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Abstract

We consider structure formation and cosmic microwave background (CMB) aniso-

tropies in a closed universe, both with and without a cosmological constant. The CMB

angular power spectrum and the matter transfer function are presented, along with a

discussion of their relative normalization. This represents the �rst full numerical evolu-

tion of density perturbations and anisotropies in a spherical geometry. We extend the

likelihood function vs. 
 from the COBE 2-year data to 
 � 1. For large 
 the presence

of a very steep rise in the spectrum towards low ` allows us to put an upper limit of


 � 1:5 (95%CL) for primordial spectra with n � 1. This compares favorably with

existing limits on 
. We show that there are a range of closed models which are con-

sistent with observational constraints while being even older than the currently popular


at models with a cosmological constant. Future constraints from degree scale CMB

data may soon probe this region of parameter space. A derivation of the perturbed

Einstein, 
uid and Boltzmann equations for open and closed geometries is presented in

an appendix.

Subject headings: cosmology:theory | cosmic microwave background | large-scale

structure of universe
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1 Introduction

Much attention has recently been paid to structure

formation and cosmic microwave background (CMB)

anisotropies in open universes (e.g. Sugiyama & Silk

1994, Kamionkowski & Spergel 1994, Kamionkowski,

Spergel & Sugiyama 1994, Kamionkowski et al. 1994,

Hu, Bunn & Sugiyama 1995, White & Bunn 1995,

G�orski et al. 1995, Cay�on et al. 1995). The idea

that 
 < 1 has been seen as perhaps more promis-

ing because of the possibility of 
uctuation genera-

tion in open in
ationary models (e.g. Lyth & Stew-

art 1990, Ratra & Peebles 1994, Bucher, Goldhaber

& Turok 1994, Lyth & Woszczyna 1995, Yamamoto,

Sasaki & Tanaka 1995, Liddle et al. 1995). In this pa-

per we would like to focus instead on the alternative

case of a universe with a spherical spatial geometry,

i.e. a closed universe. We will apply some of the re-

sults and techniques developed recently in the study

of open and 
at spatial geometries to the closed case.

Historically, there has been much interest in closed

universes (Wheeler 1968, Hawking 1984), since the

compact spatial surfaces can make quantum �eld the-

ory more clearly consistent than in hyperbolic spaces

and renders tractable the integrals of quantum grav-

ity. The idea of the need for closure goes back to Ein-

stein (1934), who regarded it as necessary to solve the

\problem of inertia", and was postulated as a bound-

ary condition by early workers in the �eld (see discus-

sion in Misner, Thorne & Wheeler 1970, p. 543, 704).

Recently Linde (1995) has shown that it is possible

to produce in
ationary models which result in closed

universes, in which the universe is \created from noth-

ing" (Tryon 1973, Zel'dovich 1981, Zel'dovich & Gr-

ishchuk 1984). This is possible because a closed

universe has zero total energy, just as it has zero

total momentum and total charge (Landau & Lif-

shitz 1975). An extensive list of references to the

early literature on closed universes can be found in

Bj�ornsson & Gudmundsson (1995).

The cosmological constant is often reconsidered in

times of apparent astrophysical crisis (see Carroll,

Press & Turner 1992), and today's Hubble constant

versus age discrepancy is no exception. Recent in-

dications that H0 � 80 kms�1Mpc�1 partially moti-

vated us to consider models with cosmological con-

stant � > 0. As we discuss in x4, it is possible to

gain a few Gyrs in such models, although exactly how

old the universe can be depends largely on gravita-

tional lens constraints (and also on constraints from

large-angle and degree-scale CMB anisotropies). But

certainly � is not the universal panacea for the age

problem.

While we allow for a non-zero �, we restrict our

attention to those models which start at arbitrar-

ily small scale (the Big Bang). Models without

a Big Bang (i.e. having excessive amounts of �)

can be excluded on quite general grounds (Ehlers &

Rindler 1989). In order to specify an initial spec-

trum of 
uctuations, we shall implicitly assume an

early period of in
ation which gave rise to scale in-

variant potential 
uctuations (though we do not cal-

culate the spectrum arising from any particular in-


ationary model). Note that we only concern our-

selves with scalar perturbations here, neglecting the

possibility of tensor modes. We further restrict our

attention to the well-motivated case of adiabatic den-

sity 
uctuations, although many of our general results

would apply to isocurvature 
uctuations as well, and

it would certainly be possible to perform calculations

for any speci�c isocurvature spectrum. We also con-

sider what would happen if the last scattering surface

was at the geometrical antipode (a putative \solu-

tion" of the smoothness problem), although in reality

this situation is inconsistent with current data.

The outline of the paper is as follows. The next

section reviews the closed universe geometry and es-

tablishes our notation. xx3 and 4 present some mate-

rial which will be necessary to understand our princi-

ple results. The rest of the paper presents the results

of our numerical calculations. x5 discusses the CMB


uctuations in a closed universe. Here we perform

the �rst detailed calculations of the anisotropy an-

gular power spectrum in closed models, by accurate

integration of the coupled Einstein, 
uid and Boltz-

mann equations (for more detials see Hu et al. 1995,

hereafter HSSW, and references therein). An exten-

sive appendix gives a derivation of these equations for

arbitrary geometry. x6 reviews the relation to large-

scale structure, with explicit calculation of the matter

transfer function and accurate calculation of the nor-

malization relative to the CMB, including the e�ects

of growth rate and non-trivial gravitational potential

evolution. We show that the continuation to closed

geometries is benign. In x7 we use the COBE 2-year

data to place an upper limit on 
tot, and x8 reviews

an extreme model suggested by Harrison (1993). x9
reviews other limits on closed universes, and x10 con-
tains our conclusions.

2 Spherical Geometry

We will use the following notation for contribu-

tions to the critical density �crit � 3H2
0=(8�G): 
m,


r, 
�, 
K , arising from the (pressure free) matter,

the radiation (photons plus massless neutrinos), the
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cosmological constant and the curvature, respectively.

The Friedmann equation can be used to relate these


's:

1 = 
m0 + 
r0 +
�0 +
K0: (1)

We will generally use these quantities to parame-

terize the present state of the universe, and hence

the subscript `0' will be implicit throughout the pa-

per. We will also sometimes refer to the quantity


tot = 
m + 
r + 
�. The curvature contribution

can then be written as 
K = 1�
tot. Note that for

a closed universe 
K < 1.

The closed universe has metric

ds2 = �dt2 + a2(t)

�
dr2

1�Kr2
+

r2
�
d�2 + sin2 � d�2

��
; (2)

where K = H2
0(
tot � 1) is the \curvature", and

we use units where c = 1. H0 is the Hubble con-

stant today, which we will usually denote by h =

H0=100 kms�1Mpc�1. A closed universe has curva-

ture K > 1, i.e. a real radius of curvature. The

open universe can be obtained by analytic continu-

ation onto the imaginary axis.

The metric can also be written in terms of the

development angle � and the conformal time � �R
dt=a(t), as

ds2 = a2(�)
�
�d�2 +K�1

�
d�2+

sin2 �
�
d�2 + sin2 � d�2

�	�
: (3)

Intervals along geodesics are then related by d� =p
Kd�. Note that in terms of these coordinates (3) is

just the metric of a 3-sphere, with us at the \North"

pole. It is sometimes useful to imagine this geometry

as a sphere embedded in a 4-dimensional Euclidean

space (w; x; y; z) by (Weinberg 1972)

w = cos �

x = sin� cos �

y = sin� sin � cos �

z = sin� sin � sin� : (4)

In terms of this picture all null geodesics (light

rays) form great circles on this sphere, with a max-

imum separation when � = �=2. A particularly im-

portant point in the spherical space is the antipode,

� = �, where the extrapolation of any two geodesics

arriving at our position will cross. Thus for light rays

with �xed angular separation, the coordinate distance

subtended increases from zero (at � = 0) to a max-

imum (at � = �=2) and then returns to zero again

(at � = �). Equivalently, an object placed at the an-

tipode will �ll the whole sky. We will see that this

structure has important consequences for the angular

power spectrum of CMB anisotropies.

3 In
ation, Evolution & Flatness

In a closed universe, with � = 0 for the moment,


(~�) =
2

1 + cos ~�
; (5)

where ~� �
p
K� is the development angle, which runs

from 0 to 2�. This means that if you live in such

a universe, you can tell what stage of evolution you

are at by measuring 
m alone. The universe evolves

from 
 = 1 at the Big Bang, to 
!1 at maximum

expansion, when �crit / H2 ! 0, and then back to


 = 1 at the Big Crunch.

One consequence of this is that the universe spends

much of its time near 
 = 1. For these � = 0 mod-

els then, an argument can be made (A. Linde, private

communication)which is a twist on the old Dicke 
at-

ness argument (Dicke 1970, Dicke & Peebles 1979). In

a closed model with � = 0, the universe has 1 < 
 < 2

for half of its total conformal time (this has to be re-

duced by another factor of 2 if you are only interested

in the expanding phase). [In terms of cosmic time

t rather than conformal time �, this is about 18%,

or half of that if the contacting phase is neglected.]

