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ABSTRACT 

 

The increased public awareness of energy conservation and the demand for smart 

metering system have created interests in home energy monitoring. Load disaggregation 

using a single sensing point is considered a cost-effective way to sense individual 

appliance operation as opposed to using dedicated sensors for appliance monitoring. The 

aim of this thesis is to investigate the effectiveness of the analysis methods and 

techniques used in load disaggregation using a single point sensing. Time-frequency 

analysis methods such as Wavelet transforms are carefully examined and machine 

learning classifiers are used to develop the appropriate prediction models. The results 

have shown that the use of different Wavelet functions can significantly affect the 

classification accuracy. Among the four wavelets investigated in this thesis, two wavelets 

(Daubechies and Symlets) are able to provide the highest mean classification accuracy.     
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1. Introduction  

1.1 Background 

Energy consumption monitoring is considered a vital process for energy 

management in electric energy systems. The soaring gas prices and the environmental 

concerns of increased Green House Gases (GHGs) have raised the interests in energy 

consumption management in electric energy systems. Typical electric energy 

consumption meters measure the power consumed by all appliances in operation and then 

compute the energy consumed based on the time period during which these appliances 

are in operation. Since this method relies on computing the aggregated power 

consumption, the energy consumed by each appliance may not be accessible which limits 

the capability and the effectiveness of any energy management program.  

In order to make the energy consumption of each appliance accessible, the power 

consumption at the meter level must be disaggregated by sensing individual appliance’s 

operation using the signals sensed at the meter. Load disaggregation can benefit both 

consumers and electric utilities. On the consumers’ side, load disaggregation can provide 

the consumers with energy information which will help them adapting their consumption 

behavior to Time of Use (TOU) rates and hence saving on their energy bills. This will 

help reducing individual consumers’ consumption in an effective way. On the other hand, 

from the electric power utilities side, load disaggregation can be helpful in reducing the 

impact on the aging electricity grid by applying more controlling strategies to the 

identified large consumers based on their consumptions. Also, load disaggregation can be 
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used by electric power utilities for verification in complains. Finally, electric power 

utilities can use the collected data of load disaggregation to determine the accurate 

estimation for energy’s excess. Therefore, the total annual cost for the generation will be 

reduced. 

1.2 Problem Statement and Motivation  

Power consumption monitoring can be applied either using multi-sensors to 

monitor the energy consumed by each appliance or using a single point sensing in which 

the aggregated power consumption of a group of appliances is measured. The former 

approach is not considered a cost-effective approach and hence there is a growing 

interests in single point sensing approach. The main disadvantage of using multi-sensors 

to monitor the energy consumption in residential subdivisions is being costly to be 

implemented and to be maintained. The use of multi-sensors for energy consumption 

monitoring is called intrusive monitoring because there is intrusion to the customer 

property to install these sensors.  

On the other hand, load disaggregation using a single sensing point is considered 

cost-effective since only one meter (or energy monitor) is required which make the 

process cost-effective and easy to be installed. This technique is called nonintrusive 

monitoring. The objective of this thesis is to study and investigate the analysis methods 

and techniques used to detect individual appliance operation using single point sensing 

for non-intrusive load monitoring and load disaggregation in the residential sector. Figure 

1.1 illustrates a sample system represented by a single-line diagram showing a single-
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phase distribution transformer feeding M-load. The non-intrusive load monitoring is 

applied by using the point of common coupling (PCC) at which the M-loads are tied. The 

voltage and current data are collected at this point and used in the monitoring system. 

 

Fig. 1.1: Single phase nonintrusive monitoring system for residential load. 

Load disaggregation can be achieved either using steady-state analysis methods 

or using transient methods. In steady state methods, the voltage and current signals are 

used to compute different power components such as active power, reactive power and 

apparent power which are then used to detect the individual appliance operation based on 

the power ratings. The main disadvantage of this approach is that most of the methods 



 

4 

 

 

using steady state analysis suffer delay in response to ensure that all transients die out. 

Moreover, most of the algorithms based on steady-state analysis fail to distinguish 

between appliances having almost same ratings. Also, using active and reactive power in 

load disaggregation is complicated because it needs to sample current and voltage 

waveforms synchronously to find the phase angle between them to calculate the reactive 

power consumption.  

On the other hand, load disaggregation using transient analysis is considered 

more robust compared to steady-state analysis methods since it depends on finding power 

signatures for each appliance in operation using the information contained in transients,. 

