2,607,019 research outputs found

    Novel role for the LKB1 pathway in controlling monocarboxylate fuel transporters

    Get PDF
    A question preoccupying many researchers is how signal transduction pathways control metabolic processes and energy production. A study by Jang et al. (Jang, C., G. Lee, and J. Chung. 2008. J. Cell Biol. 183:11–17) provides evidence that in Drosophila melanogaster a signaling network controlled by the LKB1 tumor suppressor regulates trafficking of an Sln/dMCT1 monocarboxylate transporter to the plasma membrane. This enables cells to import additional energy sources such as lactate and butyrate, enhancing the repertoire of fuels they can use to power vital activities

    Young children's referent selection is guided by novelty for both words and actions

    Get PDF
    Young children are biased to select novel, name-unknown objects as referents of novel labels (e.g., Markman, 1990) and similarly favour novel, action-unknown objects as referents of novel actions (Riggs, Mather, Hyde & Simpson, 2015). What process underlies these common behaviors? In the case of word learning, children may be driven by a novelty bias favouring novel objects as referents (Horst, Samuelson, Kucker & McMurray, 2011). Our study investigates this bias further by investigating whether novelty also affects children’s selection of novel objects when a new action is given. In a pre-exposure session, 40, three- and four-year-olds were shown eight novel objects for one minute. In subsequent referent selection trials children were shown two pre-exposed and one super-novel object and heard either a novel name or saw a novel action. The super-novel object was selected significantly more that the pre-exposed objects on both word and action trials. Our data add to the growing literature suggesting that an endogenous attentional bias to novelty plays a role in children’s referent selection and demonstrates further parallels between word and action learning

    The role of the novel Th17 cytokine IL-26 in intestinal inflammation

    Get PDF
    Background and aims: Interleukin 26 (IL-26), a novel IL-10-like cytokine without a murine homologue, is expressed in T helper 1 (Th1) and Th17 cells. Currently, its function in human disease is completely unknown. The aim of this study was to analyse its role in intestinal inflammation.Methods: Expression studies were performed by reverse transcription-PCR (RT-PCR), quantitative PCR, western blot and immunohistochemistry. Signal transduction was analysed by western blot experiments and ELISA. Cell proliferation was measured by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. IL-26 serum levels were determined by an immunoluminometric assay (ILMA).Results: All examined intestinal epithelial cell (IEC) lines express both IL-26 receptor subunits IL-20R1 and IL-10R2. IL-26 activates extracellular signal-related kinase (ERK)-1/2 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) mitogen-activated protein (MAP) kinases, Akt and signal transducers and activators of transcription (STAT) 1/3. IL-26 stimulation increases the mRNA expression of proinflammatory cytokines but decreases cell proliferation. In inflamed colonic lesions of patients with Crohn's disease, an elevated IL-26 mRNA expression was found that correlated highly with the IL-8 and IL-22 expression. Immunohistochemical analysis demonstrated IL-26 protein expression in colonic T cells including Th17 cells expressing the orphan nuclear receptor ROR\textgreekgt, with an increased number of colonic IL-26-expressing cells in active Crohn's disease.Conclusion: Intestinal cells express the functional IL-26 receptor complex. IL-26 modulates IEC proliferation and proinflammatory gene expression and its expression is upregulated in active Crohn's disease, indicating a role for this cytokine system in the innate host cell response during intestinal inflammation. For the first time, IL-26 expression is demonstrated in colonic ROR\textgreekgt-expressing Th17 cells in situ, supporting a role for this cell type in the pathogenesis of Crohn's disease

    A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance

    Get PDF
    The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-ÎşB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism

    Wheat glutenin subunits and dough elasticity: findings of the EUROWHEAT project

    Get PDF
    Detailed studies of wheat glutenin subunits have provided novel details of their molecular structures and interactions which allow the development of a model to explain their role in determining the visco-elastic properties of gluten and dough. The construction and analysis of near-isogenic and transgenic lines expressing novel subunit combinations or increased amounts of specific subunits allows differences in gluten properties to be related to the structures and properties of individual subunits, with potential benefits for the production of cultivars with improved properties for food processing or novel end user

    Evolution of size and pattern in the social amoebas

    Get PDF
    A fundamental goal of biology is to understand how novel phenotypes evolved through changes in existing genes. The Dictyostelia or social amoebas represent a simple form of multicellularity, where starving cells aggregate to build fruiting structures. This review summarizes efforts to provide a framework for investigating the genetic changes that generated novel morphologies in the Dictyostelia. The foundation is a recently constructed molecular phylogeny of the Dictyostelia, which was used to examine trends in the evolution of novel forms and in the divergence of genes that shape these forms. There is a major trend towards the formation of large unbranched fruiting bodies, which is correlated with the use of cyclic AMP (cAMP) as a secreted signal to coordinate cell aggregation. The role of cAMP in aggregation arose through co-option of a pathway that originally acted to coordinate fruiting body formation. The genotypic changes that caused this innovation and the role of dynamic cAMP signaling in defining fruiting body size and pattern throughout social amoeba evolution are discussed. BioEssays 29:635–644, 2007. © 2007 Wiley Periodicals, Inc

    VGF changes during the estrous cycle: a novel endocrine role for TLQP peptides?

    Get PDF
    Although the VGF derived peptide TLQP-21 stimulates gonadotropin-releasing hormone (GnRH) and gonadotropin secretion, available data on VGF peptides and reproduction are limited. We used antibodies specific for the two ends of the VGF precursor, and for two VGF derived peptides namely TLQP and PGH, to be used in immunohistochemistry and enzyme-linked immunosorbent assay complemented with gel chromatography. In cycling female rats, VGF C-/N-terminus and PGH peptide antibodies selectively labelled neurones containing either GnRH, or kisspeptin (VGF N-terminus only), pituitary gonadotrophs and lactotrophs, or oocytes (PGH peptides only). Conversely, TLQP peptides were restricted to somatostatin neurones, gonadotrophs, and ovarian granulosa, interstitial and theca cells. TLQP levels were highest, especially in plasma and ovary, with several molecular forms shown in chromatography including one compatible with TLQP-21. Among the cycle phases, TLQP levels were higher during metestrus-diestrus in median eminence and pituitary, while increased in the ovary and decreased in plasma during proestrus. VGF N- and C-terminus peptides also showed modulations over the estrous cycle, in median eminence, pituitary and plasma, while PGH peptides did not. In ovariectomised rats, plasmatic TLQP peptide levels showed distinct reduction suggestive of a major origin from the ovary, while the estrogen-progesterone treatment modulated VGF C-terminus and TLQP peptides in the hypothalamus-pituitary complex. In in vitro hypothalamus, TLQP-21 stimulated release of growth hormone releasing hormone but not of somatostatin. In conclusion, various VGF peptides may regulate the hypothalamus-pituitary complex via specific neuroendocrine mechanisms while TLQP peptides may act at further, multiple levels via endocrine mechanisms involving the ovary
    • …
    corecore