Hence it is relatively likely that we would �nd 
 not

far from 1 in a closed model. It could then be argued

that if we observe 
 � 1, there is no 
atness problem

providing that 
 > 1, and hence we probably live in a

closed universe. Of course these are just a posteriori

arguments based on one sample, and therefore may be

entirely meaningless (see e.g. Evrard & Coles 1995).

On the other hand, as is well known, the 
atness

problem is exacerbated when � 6= 0 (e.g. Martel &

Wasserman 1990), since the value of 
m deviates very

rapidly from unity near the present time, when �

dominates the expansion. Thus there is a natural-

ness problem (why is 
m � 
� � 1?) even in 
at

(i.e. 
m +
� = 1) models with � 6= 0. We shall con-

sider models with 
� > 0 despite these philosophical

problems (Weinberg 1989), taking the view that even

unlikely regions of possible parameter space deserve

some exploration.

We shall implicitly assume throughout this pa-

per that the initial spectrum of density perturba-

tions is scale invariant (in the gravitational poten-

tial, see later) and su�ciently small to not overpro-

duce 
uctuations in the CMB. Such assumptions can

be motivated by in
ationary models which result in
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tot > 1. Self-consistently we will neglect any con-

tribution to the CMB anisotropy from gravitational

waves, which should be sub-dominant for scale invari-

ant spectra. Since \standard" in
ation generically

gives 
tot = 1, but allowing for a � component (Pee-

bles 1984, Turner, Steigman & Krauss 1984), we will

assume that we can have � in some 
tot > 1 models

also.

Recently Linde (1995) has shown that it is possible

to produce in
ationary models which result in closed

universes, in which the universe is \created from noth-

ing" (Zel'dovich & Grishchuk 1984). The universe

which emerges from nothing, created by a quantum

tunneling process, is generically quite homogenous if

the tunneling probability is suppressed enough (which

selects the most symmetric path as the most proba-

ble one). The tunneling thus solves the homogeneity,

isotropy and horizon problems before \in
ation" be-

gins, allowing for a truncated period of in
ation so

as not to in
ate the curvature radius well outside the

horizon. Speci�c models which lead to closed uni-

verses can be constructed (Linde 1995) using scalar

�eld (in
aton) potentials of the form �2 exp(�2) or

by introducing non-minimal couplings of the in
aton

�eld to the curvature R. We shall assume for de�nite-

ness that inhomogeneities in the bubble which forms

our present universe by tunneling are smaller than

those produced during the subsequent period of in-


ation (Linde & Mezhlumian 1995), though this need

not necessarily be the case.

4 The Classical Tests

A thorough discussion of the classical cosmological

tests in a closed universe can be found in e.g. Sandage

(1961,1988), Gott, Park & Lee (1989), Durrer &

Kovner (1990), Bj�ornsson & Gudmundsson (1995). In

this section we remind the reader of some properties

of closed universes which will be necessary to under-

stand our later results. Helpful diagrams of a(t) are

presented by Felten & Isaacman (1986). Readers who

are unfashionable enough to be familiar with closed

models can skip this section entirely.

Except in x8, where we consider an extreme model,

we will restrict ourselves to the parameter range

(
m;
�) 2 [0; 2] � [0; 2]. We will use the notation


� � �=3H2
0 for the e�ective contribution of the

cosmological constant to 
. The general Friedmann

equation is

_a

a
= H0

p

ra�4 +
ma�3 +
Ka�2 +
�

� H0E(z) ; (6)

with 1 + z � a�1 and a0 = 1. The acceleration equa-

Figure 1: Contours of the age of the universe, in units

of the Hubble time H�1
0 . Also shown (solid line top

left) is the critical line for an in�nite age universe and

(solid line bottom right), a universe which becomes

asymptotically static. Universes above (below) these

lines have no big bang (have a big crunch). Lines

of constant q0 =
1
2

m + 
r � 
� are parallel to the

q0 = 0 line shown dotted.

tion can be written

�a

a
= �H2

0

�

m

2
a�3 +
ra

�4 �
�

�
: (7)

Since 
r is so small today, we make little error by

neglecting it for this discussion, although we always

include it in numerical calculations.

Using (6), the age integral is

H0 t(z) =

Z
1

z

dz0

(1 + z0)E(z0)
; (8)

while the conformal time integral is

H0 �(z) =

Z
1

z

dz0

E(z0)
: (9)

We show contours of H0t0 in Fig. 1. As can be

seen, increasing 
� for �xed 
m results in longer

ages. This is one of the reasons why cosmological con-

stant models are re-considered periodically (e.g. Gunn

& Tinsley 1975, Tinsley 1977, Zel'dovich & Sun-

yaev, Sandage & Tammann 1984). While the age (in
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Hubble units) increases rapidly towards the top left of

Fig. 1, we will see that much of that region of param-

eter space is ruled out by classical cosmological tests

and by lensing constraints. For a concrete feeling of

what these ages mean, we can write

t0 = 12:22Gyr (H0t0)

�
H0

80

��1
: (10)

By considering the acceleration equation (�a = 0),

we see that there is an in
exion point in the Hubble

constant evolution when

(1 + zloit)
3 =

2
m


�

: (11)

This `loitering' phase can be tuned to be arbitrarily

long, giving rise for example to the large ages men-

tioned above. For models with even modest amounts

of loitering one runs into problems with classical cos-

mological tests which measure volumes. In the limit

of extreme loitering, one even \recovers" Olber's para-

dox.

The age of the universe becomes in�nite in a model

where _a! 0 at the in
ectional point, or equivalently

where E(z) is zero at its extremum. These two con-

ditions together imply

27
2
m
� = 4(
m +
� � 1)3: (12)

This has solution


� = 1� 
m +
3

2

2=3
m ���

1� 
m �
p
1� 2
m

�1=3

+
�
1� 
m +

p
1� 2
m

�1=3�
; (13)

which can also be written in other forms (see Carroll,

Press & Turner 1992). We show this \critical line" in

the top left of Fig. 1.

These in�nite age universes are also known as

Eddington-Lemâ�tre models. The degenerate case


m = 0, 
� = 1 is the de Sitter or Steady State

model. Models near to this case have a period in

the past where _a ' 0, and are therefore known as

the \loitering", \coasting" or \hesitating" models. In

the past they have also been called Lemâ�tre mod-

els, and have long been popular as a means of im-

proving the ability for galaxies to have formed by the

present (Lemâ�tre 1931, Rawson-Harris 1969, Brecher

& Silk 1969, Tomita 1969, Heath 1977, Occhionero et

al. 1980); we shall discuss the issue of growth in loiter-

ing models further in x6. A large amount of e�ort was

Figure 2: Solid lines show contours of lensing prob-

ability, relative to the Einstein-de Sitter model for a

source at redshift 2. Dashed lines show the antipode

redshift. Both Plens(zs = 2) > 5 (probably a con-

servative limit, although estimates vary over � 2{10)

and za < 4 are ruled out. The lensing constraint is

clearly the stronger.

devoted to these Lemâ�tre models in the early days of

high redshift quasars and cosmological number counts

(e.g. Shklovski�� 1966, Kardashev 1966, McVittie &

Stabell 1967, Petrosian, Salpeter & Szekeres 1967,

Solheim 1968, Petrosian 1969, Petrosian 1974). To-

day the lack of a pile-up at any redshift rules out

our being too close to the Eddington-Lemâ�tre case.

Note that Loitering universes have divergent � as well

as t. In fact any \path length" integral diverges, since

E(z) ! 0 for an arbitrarily long range in z (e.g. the

lensing probability shown in Fig. 2).

Models with higher 
� than the critical line have

no Big Bang, i.e. they contract from in�nity, bounce,

and then go into a period of exponential expansion.

Such models therefore have a minimum value of a,

which means a maximum observable redshift. In fact

such models must have


m �
2

z2max(zmax + 3)
(14)

(Crilly 1968), and since we observe objects out to z '
5, while 
m � 0:01, such models are not allowed

(Ehlers & Rindler 1989). Hence the upper left corner
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of Fig. 1 is de�nitively ruled out.

Models which have 
� = 0 and 
m > 1 will ulti-

mately collapse. However, because of the scale-factor

dependence in the Friedmann equation, most models

with 
� > 0 will become dominated by the cosmolog-

ical constant and end up in a de Sitter phase, i.e. they

will have an eternally in
ating future. There is a small

region of parameter space for which 
m wins, and the

universe collapses before � can take over. The criti-

cal line is when _a! 0 for the (future) in
ection point

�a = 0. Hence this line is also a solution to (12).