Because the method uses the transients following the switching of loads once they come 

into operation, the issue of delay in response time is resolved. In order to extract the 

prominent features in transients, the information contained in time and frequency of the 

analysis signals must be carefully examined. Fourier transform is a well-known 

frequency analysis tool. However, since Fourier transform assumes that the signal to be 

analyzed is periodic (which is not the case in transients) the performance of Fourier 

degrades in transients and hence it is not the suitable tool for this type of analysis.  

Time-frequency analysis tools such as wavelets may be used to perform such 

analysis however, several open ended questions must be addressed such as the choice of 

the sampling frequency, the shape of the basic function needed to best extract the hidden 

features in the analyzed signal and also the number of decomposition levels used to 

perform the analysis. Moreover, in order to ensure robust operation of the non-intrusive 
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load monitoring, a comprehensive testing under different power quality disturbances 

must be performed on the developed classification model.    

1.3 Thesis Organization  

This thesis consists of five chapters. Chapter 1 explains the need for load 

disaggregation and non-intrusive load monitoring followed by a problem statement 

targeting the two analysis methods used in non-intrusive load monitoring, i.e., steady-

state and transients methods. The work motivation in this thesis is presented which 

basically touches on different analysis methods such as Fourier and Wavelet transform. 

The advantages and disadvantages of both analysis methods are highlighted, and finally, 

the contribution of this thesis is outlined.  

 

Chapter 2 is dedicated to literature review on non-intrusive appliance load monitoring 

approaches. The analysis methods used in steady state and transients are briefly 

summarized. The advantages and the disadvantages arte highlighted. The research gaps in 

previous work are presented. The chapter concludes the literature review by a summary 

outlining the main salient points regarding extracting features in transients using 

wavelets.  

 

Chapter 3 outlines the main characteristics of four wavelet families (e.g., Daubechies, 

Symlets, Coiflets and Biorthogonal). Also, this chapter presents the strength of wavelet 

transform and weaknesses of Fourier transform when used in transient signal feature 
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extraction hence justifying the need for utilizing Wavelet transform to extract hidden 

features. The Mathematical formulation of the proposed wavelet-based energy feature 

extraction approach is presented, and finally, the basics of Decision Tree classifier are 

presented.  

 

Chapter 4 is devoted to simulation results and analysis. The chapter starts by providing a 

brief description of test system used which consist of four loads including battery 

charger, fluorescent lamp, personal computer and an incandescent light bulb. This set-up 

will be used in evaluating the effectiveness of the proposed wavelet-based energy 

approach for load disaggregation. The results of applying this approach using the four 

wavelet families are presented and the classification accuracies are presented and 

compared. Different power quality disturbances are included in this analysis; voltage 

variation, frequency variation and harmonic distortion. Finally, conclusions are presented 

in Chapter 5.  
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2. Literature Review 

2.1 Introduction  

This chapter presents an overview of previous work on non-intrusive load 

monitoring using single-point sensing. As shown in figure 2.1 the work presented in the 

literature can be grouped based on the analysis modes used in either steady-state or 

transients. This chapter is divided into three parts; a review of analysis modes used in 

non-intrusive load monitoring is presented, then a comparison of signals processing 

techniques such as Fourier transform and wavelet transform is introduced, and finally, a 

brief introduction on machine learning is presented.  

 

 

Fig. 2.1: Classification of previous work on non-intrusive monitoring 

Non-intrusive Load 
Monitoring

Steady-State Mode Transient Mode
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2.2 Previous Work on Non-intrusive Monitoring Methods 

  2.2.1 Steady-state-based methods 

Hart [1] used the power levels to identify the appliance operation using steady-

state analysis. The method performs well only in cases involving appliances with known 

power ratings and only when supplied form clean power source. In case of power quality 

disturbances such as harmonic distortion, the change in the power levels due to 

harmonics usually degrade the performance of method and hence some appliances 

operation may go undetected [2]. 

  Roos et al. [3] relied on the steady-state signatures of appliances in an attempt to 

discriminate nonlinear industrial loads. Due to the nature of targeted loads, Roos et al. [3] 

utilized a third power component called distortion power (D), instead of just using the 

active and reactive powers (P and Q) respectively as in [1]. Although this approach was 

successful in detecting some appliances, the majority of modern appliances involving 

battery chargers and nonlinear loads failed to be detected. 

