32,732 research outputs found

    A computability theoretic equivalent to Vaught's conjecture

    Full text link
    We prove that, for every theory TT which is given by an Lω1,ω{\mathcal L}_{\omega_1,\omega} sentence, TT has less than 202^{\aleph_0} many countable models if and only if we have that, for every X2ωX\in 2^\omega on a cone of Turing degrees, every XX-hyperarithmetic model of TT has an XX-computable copy. We also find a concrete description, relative to some oracle, of the Turing-degree spectra of all the models of a counterexample to Vaught's conjecture

    High frequency and high wavenumber solar oscillations

    Full text link
    We determine the frequencies of solar oscillations covering a wide range of degree (100< l <4000) and frequency (1.5 <\nu<10 mHz) using the ring diagram technique applied to power spectra obtained from MDI (Michelson Doppler Imager) data. The f-mode ridge extends up to degree of approximately 3000, where the line width becomes very large, implying a damping time which is comparable to the time period. The frequencies of high degree f-modes are significantly different from those given by the simple dispersion relation \omega^2=gk. The f-mode peaks in power spectra are distinctly asymmetric and use of asymmetric profile increases the fitted frequency bringing them closer to the frequencies computed for a solar model.Comment: Revised version. 1.2 mHz features identified as artifacts of data analysis. Accepted for publication in Ap

    Why Not Consider Closed Universes?

    Get PDF
    We consider structure formation and CMB anisotropies in a closed universe, both with and without a cosmological constant. The CMB angular power spectrum and the matter transfer function are presented, along with a discussion of their relative normalization. This represents the first full numerical evolution of density perturbations and anisotropies in a spherical geometry. We extend the likelihood function vs. Omega from the COBE 2-year data to Omega>=1. For large Omega the presence of a very steep rise in the spectrum towards low ell allows us to put an upper limit of Omega<=1.5 (95%CL) for primordial spectra with n<=1. This compares favorably with existing limits on Omega. We show that there are a range of closed models which are consistent with observational constraints while being even older than the currently popular flat models with a cosmological constant. Future constraints from degree scale CMB data may soon probe this region of parameter space. A derivation of the perturbed Einstein, fluid and Boltzmann equations for open and closed geometries is presented in an appendix.Comment: 24 pages, including 13 figures in a uuencoded self-unpacking shell script. Submitted to Ap

    Implementation strategies for hyperspectral unmixing using Bayesian source separation

    Get PDF
    Bayesian Positive Source Separation (BPSS) is a useful unsupervised approach for hyperspectral data unmixing, where numerical non-negativity of spectra and abundances has to be ensured, such in remote sensing. Moreover, it is sensible to impose a sum-to-one (full additivity) constraint to the estimated source abundances in each pixel. Even though non-negativity and full additivity are two necessary properties to get physically interpretable results, the use of BPSS algorithms has been so far limited by high computation time and large memory requirements due to the Markov chain Monte Carlo calculations. An implementation strategy which allows one to apply these algorithms on a full hyperspectral image, as typical in Earth and Planetary Science, is introduced. Effects of pixel selection, the impact of such sampling on the relevance of the estimated component spectra and abundance maps, as well as on the computation times, are discussed. For that purpose, two different dataset have been used: a synthetic one and a real hyperspectral image from Mars.Comment: 10 pages, 6 figures, submitted to IEEE Transactions on Geoscience and Remote Sensing in the special issue on Hyperspectral Image and Signal Processing (WHISPERS
    corecore