Speci�cally the critical line for collapse is


� = 4
m

�
cos

�
1

3
cos�1

�
1�
m


m

�

+
4�

3

��3

; (15)

for 
m > 1 (Felten & Isaacman 1986). This is shown

by the solid line in the lower right of Fig. 1.

5 The CMB

The postitive curvature of a closed model can shift

features in the CMB 
uctuation power spectrum to

larger angular scales. It has been conjectured for some

time (Blanchard 1984, Durrer & Kovner 1990) that

this might lead to a reduction in the amplitude of the

anisotropies, however no explicit calculations of the

anisotropy spectrum have been done.

Early work on CMB anisotropies in non-
at geome-

tries (e.g. Wilson 1983, Tomita & Tanabe 1983, Ab-

bott & Schaefer 1986) concentrated on the large-angle

part of the spectrum. In this section we present the

�rst full calculations of the angular power spectrum

of 
uctuations in a closed universe. The formalism

employed is reviewed in the appendix, where the Ein-

stein, 
uid and Boltzmann equations for an arbitrary

Friedmann-Robertson-Walker geometry are derived.

The results were obtained by numerical solution of

these coupled equations (see HSSW, and references

therein, for more details).

Conventionally one expands the temperatures on

the sky in terms of a complete set of functions:

T (�; �) � TCMB

X
`m

a`mY`m(�; �); (16)

where the spherical harmonics Y`m are the curved sky

equivalent of Fourier modes, and TCMB is the average

temperature of the CMB, so that the a`m's are di-

mensionless. The power spectrum is then de�ned in

terms of the ensemble average of the coe�cients:

C` �
D
ja`mj2

E
: (17)

Figure 3: Contours showing the location, `peak, of the

�rst peak in the CMB anisotopy power spectrum. The

other peaks in the power spectrum form an almost

harmonic series at 2`peak, 3`peak... Note the region

in the upper right of the plot is allowed by classical

tests, but will be ruled out by the CMB if the peak is

at `peak � 200 as suggested by recent data.

The power per logarithmic interval in ` is approxi-

mately `(` + 1)C`, and this vs log ` is what we shall

refer to henceforth as the angular power spectrum.

For reference, multipole ` probes an angular scale of

� 60=` degrees (see appendix of White et al. 1994)

for all but the smallest `'s.

The most obvious feature of the angular power

spectrum is the peak that occurs around ` � 200 (see

Fig. 4). This peak represents an acoustic oscillation

that was maximally overdense at last scattering (for

a discussion see Scott & White 1995, Hu, Sugiyama

& Silk 1995). Recall that for 
tot ' 1 and z � 1 the

angle subtended by the horizon is roughly (
tot=z)
1=2

(e.g. Weinberg 1972, eq. [15.5.39]). Since features in

the angular spectrum of CMB 
uctuations are related

to the horizon-size at z ' 1100, we expect that the

whole spectrum will shift / 

�1=2
tot . So for example,

the main acoustic peak of adiabatic models will be at

`peak ' 220

�1=2
tot .

One can estimate this e�ect more precisely by cal-

culating the angular scale subtended by the \sound

horizon" at last scattering. The �rst peak appears at

6



(Hu & Sugiyama 1995)

`peak = �

����r�rs
���� ; (18)

where, using �0 � �� =
p
K (�0 � ��), we de�ne

r� �
1p
K

sin
hp

K (�0 � �LSS)
i
; (19)

the e�ective distance to the last-scattering surface.

The sound horizon is

rs(�) =

Z �

0

d� cs; (20)

where cs is the speed of sound. An analytic expres-

sion for rs can be found in Hu & Sugiyama (1995).

The higher peaks occur in an almost harmonic series,

i.e. 2`peak, 3`peak, : : :

For the case of an open universe, the sine function

of (19) is replaced by sinh, which is monotonic in its

argument. For closed models, however, there is the

possibility of the argument getting bigger than �=2,

or of being n� (i.e. an antipode) in which case r� can

have more interesting behavior.

We show in Fig. 3 the position of the �rst peak as a

function of 
m and 
�. Here we have assumed that

recombination occured at zrec = 1100 for all mod-

els, since there is little variation with cosmological

parameters. In the numerical work we have followed

the recombination process accurately (HSSW).

Notice that towards the top left corner of Fig. 3 the

peak moves from high to low ` and back repeatedly.

This is a consequence of the last scattering redshift se-

lecting the equator, the antipode, the equator and so

on. In the familiar � = 0 closed models (5), a light ray

leaving the Big Bang arrives back at the same point

at exactly the Big Crunch (� = 2�). However, this

is no longer true for � > 0 closed models, where it is

possible to have � � 2�, i.e. many antipodes rather

than just one. [This is easy to see for an extreme

loitering model, where the universe remains static

for a long period, allowing light rays to circumnav-

igate the universe many times.] The peculiar cosmo-

logical consequences of an observable antipode have

been investigated by many authors (e.g. Petrosian &

Salpeter 1968, Rowan-Robinson 1968, Baylis 1970, Bi-

raud & Mavrides 1980, Gott 1985, Gott & Rees 1987,

Gott, Park & Lee 1989, Durrer & Kovner 1990,

Bj�ornsson & Gudmundsson 1995), although the pos-

sibility now seems quite remote. The redshift of the

�rst antipode, za, was shown in Fig. 2.

The angular power spectra for a variety of models

are shown in Figs. 4{6. One can see that the posi-

tion of the peak moves according to the prescription

Figure 4: Angular power spectra of CMB anisotro-

pies for models with 
m > 1. The position of the

�rst peak moves right with decreasing 
m. We have

chosen h = 1 and 
Bh
2 = 0:0125 for simplicity. Note

the steep rise of the spectrum towards low `, which

allows us to rule out high 
 models.

outlined above. For these models we have speci�cally

assumed that h = 1 and 
B = 0:0125. The relative

heights of the peaks will depend on this choice (higher


B will enhance the �rst peak for example) but the

positions of the peaks and the large angle (small `)

anisotropy spectrum will not.

In Figs. 4{6, we have assumed that the primordial


uctuation spectrum is \scale invariant", or that the

potential 
uctuations, �, are constant per logarith-

mic interval in wavenumber (see appendix). Such a

spectrum is more physically motivated (e.g. from in-


ation) than assuming the 
uctuations are a power-

law in wavenumber, since in a non-
at geometry there

is an important scale in the problem: the curvature

scale. Moreover, such a primordial spectrum leads

to smaller deviations from 
at CMB spectra than

the corresponding power-law. We show the primor-

dial spectra vs. wavenumber in Fig. 7, where one can

see that the large scale power is reduced (over the

power-law case) in a closed model and enhanced in

an open model, counteracting the geometric tenden-

cies to have more (less) large angle power in closed

(open) models. The apparent divergence of Pprim at

small wavenumbers in the open model is counteracted
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Figure 5: Angular power spectra for models with


tot = 2 and 
� � 0. These models rise more

steeply towards low ` than the 
� = 0 curves, show-

ing that for constraining 
tot, the most conservative

constraints are with 
� = 0.

by the volume element, leading of course to �nite 
uc-

tuations.

In the top right of Fig. 3 the peak location is

`peak = 0, which is just where the last scattering sur-

face lies at the antipode. It had been conjectured

that this would be a way to suppress CMB anisotro-

pies (Durrer & Kovner 1990). We show in Fig. 6,

the angular power spectrum taking into account the

�nite duration of last scattering, and the non-trivial

gravitational e�ects on the spectrum, for a model with

`peak = 0 according to (18). Notice that the spectrum

is featureless, showing only the \damping" tail of the

anisotropies. However, it is non-zero because a �-

nite width last scattering surface cannot project onto

quite the whole sky, and furthermore there are still

gravitational interactions on the photons. So we still

see some anisotropies, but the acoustic peaks have

all been magni�ed to ultra-large angular scales (very

small `).

We also show on Fig. 6 two models where the last

scattering epoch occurs slightly before and slightly

after the antipodal redshift. Note that as we shift

the antipode through z = 1100, the structure in the

spectrum moves to ` � 0 and back out to �nite `

again. For all of these models the predicted large an-

Figure 6: The solid line shows the angular power spec-

trum for a model with antipodal redshift at the last

scattering surface: za = zrec (speci�cally: 
m = 0:5;


� = 1:43). Note the absence of any structure in the

spectrum. With za = zrec all structure is projected to

` = 0, and we see only the damping tail plus some in-

tegrated Sachs-Wolfe e�ects at higher `. Also shown

are two models where the peak is moved towards ` = 0

(
� = 1:35; dotted) and where it has moved through

` = 0 back to higher ` (
� = 1:5; dashed).

gle anisotropy (e.g. C2) for �xed large-scale matter


uctuations is within a factor of 10 (in power, so
p
10

in temperature) of the standard cold dark matter re-

sult. Thus, though the power falls o� rapidly with

`, the suppression in power is not as extreme as one

could naively imagine.