Norford and Leeb [4] investigated heating, ventilation, and air conditioning 

equipment (HVAC) in commercial buildings depending on steady-state monitoring 

methods. Norford and Leeb [4] intended to assess whether the methodology which uses 

steady-state signatures of residential electrical loads can be implemented on electrical 

appliances in a large size facilities such as in commercial buildings. The problem with 

their approach is the degradation of its accuracy due to the use of power factor correction 

devices installed in commercial facilities.   
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Marceau and Zmeureanu [5] derived the steady-state signatures of seven 

appliances in the residential buildings using two mode approach consisting of sampling 

and evaluation. The operating characteristics of each of the targeted appliances are 

compiled from data recorder using 16 s intervals over a week, in the sampling mode. 

Marceau and Zmeureanu [5] utilized the electric current signals and active power when 

the source voltage is assumed to be 120 V and hence, it does not take into account 

reactive power calculation as in [1].  Although the complexity of the feature vector is 

reduced, this method cannot recognize two similar electrical appliances turned on or off 

coincidentally.  

Cole and Albicki [6] developed an algorithm to detect individual appliances using 

the active and reactive power. The method relies on the change in the active and reactive 

power following a change in the switching of the appliance when changing from OFF to 

ON. The main limitation of this this method is in case of appliances operating at the same 

time and drawing the same amount of active and reactive power, the detection algorithm 

may not be able to discriminate between their operation.   

Gupta et al. [7] used a single point sensing to detect electronic appliances by 

relying on the frequency content of the current signals of these appliances. The drawback 

with this method is that it is prone to other harmonic distortion either generated from 

other non-linear loads or from harmonic distortion in the voltage waveform.  

Lam et al. [8] presented a method based on voltage-current (V-I) trajectory to 

characterize typical household appliances in a 2-dimentional form. Hierarchical 

clustering is then applied to group similar appliances characteristics. This method works 
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on a small number of appliances whose characteristics are unique. However, in case of 

different appliances but with the same characteristics, the method may not be able to 

detect them. Also since the trajectory used relies only on current and voltage signals, any 

change in the current would disturb the detection algorithm.  

  Liang et al. [9] used the Fourier series analysis to detect house hold appliances. 

The current signal is decomposed in the frequency domain and the frequency components 

are used to detect individual appliances operation. The main limitation is that Fourier 

series works only for period signal and in case of non-periodic currents, Fourier series 

provides continuous amplitude frequency spectrum which will be translated into errors in 

the detection process.    

Marchiori et al. [10] measured the active (P) and reactive (Q) power for each 

specific appliance and mapped them in a 2D histogram in P-Q feature plane. Instead of 

reliance on the change in the power levels, a probabilistic approach was utilized. 

Depending on a naïve Bayes classifier, each appliance has been trained to detect its state 

using the corresponding probability. The proposed method assumes that state of 

appliances are independent of each other, which means that there is no correlation in their 

operation. This assumption is not true because some household appliances are correlated 

in their operation such as watching a television through DVD player [11].  Besides, if 

there is a correlation, using a naïve Bayes classifiers is not a good choice because the 

performance can be degraded [12]. 
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2.2.2 Transients-based Methods 

Steven et al. [13] investigated a methodology of a transient event detection using 

a single sensing point. The method was applied on four loads usually utilized in 

commercial and industrial facilities. The current drawn by these loads was monitored 

during start-up state, at the main entrance. As a consequence, the produced current signal 

is non-stationary. To overcome this obstacle and to reduce the complexity, features of 

inrush current were extracted by Short Time Fourier Transform (STFT). Although using 

Short Time Fourier Transform (STFT) may achieve a reasonable resolution, it is sensitive 

to the choice of the window size.  

Norford and Leeb [4] discriminated a transient patterns for specific electrical 

appliances using active and reactive power and the associated harmonics of higher order. 

At the fundamental frequency, these metrics are derived by sampling the start-up current 

and voltage over one-second intervals. The proposed method assumed that a transient 

event consists of “a time series of segments”. Instead of utilizing all these segments, 

Norford and Leeb [4] relies on a specific varying segments called v-sections. Though two 

and multi-state appliances may be recognized by this method, activation them 

sequentially may not be disaggregated by this methodology.  

Cole and Albicki [14] stated that during a start-up of residential appliances, their 

waveforms could be divided into a three salient features. These features are abrupt 

change in power called edges, gradual variations in power seen as a slope, and stabilized 

in power denoted as steady-state.  The method utilized the first two features to 

disaggregate the total energy at home when current and voltage signals are sampled 
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simultaneously. The methodology is that matching edges to their slops. Unquestionably 

ON/OFF and Finite State Machine appliance models are discriminated in P-Q feature by 

the proposed algorithm; however, active (P) power and reactive power (Q) need to be 

accumulated over a period of time [6]. Besides, consumption of permanent appliances 

cannot be discriminated by this method [11].      

