eigenstates. The lower curves correspond to M̄a,

while the upper ones correspond to M̄b. We have found that
not only the overlap in general increases with the size of the
opening, but also that this effect is greater due to the sym-
metrization.

But this seemingly greater scarring effect in open systems
should be interpreted in the proper context. In order to do
this we will analyze the weight that these long-lived reso-
nances have in the whole spectrum, and relate it with typical
time scales of the system. This is given by a connection
between the fractal Weyl law and the Ehrenfest time T0
=ln�O� /
 �with O the number of open channels, and 

=1.31 in our case�, first obtained in �7�. There, it was found

FIG. 4. �Color online� Fraction of eigenstates N� /N whose de-
cay rate � is smaller than � f =0.71, as a function of N. The lines
corresponds to the theoretical expression O�−1/�
Td�� �see the text for

details�. The upper curve corresponds to M̄a with an opening de-
fined by q0=0.125 and �q=0.05, the middle one by q0=0.225 and

�q=0.25, and finally, the lower one corresponds to M̄b with q0

=0.1625 and �q=0.25.

(b)

(a)

m
ax

N

ν
m

ax

N

ν

FIG. 2. �Color online� Maximum overlap xmax of the scar func-
tion with the eigenstates of the open cat map as a function of N
�running average in a window �N=10�. In the insets we show the
order number �max in ascending eigenvalue modulus of the right
resonance with maximum overlap, as a function of N �for the left

resonance, results are similar�. Panel �a� corresponds to the M̄a

map, while the M̄b map results are shown in �b�. In all panels, the
solid black lines correspond to the maximum overlap for the closed
map, and the dotted and dashed lines correspond to the maximum
overlaps with the right and left resonances of the open maps,
respectively.
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p

FIG. 3. �Color online� Maximum overlap xmax �average from
N=350 to N=360� of the scar function with the right �dotted� and
left �dashed� eigenstates of the open cat map as a function of the

size of the opening �q. The lower curves correspond to M̄a, while

the upper ones correspond to M̄b. The solid horizontal line stands
for the value corresponding to the closed cat map. Left and right
insets illustrate the projectors Pa and Pb.
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that the fraction of resonances with decay rate � smaller than
a fixed value � f 1 /T0 behaves like N� /N=exp�−T0 /Td�
=O�−1/�
Td��, where Td=N /O is the so-called “dwell time” �Td
large�. We have numerically confirmed the validity of this
prediction in our system by fitting the data with the expres-
sion N� /N=aN−b. We show three cases in Fig. 4, where we
have taken � f =0.71 in all of them. The upper curve corre-
sponds to M̄a with an opening defined by q0=0.125 and
�q=0.05, showing a fitted bf =0.032 that agrees with the
theoretical bth=0.038. The middle curve corresponds to q0
=0.225 and �q=0.25 with bf =0.181, and the lower one cor-
responds to M̄b with q0=0.1625 and the same �q with bf
=0.2, being bth=0.191 for both. In all cases this fraction goes
to zero, leaving a small amount of classically meaningful
eigenstates. This directly implies a persistent localization ef-
fect on the few remaining “fractal eigenfunctions.” However,
these greater overlaps could correspond to a normalization
difference with respect to the closed system. In fact, the ef-
fective size of the Hilbert space of the open system is
smaller. Then, if we can go further and claim that these re-
sults mean a true enhancement of scarring, remains to be
determined �19�.

In summary, we have found that there is a greater overlap

of the scar functions with the resonances of an open system
compared to the closed one. The fractal structure of the
eigenstates has been widely studied, motivating their de-
nomination as “quantum fractal eigenstates.” However, this
significant alteration of the morphology of the eigenfunctions
with respect to the analog closed system does not destroy the
localization around POs. We think that this is due to the fact
that the pruning of orbits that escape through the openings
before the Ehrenfest time leaves parts of the stable and un-
stable manifolds. These remaining parts are enough to sup-
port the quantum structure associated to the scar function.
However, the way they interfere in order to construct the
same object as the smooth manifolds of the closed system
remains unknown. Also, the scarring grows with the size of
the opening ruling out any perturbative explanation for this.
Moreover, this phenomenon is persistent, in the sense that it
survives in the vanishing fraction of long-lived resonances as
N grows. In future studies �19� we will focus on these open
questions.
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