From Figs. 4{5 we see that on large scales (small

`) the spectra are steeply falling functions of `. This

was �rst noted by Abbott & Schaefer (1986), and is

due to the decay of the gravitational potential at late

times. A photon falling into a potential well which

is decaying with time, has its in-fall blueshift only

partly cancelled by its climb-out redshift. The net

anisotropy builds up along the path, leading to larger

temperature 
uctuations on large scales (or long char-

acteristic times where the e�ect has the most time

to operate). This is known as the (late) integrated

Sachs-Wolfe e�ect (Sachs & Wolfe 1967; see White et

al. 1994, Hu, Sugiyama& Silk 1995, Hu & White 1995

for more discussion). Because this is the dominant

8



Figure 7: The primordial power spectrum for con-

stant gravitational potential 
uctuations, �, per log-

arithmic interval in wavenumber, also called a \scale

invariant" spectrum. The points on the 
m = 1:5

curve indicate the quantized values of wavenumber,

� = 3; 4; 5 : : :, in a closed universe. Note that only

the 
m = 1 model looks like a power law when plot-

ted in this way, and that the behaviour for 
m > 1

continues from the 
m < 1 region as expected.

e�ect at large scales, and does not appear in a uni-

verse with critical matter density, it makes scaling ar-

guments di�cult without accurate calculation of the

anisotropies, evolved to the present epoch (c.f. Bunn,

Scott & White 1995, White & Bunn 1995, Sugiyama

1995, Stompor, Gorski & Banday 1995).

As can be seen from Fig. 3, the location of the

�rst peak in the power spectrum can allow one to

probe a large region of the 
m{
� plane. Data on

anisotropies on degree scales are not yet up to the

task of strongly constraining this position (Scott, Silk

& White 1995), however we can still place new con-

straints on 
tot from the large-angle 
uctuations mea-

sured by the COBE satellite. We shall return to this

in x7.
If however you believe in the existence of an acous-

tic peak in the anisotropy data, then this does place a

strong constraint on closed models. It seems unlikely

that the current data can be �t without some sort of

peak at ` � 100{200, unless several experiments have

not been measuring primordial anisotropies. Taking

the optimistic view that the data will indicate this

more de�nitively in the near future, we may soon have

a constraint that, for example, `peak > 100. From

Fig. 3 we can see that this will rule out a substantial

region of parameter space. We shall see in x7 that

this region is probably already ruled out by COBE

constraints alone. However, a tight constraint from

the peak position would be insensitive to details of

the primordial power spectrum around the curvature

scale, where it is perhaps most dependent on speci�c

in
ationary models. Eventually we would expect an

accurate measurement of the anisotropy spectrum to

yield an extremely precise determination of 
tot.

6 Relation to Large Scale Structure

In Fig. 8 we show the relative normalization of the

large-scale matter power spectrum and large-angle

CMB angular power spectrum for a variety of models.

Since much of the large angle CMB spectrum comes

from the integrated Sachs-Wolfe e�ect, this normal-

ization ratio cannot be obtained from simple growth

factor arguments alone. We have calculated numer-

ically the ratio of B to C10 where C10 is as above,

while

B � P (�)

Pprim(�)

����
�=3

(21)

is the primordial power spectrum amplitude. We have

de�ned this as the analogue of the quantity B some-

times used to normalize the CDM power spectrum for


m = 1 (e.g. Bunn, Scott & White 1995). There B

is de�ned through P (k) = B kT 2(k) (for an n = 1

spectrum) where T (k) is the transfer function. Using

T (k ! 0) = 1 we can write B � limk!0P (k)=k,

from which (21) follows naturally, once you notice

that a closed model has wavenumber �
p
K quantized

in units of the curvature scale (see appendix for de-

tails). Since the � = 1 and � = 2 modes are pure

gauge modes (Abbott & Schaefer 1986) the smallest

wavenumber (largest physical scale) is � = 3. We

have chosen to use C10, rather than a lower `, to min-

imize the primordial power spectrum dependence and

reduce the contribution from the integrated Sachs-

Wolfe e�ect. For ` = 10 we are still very insensitive

to details of cosmological processing and parameters

other than 
.

For the matter power spectrum we also focus on

the largest scales, to avoid complications due to the

variable redshift of matter{radiation equality, which

a�ects the amplitude of the 
uctuations on smaller

scales. As Fig. 8 shows, the matter{radiation normal-

ization is a smooth function of 
tot which depends

upon the growth of 
uctuations between z = 1100

9



Figure 8: The relative normalization of the large-

angle CMB and large-scale matter power spectra in

closed models (see text for details). B is a mea-

sure of the large-scale normalization of the matter

power spectrum, while C10 measures CMB 
uctua-

tions on scales smaller than the curvature scale but

large enough to probe mostly potential 
uctuations.

and the present. For those cases we considered, which

cover some extreme universes, the ratio of the mat-

ter to radiation power spectra varies by a factor of

� 10 (cf. Sahni, Feldman & Stebbins 1992, and many

earlier discussions of exponential growth during a loi-

tering phase). The ratio for 
� = 0 and 1 � 
m � 2

is well �t by

B

C10

= 320 exp (�1:16
m) ; (22)

in units of (105 h�1Mpc)3. The relation between the

CMB and the small-scale matter 
uctuations is given

by Fig. 8 and the transfer function T (k), to which we

now turn.

For 
at and open models it is known that the trans-

fer function, T (k), relating the initial and �nal power

spectra is a function simply of the redshift of matter-

radiation equality. Often one uses the �tting function

(Efstathiou 1990)

T (k) =
h
1 +

n
ak + (bk)3=2 + (ck)2

o�i�1=�
; (23)

with parameters a = (6:4=�)Mpc, b = (3:0=�)Mpc,

c = (1:7=�)Mpc, � = 1:13 and � ' 
mh. Notice that

Figure 9: The matter transfer function. The solid

lines are from the �tting function described in the

text, while the symbols show the results of explicit

calculations. Apart from a small discrepancy near

the turn-over, which is caused mostly by the baryon

content assumed for our models, the curves are a good

�t to the numerical calculation.

perturbations on small scales, speci�cally those which

entered the horizon when the universe was radiation

dominated, have had their growth suppressed relative

to those on larger scales.

We show in Fig. 9 that (23) is a good �t to the

closed models as well. Thus, even though the growth

rate can be \complicated" by the presence of loitering

phases, T (k) today is still �t by a 1 parameter fam-

ily of curves. It is true that there are modes which

can grow quickly during the loitering phase, when

matter and cosmological constant conspire to keep

the universe almost static as in the original analysis

of (Jeans 1928). However, they will also have their

growth retarded when the cosmological constant be-

comes dominant at later times and the universe be-

gins to expand exponentially. These two e�ects ap-

proximately cancel, leading to 
uctuation amplitudes

vs. wavenumber that would be predicted fromanalogy

with the open or 
at models. [A similar conclusion

for the large-scale (small k) modes was reached by

Durrer & Kovner (1990).]

Using the large-scale normalizations of Fig. 8 and

(23) one can calculate the moments of the power spec-
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trum for whatever parameters (
m, 
�, h) are of in-

terest. The \window functions" for moments such

as �8, Vrms, di�er from those in a 
at universe (see

e.g. Wilson 1983) by geometric factors related to the

3-volume of the metric (i.e. r! sin�).

7 Limits on 
 from the CMB

There are already some weak constraints on 
at �-

dominated models from the shape of the large-angle

power spectrum, amounting to 
� < 0:8{0.9 (Bunn

& Sugiyama 1995, Stompor, Gorski & Banday 1995,

White & Bunn 1995). We can similarly use the 2-year

COBE data to put a limit on 
tot from the shape of

the C`'s at small `. This is quite insensitive to the

cosmological parameters other than 
tot, making the

limit reasonably robust.

First note from Fig. 5 that for �xed 
tot the spec-

tra with 
� > 0 fall more steeply than with 
� = 0.

This is because there will always be more ISW ef-

fect in a � model (Kofman & Starobinsky 1985), at

redshifts where the cosmological constant starts to

dominate: z� � 
�(
tot � 1)�1. Since the COBE

data prefer spectra which are approximately \
at",

or C�1
` / `(` + 1), it follows that for �xed 
tot mod-

els with 
� > 0 will be less likely than the model

with 
� = 0. Also models with initial power spec-

tra which have constant power in gravitational po-

tential per logarithmic interval in wavenumber (scale

invariant spectra) are \
atter" than models whose

power spectra are proportional to wavenumber (see

appendix and Fig. 7), and thus will be preferred by

the COBE data.

