376 research outputs found

    Non-Intrusive Appliance Load Monitoring using Genetic Algorithms

    Get PDF
    Smart Meters provide detailed energy consumption data and rich contextual information which can be utilized to assist energy providers and consumers in understanding and managing energy use. Here, we present a novel approach using genetic algorithms to infer appliance level data from aggregate load curves without a-priori information. We introduce a theoretical framework to encode load data in a chromosomal representation, to reconstruct individual appliance loads and propose several fitness functions for the evaluation. Our results, using artificial and real world data, confirm the practical relevance and feasibility of our approach

    Blind non-intrusive appliance load monitoring using graph-based signal processing

    Get PDF
    With ongoing massive smart energy metering deployments, disaggregation of household's total energy consumption down to individual appliances using purely software tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased interest. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges. Indeed, the majority of approaches require training and are sensitive to appliance changes requiring regular re-training. In this paper, we tackle this challenge by proposing a 'blind' NALM approach that does not require any training. The main idea is to build upon an emerging field of graph-based signal processing to perform adaptive threshold-ing, signal clustering and feature matching. Using two datasets of active power measurements with 1min and 8sec resolution, we demonstrate the effectiveness of the proposed method using a state-of-the-art NALM approaches as benchmarks

    Blind non-intrusive appliance load monitoring using graph-based signal processing

    Get PDF
    With ongoing massive smart energy metering deployments, disaggregation of household's total energy consumption down to individual appliances using purely software tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased interest. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges. Indeed, the majority of approaches require training and are sensitive to appliance changes requiring regular re-training. In this paper, we tackle this challenge by proposing a "blind" NALM approach that does not require any training. The main idea is to build upon an emerging field of graph-based signal processing to perform adaptive thresholding, signal clustering and feature matching. Using two datasets of active power measurements with 1min and 8sec resolution, we demonstrate the effectiveness of the proposed method using a state-of-the-art NALM approaches as benchmarks

    Electricity consumption pattern disaggregation using non-intrusive appliance load monitoring method

    Get PDF
    In practice, a standard energy meter can only capture the overall electricity consumption and estimating electricity consumption pattern of various appliances from the overall consumption pattern is complicated. Therefore, the Non-Intrusive Appliance Load Monitoring (NIALM) technique can be applied to trace electricity consumption from each appliance in a monitored building. However, the method requires a detailed, second-by-second power consumption data which is commonly not available without the use of high specification energy meter. Hence, this paper analyzes the impact of different time sampling data in estimating the energy consumption pattern of various appliances through NIALM method. This is so that consumers will have an overview of time sampling data which is required in order to apply the NIALM technique. As for the analysis, air-conditioning systems and fluorescent lamps were used in the experimental setup. One minute sample rate was the minimum time interval required by NIALM carried out in this analysis. Through the study presented in this paper, it can be established that higher time sampling led to uncertain appliance detection and low accuracy

    Analysis and techniques for non-intrusive appliance load monitoring.

    Get PDF
    The increased public awareness of energy conservation and the demand for smart metering system have created interests in home energy monitoring. Load disaggregation using a single sensing point is considered a cost-effective way to sense individual appliance operation as opposed to using dedicated sensors for appliance monitoring. The aim of this thesis is to investigate the effectiveness of the analysis methods and techniques used in load disaggregation using a single point sensing. Time-frequency analysis methods such as Wavelet transforms are carefully examined and machine learning classifiers are used to develop the appropriate prediction models. The results have shown that the use of different Wavelet functions can significantly affect the classification accuracy. Among the four wavelets investigated in this thesis, two wavelets (Daubechies and Symlets) are able to provide the highest mean classification accuracy

    Unsupervised training methods for non-intrusive appliance load monitoring from smart meter data