In Fig. 10 we show the likelihood function vs. 
m,

integrated or marginalized over the normalization, for

models with scale invariant spectra and 
� = 0, �t

to the COBE data. The likelihood function is nor-

malized so that a \
at" spectrum, C�1
` / `(` + 1),

has L = 1, and we have included a \prior" that


m > 0:1 (i.e. we set L = 0 for 
m � 0:1). The

likelihood function for 
m < 1 comes from (G�orski et

al. 1995) rescaled to the normalization of (White &

Bunn 1995). The dashed line shows the cumulative

likelihood, from which we estimate the 95% CL up-

per limit on 
m to be 
m � 1:5. Any model which

has 
tot > 1:5 will be less likely than the model with


m = 1:5 and 
� = 0. If we take the upper limit

from the cumulative likelihood to mean 
m = 1:5 is

statistically inadmissable at the 95% CL, we obtain

the limit 
tot � 1:5.

This limit on 
tot compares well with other limits

on this quantity (Loh & Spillar 1986), but it is de-

pendent on the initial power spectrum assumed. If

Figure 10: The likelihood function (solid) vs. 
m, for

models with scale invariant primordial spectra and


� = 0, �t to the COBE 2-year data and marginalized

with respect to normalization. We have set L(
m) =

0 for 
m � 0:1 (our \prior"). The dashed line shows

the cumulative likelihood, and the arrow indicates the

95% CL upper limit on 
m. As discussed in the text

this is a conservative upper limit on 
tot. The results

for 
m < 1 come from Gorski et al. (1995).

the primordial power spectrum is \redder" than scale

invariant (e.g. n < 1) then our limit is strengthened.

However should a particular in
ationary model pre-

dict n > 1 our limit would be weakened. A less model

dependent limit could be placed on 
tot from the po-

sition of the peaks in the angular power spectrum,

when the data becomes less ambiguous.

8 An Extreme Model

As an example of how non-standard models can

sometimes be a surprisingly good �t to data, (Har-

rison 1993) considered a model with 
m = 10 and

H0 = 10 kms�1Mpc�1. The idea was that the Hub-

ble 
ow in such a universe could be so chaotic that

our local estimates of H0 could be far from the global

value. With h = 0:1 the model is very old, while

with 
m = 10 it is very small and has almost �nished

its expansion and begun its (re)collapse. While we

consider this model to be far from acceptable when

examined in detail, we will use it here as an example

11



Figure 11: The angular power spectrum for the model

of Harrison (1993) with 
m = 10 and h = 0:1 as-

suming a scale invariant primordial spectrum and


Bh
2 = 0:0125, 
� = 0. Notice the peak in the

power spectrum is at ` ' 100, while the large-angle

structure of the power spectrum is wildly inconsistent

with the COBE data.

of an extreme closed model. Harrison presents some

scaling arguments for how structure formation and

microwave background anisotropies would work out

in such a model. Here we calculate P (k) and the C`

spectrum in detail.

We shall assume that 
B = 1:25 so that the model

agrees roughly with Big Bang Nucleosynthesis deter-

minations of 
Bh
2, though we can relax this assump-

tion without changing our principle results. Since we

know observationally that �T=T � 10�5 on large

scales (Smoot et al. 1992) we can have con�dence that

our calculation of the angular power spectrum in lin-

ear perturbation theory will be accurate even in this

extreme model.

The resulting anisotropy spectrum is presented in

Fig. 11 for a scale invariant primordial power spec-

trum. One can see that the �rst peak occurs at

` ' 100 (cf. Fig. 3; the height of the peak will depend

on our assumption of the baryon content, but not its

position) and at large angles it is wildly inconsistent

with COBE. In linear theory the large-scale density


uctuation to large angle CMB 
uctuation ratio is

B=C10 � 10 (105 h�1Mpc)3. Thus, normalized to

COBE, the large scale power in this model will be

less than in e.g. standard CDM.

Once again the linear theory transfer function from

explicit evolution of the density perturbations agrees

well with (23). We �nd slightly less small scale

power in the numerical calculation than for (23) with

� ' 
mh = 1, but only at the � 10% level for

k � 0:2h=Mpc. A model with � ' 1 has much more

small scale power than a standard CDM model, lead-

ing to earlier non-linearity at small scales. It would

probably be in con
ict with existing measurements of

the large-scale matter power spectrum, which appear

to require � � 0:25 (see e.g. Peacock & Dodds 1994).

If we had decided to have 
B = 
m = 10 (in vi-

olation of nucleosynthesis bounds on 
B) then the

transfer function would damp much more strongly at

high-k than for the model with 90% dark matter, and

would show oscillations similar to those which appear

in the CMB anisotropy power spectrum.

9 Other Limits

The observational limits on 
� have been reviewed

by (Carroll, Press & Turner 1992), so in this section

we simply make a few additional remarks, referring

the reader to that work for more details. Existing

and future limits that are comparable to those from

the CMB are discussed below.

Galaxy counts once seemed like a good way of mea-

suring 
� through the change in the volume element

(e.g. Loh & Spillar 1986), but separating the e�ects of

geometry and evolution has proven to be the downfall

of such methods (Gardner, Cowie & Wainscoat 1993).

Nevertheless, the results from number counts have

been interpreted as implying that 
m � 1:5 (Loh &

Spillar 1986), which is similar to our limit.

As pointed out in Gott, Park & Lee (1989), the

existence of \normal looking" quasars at z � 4

puts a lower limit on the redshift of the antipode:p
K [�0 � �(za)] = �. The contours of antipodal red-

shift are shown in Fig. 2, where we see that za � 4

rules out a small region in the top left of the plot. As

discused in x5 the presence of structure in the CMB

anisotropy spectrum would put a much stronger limit

on the redshift of the antipode: za � 1100. The pos-

sible loop hole in this argument, namely that the last

scattering surface lies beyond the antipode so that

the structure \reappears" at ` � 0, will be seen to be

ruled out by gravitational lensing constraints. How-

ever we will see that these constraints are in any case

stronger than the lower limits on za.

In a universe which becomes 
� dominated at some

redshift, z�, the expansion rate is dramatically di�er-
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ent before and after z�. Such a change can manifest

itself as a \break" in the number of Ly� absorbers

per unit redshift (Fukugita & Lahav 1991, Turner &

Ikeuchi 1992). Future surveys of low-z Ly� clouds

may be able to put strong constraints on (or prefer)


� models, but at present the situation is unclear.

Another sensitive probe of 
� in the future may

come from separations of close quasar pairs (Phillipps

1994), as measured for example through the clustering

properties of quasars in redshift surveys such as the

Sloane Digital Sky Survey or the AAT 2dF. Here the

idea is that the underlying correlation properties of

quasars are expected to be isotropic, but when mea-

sured in terms of angular position and redshift one

expects distortions (e.g. in the familiar � � � plane

for various redshift shells). The comoving separation

of a pair of objects at z��z and separated on the sky

by �� is (Phillipps 1994)

r2 = g2(�z)2 + d2M(��)2; (24)

where dM (z) is the \proper motion" distance (Wein-

berg 1972) and

g(z) �
�
1� [
tot � 1]H2

0d
2
M

��1=2 d dM
dz

: (25)

The ratio of dM to its derivative, g, at high redshift,

which is a measure of the distortion of the isotropic

correlation function, is strongly dependant on the cos-

mology assumed. With 105 quasars this method could

result in extremely strong constraints on (or a detec-

tion of) �, but awaits data from large surveys.

The strongest limits on 
� to date come from the

rarity of gravitational lensing events (e.g. Fukugita,

Futamase & Kasai 1990, Turner 1990, Fukugita et

al. 1992, Kochanek 1993, Carroll, Press & Turner 1992).

In a universe with a loitering phase the path length to

any given redshift is dramatically enhanced, and the

expected number of gravitational lenses along any line

of sight (assuming a �xed density of objects) far ex-

ceeds the observed number. De�ne Plens(zs) as the

probability of lensing a source at redshift zs relative

to that in an 
m = 1 universe (Carroll, Press &

Turner 1992, Fukugita et al. 1992). The current sur-

veys require Plens(zs ' 2) � 2{10 depending on the

detailed assumptions and data used; we shall take

Plens < 5 to be a conservative limit. Contours of

Plens(zs = 2) are shown in Fig. 2.

Since the lensing limit is currently more stringent

than all of the other limits, the allowed region of pa-

rameter space becomes that to the lower right of some

Plens = 2{10 line, and lower left of 
tot = 1:5. Less

model dependent bounds on 
tot could come from the

Figure 12: Constaints in the 
m{
� plane. The un-

shaded region is currently allowed by fairly conserva-

tive constraints. The three sides of the region come

from lower limits on 
m, upper limits on Plens and

an upper limit on 
tot from large-angle CMB aniso-

tropies. We also show two age lines with H0t0 = 2=3

and H0t0 = 1. Note that a fairly wide range of closed

models have not yet been de�nitively ruled out, and

that some of them are relatively old.

location of the peak in the anisotropy spectrum, once

the degree scale data becomes more robust. Taking

Plens � 5 it is still possible to have H0t0 ' 1 for a

small region of parameter space with 
m � 0:5. The

lensing and CMB constraints are acting in di�erent

directions, thus an \improvement" in either will help

to squeeze the allowed region in parameter space.

We show the currently allowed region of parameter

space in Fig. 12, using dynamical, lensing and CMB

constraints. We have chosen to be reasonably conser-

vative in each case. The allowed region still contains

a variety of closed models. We have indicated two

representative age lines on this plot also. Note that

for H0 = 80 kms�1Mpc�1, the H0t0 = 1 line has an

age of 12:2Gyr, while the H0t0 = 2=3 line has an age

of only 8:2Gyr. Since dynamical estimates tend to

give values like 
0 � 0:3, it is perhaps tempting to

speculate that the best bet for a model which is old

enough, may be one with 
m + 
� > 1. However, it

is also clear from the �gure that the age gain over a


tot = 1 model is not very great.
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Figure 13: The position of the �rst peak in the CMB

power spectrum, `peak, as a function of 
m forH0t0 =

1 (solid), 1:1 (dotted), 0:9 (dashed). `peak is a rapidly

varying function of 
m along lines of constant H0t0.

In the future we expect strong constraints on H0t0
from a combination of large-scale structure (measur-

ing 
m) and the CMB. We show an example of this

in Fig. 13, where we have plotted the position of the

�rst peak in the CMB power spectrum as a function

of 
m, for three values of H0t0. Note that the posi-

tion of the peak in the experimentally favoured region

is a rapidly varying function of 
m.

In closing we note that large scale dynamics are

mostly insensitive to � (see e.g. Martel & Wasser-

man 1990, Martel 1991, Lahav et al. 1991). So, for

example, the comparison of density and velocity �elds

measures the function 
0:6
m =b (where b is the \bias"

or amplitude of the matter power spectrum) indepen-

dently of whether the model contains a contribution

from � which makes it 
at. In the limit that the de-

pendence of the perturbation growth rate is a weak

function of 
�, these conclusions apply equally well

in closed models. Dynamical tests thus generally tend

to measure 
m rather than, say, 
tot. In marked con-

trast the location of the peaks in the CMB anisotropy

angular power spectrum depends essentially only on

the geometry, and thus measures both 
m and 
�,

largely through the quantity 
tot. This makes the

combination of the two an extremely powerful con-

straint on cosmological models.

10 Conclusions

We have examined CMB anisotropies and large-

scale structure formation in models with positive spa-

tial curvature, i.e. closed models. We presented for

the �rst time the angular power spectrum of the an-

isotropies over a range of angular scales. The relative

normalization of the CMB anisotropies and the large-

scale matter power spectrum show behaviour which

is a simple continuation from the 
at case.

For scale-invariant potential 
uctuations, the an-

isotropies are steeply rising towards low multipoles.

With � = 0 the position of the main acoustic peak

scales approximately as `peak / 

�1=2
tot as expected.

There is a richer structure (shown in Fig. 3) when

� 6= 0. It is possible in principle to have last-

scattering occur at the antipode, in which case the

spectrum looks very di�erent. However, this case is

unlikely to occur for our observed universe.

As a particular example we have calculated the

anisotropy spectrum for the model postulated by Har-

rison (1993), which has 
m = 10 and h = 0:1. Since

the CMB 
uctuations are measured to be well in the

linear regime, the chaotic behaviour envisioned by

Harrison to account for our \misinterpretation" of the

current data is hardly relevant, so one can say with

con�dence that the model is in con
ict with current

CMB and large-scale structure data.

Extending the likelihood function vs. 
 from the

COBE 2-year data to 
 � 1 we obtain a 95% CL

upper limit of 
tot � 1:5 for primordial spectra with

n � 1, which compares favorably with existing limits

on 
. This limit is dependent on our assumption

of a primordial power spectrum and the absence of

tensor modes (which are self-consistent), however a

more secure bound could come from the position of

the �rst peak in the angular power spectrum as shown

in Fig. 3.

The low number of gravitationally lensed quasars is

currently the tightest constraint on the value of 
�.

However, limits from large-angle CMB anisotropies,

as well as the position of the acoustic peak, show

great promise for the near future. It is also impor-

tant to note that these e�ects can constrain di�erent

combinations of 
m and 
� than lensing and large-

scale structure (which measures largely 
m). If we

were able to measure 
m accurately (from the mat-

ter power spectrum for example), then for 
m < 0:5

an \old" universe has a strong dependence of `peak on


m (see Fig. 13). Thus it should be easy to measure

either 
� orH0t0 from the peak location in such mod-

els, given the other. This is just one consequence of

the age contour lines running roughly perpendicular
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to `peak contour lines in the (
m;
�) plane.

There is still a small region of parameter space

which is allowed by cosmological constraints, and

which lies in the 
tot > 1 part which is oftenneglected

(Fig. 12). For some smaller part of this region the age

of the universe is also favourable for the high values of

the Hubble constant which seem most commonly to

have been discussed in the last few years. With this

motivation, but largely because they are still viable

today, we believe these closed models are worthy of

examination.

We wish to thank Wayne Hu for many useful con-

versations and Ted Bunn for help with the COBE

data.
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A Perturbations in Non-Flat Geometries

In this appendix we provide a derivation of the Einstein, 
uid and Boltzmann equations in a Friedmann-
Robertson-Walker universe with arbitrary spatial curvature, paying particular attention to the case of a closed
universe (spherical geometry). Our derivation is based upon the pioneering paper of Wilson (1983). We use his
formalism, but extended and with a more numerically stable normalization scheme (from Abbott & Schaefer 1986,
who presented the �rst calculation of the large angle anisotropies in a closed universe). This normalization is also
used by Hu & Sugiyama (1995). We have also drawn on the work of Gouda, Sugiyama & Sasaki (1991) which
provides some (but not all) of the steps missing from both Wilson (1983) and Wilson's (1981) Ph.D. thesis. Our
intention is to provide a complete derivation of the equations which are needed to evolve cosmological perturbations
in a curved background.

In order to keep this appendix to a manageable size, we assume that the reader is familiar with the derivation
and implimentation of the 
uid and Boltzmann equations in a 
at universe. An excellent reference for this case
is Ma & Bertschinger (1995), and our notation is based partly upon that work. Further details can be found in
HSSW and references therein. We will only concern ourselves with scalar perturbations, although following Abbott
& Schaefer (1986) it would be relatively straightforward to generalize to vectors or tensors. An analytic treatment
of the anisotropies induced by tensors has been presented by Allen, Caldwell & Koranda (1995).

A.1 The Metric

We de�ne our metric to be

ds2 = �dt2 + a2(t) (
ij + hij) dx
idxj (26)

= a2(t)
�
�d�2 + (
ij + hij) dx

idxj
�
; (27)

where 
ij is a 3-metric with constant curvature K = H2
0(
tot�1), � �

R
dt=a(t) is the conformal time and hij is the

metric perturbation in synchronous gauge (Lifshitz 1946, Landau & Lifshitz 1975,x97,Weinberg 1972, Peebles 1980,
Peebles 1993). In our notation latin indices run over spatial components from 1; 2; 3 and greek indices over space
and (conformal) time components 0; 1; 2; 3.

By de�nition, the geodesic equations are those which extremize the Lagrangian, L = 1
2
g�� _x

� _x� (where an overdot
here only represents a derivative with respect to some parameter, �, along the path). Equating the Euler-Lagrange
equations for L with the other form of the geodesic equation,

d2x�

d�2
+ ����

dx�

d�

dx�

d�
= 0 ; (28)

we can read o� the connection coe�cients:

�000 = (_a=a)

�0ij = (_a=a) (
ij + hij) +
1
2
_hij

�
j
0i = (_a=a)�

j
i +

1
2
_h
j
i

�
j
ik = (3)�

j
ik +

1
2

�
(h

j
i )jk + (h

j
k)ji + (hik)

jj
�
:

(29)

Here (3)� is the connection for the spatial metric 
ij of constant curvature, and a subscript ji means a covariant
derivative wth respect to this metric. This is distinguished from ;� which refers to a covariant derivative with
respect to the full 4-dimensional metric. An overdot means d=d� henceforth.

All that we will need explicitly from 
ij is the curvature tensor

(3)Rm
ijk = K

�
�mj 
ik � �mk 
ij

�
; (30)

which allows us to commute covariant derivatives, e.g. in the simplest case Vijjk � Vijkj =
(3)Rm

ijkVm. However, we

shall be concerned with commuting pairs of indices among arbitrarily many:

Vji1i2���i`ij���k =
�
Vji1i2���i`i

�
jj���k

=

 
Vji1i2���ii` +

`�1X
n=1

(3)R
jn
ini`i

Vji1���jn���i`�1

!
jj���k

: (31)
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Note that indices after the pair to be commuted go along for the ride.