    No full text
    Non-intrusive appliance load monitoring (NIALM) is the process of disaggregating a household’s total electricity consumption into its contributing appliances. Smart meters are currently being deployed on national scales, providing a platform to collect aggregate household electricity consumption data. Existing approaches to NIALM require a manual training phase in which either sub-metered appliance data is collected or appliance usage is manually labelled. This training data is used to build models of the house- hold appliances, which are subsequently used to disaggregate the household’s electricity data. Due to the requirement of such a training phase, existing approaches do not scale automatically to the national scales of smart meter data currently being collected.In this thesis we propose an unsupervised training method which, unlike existing approaches, does not require a manual training phase. Instead, our approach combines general appliance knowledge with just aggregate smart meter data from the household to perform disaggregation. To do so, we address the following three problems: (i) how to generalise the behaviour of multiple appliances of the same type, (ii) how to tune general knowledge of appliances to the specific appliances within a single household using only smart meter data, and (iii) how to provide actionable energy saving advice based on the tuned appliance knowledge.First, we propose an approach to the appliance generalisation problem, which uses the Tracebase data set to build probabilistic models of household appliances. We take a Bayesian approach to modelling appliances using hidden Markov models, and empirically evaluate the extent to which they generalise to previously unseen appliances through cross validation. We show that learning using multiple appliances vastly outperforms learning from a single appliance by 61–99% when attempting to generalise to a previously unseen appliance, and furthermore that such general models can be learned from only 2–6 appliances.Second, we propose an unsupervised solution to the model tuning problem, which uses only smart meter data to learn the behaviour of the specific appliances in a given house-hold. Our approach uses general appliance models to extract appliance signatures from ?a household’s smart meter data, which are then used to refine the general appliance models. We evaluate the benefit of this process using the Reference Energy Disaggregation Data set, and show that the tuned appliance models more accurately represent the energy consumption behaviour of a given household’s appliances compared to when general appliance models are used, and furthermore that such general models can per- form comparably to when sub-metered data is used for model training. We also show that our tuning approach outperforms the current state of the art, which uses a factorial hidden Markov model to tune the general appliance models.Third, we apply both of these approaches to infer the energy efficiency of refrigerators and freezers in a data set of 117 households. We evaluate the accuracy of our approach, and show that it is able to successfully infer the energy efficiency of combined fridge freezers. We then propose an extension to our model tuning process using factorial hidden semi-Markov models to model households with a separate fridge and freezer. Finally, we show that through this extension our approach is able to simultaneously tune the appliance models of both appliances.The above contributions provide a solution which satisfies the requirements of a NIALM training method which is both unsupervised (no manual interaction required during training) and uses only smart meter data (no installation of additional hardware is required). When combined, the contributions presented in this thesis represent an advancement in the state of the art in the field of non-intrusive appliance load monitoring, and a step towards increasing the efficiency of energy consumption within households

    Towards automatic setup of non intrusive appliance load monitoring – feature extraction and clustering

    Get PDF
    Given climate change concerns and incessantly increasing energy demands of the present time, improving energy efficiency becomes of significant environmental and economic impact. Monitoring household electrical consumption through a non-intrusive appliance load monitoring (NIALM) system achieves significant efficiency improvement by providing appliance-level energy consumption and relaying this information back to the user. This paper focuses on feature extraction and clustering, which constitute two of the four modules of the proposed automatic-setup NIALM system, the other two being labeling and classification. The feature extraction module applies the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT), a well-known parametric estimation technique, to the drawn electric current. The result is a compact representation of the signal in terms of complex numbers referred to as poles and residues. These complex numbers are then used to determine a feature vector consisting of the contribution of the fundamental, the third and the fifth harmonic currents to the maximum of the total load current. Once a signature is extracted, the clustering module applies distance-based rules inferred off-line from various databases and decides either to create a new class out of the new signature or to discard it and increase the count of an existing signature. As a result, the feature space is clustered without the a priori knowledge of the number of appliances into singleton clusters. Results obtained from a set of appliances indicate that these two modules succeed in creating an unlabeled database of signatures

    Using hidden Markov models for iterative non-intrusive appliance monitoring

    No full text
    Non-intrusive appliance load monitoring is the process of breaking down a household’s total electricity consumption into its contributing appliances. In this paper we propose an approach by which individual appliances are iteratively separated from the aggregate load. Our approach does not require training data to be collected by sub-metering individual appliances. Instead, prior models of general appliance types are tuned to specific appliance instances using only signatures extracted from the aggregate load. The tuned appliance models are used to estimate each appliance’s load, which is subsequently subtracted from the aggregate load. We evaluate our approach using the REDD data set, and show that it can disaggregate 35% of a typical household’s total energy consumption to an accuracy of 83% by only disaggregating three of its highest energy consuming appliances

    On a training-less solution for non-intrusive appliance load monitoring using graph signal processing

    Get PDF
    With ongoing large-scale smart energy metering deployments worldwide, disaggregation of a household’s total energy consumption down to individual appliances using analytical tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased research interest lately. NALM can deepen energy feedback, support appliance retrofit advice and support home automation. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges with respect to its practicality and effectiveness at low sampling rates. Indeed, the majority of NALM approaches, supervised or unsupervised, require training to build appliance models, and are sensitive to appliance changes in the house, thus requiring regular re-training. In this paper, we tackle this challenge by proposing a NALM approach that does not require any training. The main idea is to build upon the emerging field of graph signal processing to perform adaptive thresholding, signal clustering and pattern matching. We determine the performance limits of our approach and demonstrate its usefulness in practice. Using two open access datasets - the US REDD dataset with active power measurements downsampled to 1min resolution and the UK REFIT dataset with 8sec resolution, we demonstrate the effectiveness of the proposed method for typical smart meter sampling rate, with state-of-the-art supervised and unsupervised NALM approaches as benchmarks
    • …
    corecore