For deriving the �eld equations we will also need the Ricci tensor:

R�� = (�


��);
 � (�
�
);� + �
�
�

�
�� � �



���

�
�
 (32)

A.2 Basis Functions

In linear theory, modes with di�erent ~k evolve independently, so working in a wavenumber basis is advantageous.
Although in a non-
at universe the Fourier transform is not easily de�ned, we can still work in terms of the

eigenfunctions of the Laplacian operator, which we shall call Q(~x). This is just ei
~k�~x in 
at space; a detailed

discussion of representations and spectra of Q(x) can be found in Abbott & Schaefer (1986). We will only need
the de�ning relation:

r2Q � 
ijQjij = �k2Q
= �(�2 � 1)KQ: (33)

The last equality de�nes � for 
tot > 1. In this case the spectrum of these functions are the integers � = 3; 4; 5 : : :,
since the spatial hypersurfaces have a spherical geometry (cf. Fourier series on a circle). The modes � = 1; 2
correspond to pure gauge modes (Abbott & Schaefer 1986), and are not included in the spectrum.

We can expand our perturbed quantities in terms of these functions and their covariant derivatives. For example
the metric perturbation can be written

hij(~x; �) =
1

3
[h+H]Q
ij + k�2HQjij; (34)

where h is the trace of the perturbation and H is the traceless part.

A.3 Einstein and Fluid Equations

The evolution equations for the background metric and its perturbation follow from Einstein's equations, which
can be written

R�� = 8�G

�
T�� �

1

2
g��T

�
� 8�GeT��; (35)

where T�� is the stress-energy tensor and T is its trace. The background stress-energy tensor is of the perfect 
uid
form (with density �� and pressure �p) plus a perturbation:

T 0
0 = ��� (1 +Q�); (36)

T
j
0 = � (�� + �p) v(ik)�1Qjj; (37)

T i
j = (�p+ Q[�p]) �ij +�i

j ; (38)

with �i
j the anisotropic stress (�

i
i = 0), which we will not need explicitly.

The required evolution equations come from the time-time and time-space Einstein's equations. The unperturbed
equations are the familiar Friedmann-Robertson-Walker equations for the evolution of the scale factor a(�). To
�rst order in the perturbation (�rst-order quantities denoted by the pre-superscript (1)):

(1)R00 = �1

2

�
�h+

_a

a
_h

�
Q (39)

and (1) eT00 =
1

2
a2 (�� � + 3[�p])Q; (40)

so that
d

d�

�
a _h
�
= 8�Ga3 �� (1 + 3w) �; (41)

with w = �p=��. The time-space equation involves

2� (1)R0i =
�
_hij

�
jj
� Tr

�
_h
�
ji

= � _hQji +

�
1

3

�
_h+ _H

�
Qji + k�2 _H(Q

jj

ji
)jj

�

= �2

3

�
_h+ _Hk�2(k2 � 3K)

�
Qji: (42)
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In the last line we have made use of the following identity (coming from equation 31):


jkQjijk = 
jkQjjik

= 
jk
�
Qjjki +

(3)Rm
jikQjm

�
= �k2Qji + 
jkK (�mi 
jk � �mk 
ji)Qjm

=
�
�k2 + 2K

�
Qji: (43)

The stress energy tensor is
(1) eT0i = �a2 (�� + �p) v (ik)�1Qji: (44)

If we rede�ne H to absorb the factor (1� 3K=k2) in (42), then the evolution equation is

k2

3

�
_h+ _H

�
= �8�Ga2�� (1 + w) �; (45)

where � = i~k � ~v.
The equations for the non-relativistic 
uids (CDM and baryons) can be simply obtained from the conservation

equation for the stress-energy tensor: T
�
�;� = 0, or

1p�g
�p
�gT �

�

�
;�
=

1

2
g�
;�T

�
 : (46)

We will show later that for 
uids without anisotropic stress the 
uid equations are unchanged from their 
at
space counterparts. Explicit evaluation of these equations in the K = 0, �p = 0 case is straightforward. Usingp�g = a4(1 + 1

2
h), we �nd for the � = 0 equation

_� = �
�
� +

1

2
_h

�
; (47)

while with � = i we obtain

_� = � _a

a
�: (48)

A.4 Legendre Tensors

The radiation distribution function will exhibit an azimuthal symmetry, so we would like to use an expanion
in Legendre polynomials. To avoid introducing a �xed basis, it is convenient to de�ne the following functions of
position ~x and an angle n̂,

P(0) = 1;

P i
(1) = ni;

P
ij

(2)
=

1

2

�
3ninj � 
ij

�
P
ijk

(3)
=

1

2

�
5ninjnk � 3
(ijnk)

�
;

(2`+ 1)n(i1P
i2���i`i`+1)

(`)
= ` 
(i1i2P

i3���i`+1)

(`�1)
+ (` + 1)P

i1���i`+1
(`+1)

; (49)

where parentheses denote symmetrization in the indices. Each P(`) is a function of position through 
ij only (so its

covariant derivative vanishes), and is explicitly symmetric. As can be seen from the de�nition, P(`) is a \Legendre
polynomial with dangling indices", i.e. rather than a polynomial of a dot-product of vectors, the tensor has a
free index for each power of the vector argument. Later this will allow us to perform an expansion in Legendre
polynomials by contracting tensors in an explicitly coordinate free way. Clearly

k̂i1 : : : k̂i` P
i1���i`
(`)

= P`(k̂ � n̂) (50)

for any unit vector k̂.
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Some properties of P(`) which will be useful are


ijP
ij���k

(`)
= 0; (51)

niP
ij���k

(`+1)
= P

j���k

(`)
; (52)

which are now proven by induction. Both are true for ` = 0; 1; 2; 3 by inspection.

Assuming (52) holds true for all P(i) with i < ` + 1, we have

ni

(ii1P

i2���i`)

(`�1)
=

2

`(` + 1)

�
`(` � 1)

2

(i1i2P

i3���i`)

(`�2)
+ ` n(i1P

i2���i`)

(`�1)

�

=
1

` + 1

hn
(2` � 1)n(i1P

i2���i`)

(`�1)
� `P i1���i`

(`)

o
+ 2n(i1P

i2���i`)

(`�1)

i
=

1

` + 1

h
(2`+ 1)n(i1P

i2���i`)

(`�1)
� `P i1���i`

(`)

i
(53)

where the factors `(` � 1)=2 and ` are the number of terms in the symmetric products. Also

(2` + 1)nin
(iP

i1���i`)

(`)
=

2`+ 1

` + 1

h
P i1���i`
(`)

+ `n(i1P
i2���i`)

(`�1)

i
: (54)

Putting these together gives equation (52).

Similarly assuming (51) holds true for all P(i) with i < ` + 1, we have

(` + 1)
i1i2P
i1���i`+1
(`+1)

= (2` + 1)
i1i2n
(i1P

i2���i`+1)

(`)
� ` 
i1i2


(i1i2P
i3���i`+1)

(`�1)

=
(2` + 1)

(`+ 1)
2P

i3���i`+1
(`�1)

� 2

`(` + 1)
`
�
3P

i3���i`+1
(`�1)

+ 2(`� 1)P
i3���i`+1
(`�1)

�

=
1

` + 1
P
i3���i`+1
(`�1)

[2(2`+ 1)� 2(2`+ 1)]

= 0; (55)

where the factors of ` + 1 and `(` + 1)=2 are the number of terms in the symmetric products.

A.5 Recurrence Relation

Later we will expand our radiation distribution function in terms of mode functions

G` � (�k)�` Qji1���i`(~x;
~k)P i1���i`

(`)
(~x; n̂): (56)

The interesting property of these functions for our purpose is the recurrence relation that they satisfy,

niG`ji = k

�
`

2` + 1
�2`G`�1 �

`+ 1

2` + 1
G`+1

�
; (57)

where

�20 � 1

�2` � 1� (`2 � 1)K=k2 ` � 1: (58)

Notice that in terms of � we can write �` =
p
(�2 � `2)=(�2 � 1) for ` � 1.

The proof of this relation is simply an exercise in combinatorics and commuting covariant derivatives using (31).
Let us �rst prove some identities which will be crucial. The simplest is

Qji1���i`i n
iP i1���i`

(`)
= Qji1���i`i n

(iP
i1���i`)

(`)
+

1

3
`(` � 1)K(�k)`�1G`�1 ; (59)
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which comes from commuting the i to all `+ 1 possible positions (recall that P(`) is symmetric in all indices). An

index swap of i in the (n + 1)th place with in in the nth place gives (n � 1) factors of KG`�1. The number of
factors obtained when symmetrizing niP(`) is thus

`�1X
j=0

j(j + 1) =
1

3
`(`2 � 1) ; (60)

which when divided by the `+ 1 terms gives the relation above.

A more taxing but just as conceptually simple identity is

Qji1���i`i

(ii1P

i2���i`)

(`�1)
=

2

`(` + 1)

�
�k2 `(` + 1)

2
+

(`+ 2)!

6(` � 2)!
K

�
(�k)`�1G`�1 ; (61)

which comes from looking at contractions of the two indices, i and i`, in arbitrary positions on Qj with 

ii`P

i1���i`�1
(`�1)

.

If the indices are in the �rst two positions then one obtains (�k2Q)ji1���i`�1 from the eigenvalue equation for Q.
Thus the problem is: how many factors of K does commuting indices introduce before these two indices are in the
�rst two positions? If we decide that i` will always come before i (otherwise use the symmetry of 
ii` and relabel
these indices) then we �rst shift i` from the nth position to the �rst, then shift i from the mth position to the
second position. Moving something from the nth position to the (n � 1)th position, assuming that it is the �rst
index on 
ii` gives (n� 2) factors of K. Moving this index all the way to the left thus introduces (n� 1)(n� 2)=2
factors of K. The second index is more complicated since now the possible contractions of indices allow 
ij


ij = 3

and 
ij

jk = �ki . One �nds that moving the mth index to the second position gives m(m � 1)=2� 1 factors of K.

The total number of K's is thus

X̀
n=1

`+1X
m=n+1

(n� 1)(n� 2)

2
+

�
m(m � 1)

2
� 1

�
=

(` + 2)!

6(`� 2)!
: (62)

Now we are in a position to derive the recurrence relation:

niG`ji = (�k)�`
h
Qji1���i`in

iP i1���i`
(`)

i
= (�k)�`

�
Qji1���i`in

(iP
i1���i`)

(`)
+

1

3
`(` � 1)K(�k)`�1G`�1

�

= (�k)�`
�
1

3
`(` � 1)K(�k)`�1G`�1 +Qji1���i`i

�
`

2`+ 1

(ii`P

i1���i`�1)

(`�1)
+

` + 1

2`+ 1
P i1���i`i
(`+1)

��

= �k ` + 1

2`+ 1
G`+1 + (�k)�`

�
1

3
`(` � 1)K(�k)`�1G`�1+

`

2`+ 1

2

`(` + 1)

�
`(` + 1)

2
(�k2) + (`+ 2)!

6(` � 2)!
K

�
(�k)`�1G`�1

�

= k

�
`

2` + 1
�2`G`�1 �

`+ 1

2` + 1
G`+1

�
: (63)

Let us try to understand this relation physically. As we shall see in the next section this recurrence relation
describes the way power is transferred between ` modes by propagation. Consider �rst the case 
tot = 1, or
K = 0. A given physical scale subtends a smaller and smaller angle (higher `) as the distance between emission and
reception of the photons increases. This is characterized by the coupling of the ` modes in the recurrence relation,
which allow power to be transferred from low ` to high `. In the case of a non-
at universe (K 6= 0), the manner
in which power is transferred from low to high ` is modi�ed by the e�ects of curvature (geodesics are no longer
straight lines). For an open universe (K < 0) the coupling between modes is enhanced, making it easier to transfer
power to higher ` (smaller scales). This is because geodesics in an open universe diverge, thus a �xed physical
scale subtends a smaller angular scale at the same distance in an open universe. In a closed universe (K > 0) the
coupling between modes is decreased, making it harder to move power to higher `. In fact when k2=K = `2 � 1,
�` = 0 and there is no coupling to higher modes! In a closed universe there is a �nite heirarchy for each mode. This
re
ects the fact that in a closed universe, there is a maximum physical scale that is probed by geodesics with �xed
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angular separation. Note also that once power reaches this ` it will re
ect back to lower `, showing that the same
physical scale begins to subtend a larger angle after the maximum separation of the geodesics has been reached
(at the \equator"). It is this property which is reponsible for the behaviour of the position of the �rst peak in the
power spectrum (see Fig. 3).

One last important property of the G` is their normalization. Notice that Q(~x;~k) depends on the direction of
~k. Recalling that P(`) is a symmetric tensor and (50, 51), we have thatZ

d
k G` /
Z

d
k QP`(k̂ � n̂): (64)

To �x the normalization of these functions we use the recurrence relation andZ
d
k

Z p
�g d3x ni [G`G`�1]ji = 0; (65)

to �nd Z
d
k jjG2

`jj = �2`

Z
d
k jjG2

`�1jj: (66)

A.6 The Boltzmann Equation

We are now in a position to derive the Boltzmann equation for the radiation distribution function, which is
a function of the 6 dimensional phase space for the radiation (~x; ~p) and the conformal time �. We scale out the
redshifting of the photon momentum, ~p, by the de�nition ~q = a~p and write ~q = qn̂. Integrating f(~x; n̂; q; �) over q
gives the brightness perturbation, F (~x; n̂; �), which we can expand in terms of our basis functions as

F (~x; n̂; �) =
X
~k

X
`

F`(~k; �)

 Y
`

�`

!�1
G`(~x; n̂); (67)

where the factors of �` have been included to provide a convenient normalization of the functions (see equation 66).
By including the factors of �` we ensure that the expression for C` in terms of F` will be formally unchanged from
the K = 0 case. Absorbing the very large factorials involved in

Q
` �` is also important to ensure numerical stability

in the computation of the radiation power spectrum.

The Boltzmann equation for the radiation can be written schematically as

DF

D�
� @F

@�
+

d

d�
F (~x(�); n̂) + _q

@F

@q

� @F

@�
+ _xi

@F

@xi
+ _ni

@F

@ni
+ _q

@F

@q

= Collision Term: (68)

For the photons the RHS is the collision integral for Thomson scattering, which can be found in Hu, Scott & Silk
(1994) and Dodelson & Jubas (1995), while for the neutrinos the RHS is zero. In the second line we have expanded
the � derivative, which is formally the change along the photon path, niFji, and written it schematically in terms

of _xi and _ni, hence the approximately equal sign. In a 
at universe the _ni term vanishes: the geodesic is a straight
line. It is this term which gives rise the the �` factors in the recurrence relation for the G`.

We can evalulate the _q term from the geodesic equation:

_q = �q
2
_hijn

inj

=
q

3

�
� _hQ+ 2 _H(1� 3K=k2)�1G2

�
: (69)

Putting these terms together, and using the recurrence relation (57) to rewrite the derivative along the path, we

�nd the following (recall � = i~k � ~v):

_� = �4

3
� � 2

3
_h
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_� = k2(
1

4
� � 1

10
�2F2) + ane�T (�B � �)

_F2 =
8

3
�2� �

3

7
k�3F3 +

4

3
��12

_H � 9

10
ane�TF2

_F` = k

�
`

2`� 1
�`F`�1 �

` + 1

2`+ 3
�`+1F`+1

�
� ane�TF`; (70)

where for the neutrinos the terms proportional to �T , coming from the collision term, are absent. The ` = 2 mode
is related to the anisotropic stress. As can be seen, for ` � 1 the equations are formally identical to those for K = 0.

The modi�cation of the equations for photon polarization (Bond & Efstathiou 1984, Kosowsky 1995, Zaldarriaga
& Harari 1995) simply requires inserting factors of �` in the mode coupling terms just as above. Since for 
tot > 1
the sound horizon can subtend a larger angular scale than in a 
at universe, the polarization-to-temperature ratio
can be larger in a closed universe, as one would expect by analogy with the open case (Zaldarriaga & Harari 1995).

The remaining (perturbed Einstein and 
uid) equations are gathered here for completeness:

d

d�

�
a _h
�

= (8�G)a3
X
i

��i(1 + 3wi)�i

k2

3

�
_h+ _H

�
= �(8�G)a2

X
i

��i (1 + wi) �i

_�CDM = �1

2
_h

_�B = ��B �
1

2
_h

�CDM = 0

_�B = � _a

a
�B +

4��


3��B
ane�T (�
 � �B) ; (71)

where the sum
P

i is over the components: CDM, baryons, photons, neutrinos.

The initial conditions for the metric, density and velocity perturbations are unchanged by curvature, as one would
expect physically, and can be found in Ma & Bertschinger (1995). The initial value of the neutrino anisotropic
stress acquires a factor of �2 in a closed universe. Due to our choice of normalization the expression for C` is the
same as for the 
at space case:

(2`+ 1)2C` =

p
K

8�

1X
�=3

1

�
Pprim(�) �

3 jF`(�; �0)j2 ; (72)

where �0 is the conformal time today. The factor of
p
K multiplying the sum over � makes the limit

p
K ! 0

smooth, and should also appear in the de�nition of the moments of the matter power spectrum.

The primordial power spectrum, Pprim(�), comes from a theory of 
uctuation generation. Rather than perform
calculations of the primordial spectrum for speci�c in
ationary potentials, we have assumed that the spectrum
is either a power-law in � (with spectral index unity), or that it corresponds to constant 
uctuations in the
gravitational potential � per logarithmic interval in wavenumber (which in the 
at case is the same as the previous
assumption). For this latter case, generalizing (Lyth & Stewart 1990, or see White & Bunn 1995) gives

Pprim(�) /
(�2 � 4)2

�(�2 � 1)
(73)

which we shall refer to as \scale invariant".
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