Chang et al. [15] investigated a five classes of loads at industrial building when 

the electric source is varied, gradually. Both current and voltage waveforms were 

monitored at 480 V common bus, and sampled concurrently during the turn-on event. 

Aside from features of total current/voltage harmonic distortion, turn-on transient energy 

was added to the feature space. Besides, features of active and reactive power utilized for 

comparison purpose.  

These features were extracted by Wavelet transform and derived from individual 

and multiple operations. Back propagation (Bp) and learning vector quantization (LVQ) 

were utilized for training and testing different scenarios using neural network classifier. 

Although the recognition accuracy is high for the individual operation of these loads, 

training these appliances by neural network classifiers considers exhaustive. Besides, the 

proposed method in multiple operations does not achieve the same recognition accuracy 

as in individual operation using the validation dataset.  

Chang [16] performed different scenarios using simulation and experimental test-

bed to monitor the current and voltage signals from a single point of sensing, in a single 

and three phase system. The proposed method relies on a transient time response during 
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turn-on/off different appliances, individually or collectively. The transient time response 

is computed based on the following formula: 

                                    t𝑇𝑅 =  t𝑒𝑛𝑑 −  t𝑠𝑡𝑎𝑟𝑡                                                     (2. 1) 

where t𝑒𝑛𝑑 represents a difference of transient ending time and  t𝑠𝑡𝑎𝑟𝑡 represents a 

transient starting time. Short Time Fourier Transform (STFT) and Discrete Wavelet 

Transform (DWT) were utilized and compared to detect the transient time response 

which was monitored using a 4 s time period. After that, the one-phase transient energy 

was calculated using the following formula: 

                            𝑉(𝑘) = 𝑣(𝑘) − 𝑣(𝑘 − 1)                                                     (2. 2) 

                            I(k) = (𝑖(𝑘) − 𝑖(𝑘 − 1))/ 2                                               (2. 3)    

                           𝑈𝑇 =  𝑈1𝜑,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 =  ∑ 𝑉(𝑘)𝐼(𝑘)𝑘
𝑘=0                                  (2. 4)  

where 𝑉(𝑘) and 𝐼(𝑘) are the transient voltage and average transient current for sample 𝑘, 

respectively. Similarly, 𝑣(𝑘) and 𝑖(𝑘) are the transient voltage and transient current for 

sample k, while 𝑣(𝑘 − 1) and 𝑖(𝑘 − 1) represent the transient voltage and transient 

current for sample 𝑘 − 1.  The three-phase transient energy can be determined as follows:    

𝑈𝑇 =  𝑈3𝜑,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 =  ∑  (𝐼𝑎(𝑘). 𝑉𝑎(𝑘) + 𝐼𝑏(𝑘). 𝑉𝑏(𝑘) +  𝐼𝑐(𝑘). 𝑉𝑐(𝑘))𝑘
𝑘=0               (2. 5)  

where 𝐼𝑎(𝑘), 𝐼𝑏(𝑘), and 𝐼𝑐(𝑘) are the average transient current values in phases a, b, and 

c for sample k, respectively. Likewise, 𝑉𝑎(𝑘), 𝑉𝑏(𝑘), and 𝑉𝑐(𝑘) are differences of 

transient voltage for sample k, in phases a, b, and c, respectively. Multi-Layer Feed 

forward Neural Network (MFNN) was trained by features of transient energy that are 

derived from turning a three loads on/off, individually and as a group. Besides the 
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training using Multi-Layer Feed forward Neural Network (MFNN) which considered 

time-consuming, the proposed algorithm used a high sampling frequency which is 512 

samples for each cycle.  

 Shaw et al. [17] applied a short-time Fourier transform (STFT) based approach to 

detect spectral envelop coefficients based on two dimensions. Each cycle of voltage and 

current waveforms are observed and re-sampled at 128 samples/cycle as the sampling 

rate. The re-sampled voltage and current data are utilized to be compared and classified 

based on the validation space. The validation space is a database consists of different 

signatures representing envelops of different appliances. The classification can be done 

by measuring the similarity between an incoming envelop to those in the database. The 

similarity is estimated based on minimum distance between an incoming envelop to the 

signature envelop in the validation space [18]. Although many appliances could be 

classified accurately using this methodology, each appliance requires to be trained 

excessively.  

 Dawei et al. [19] designed a system using hardware and software for demand 

response (DR). The proposed system makes use of non-intrusive load monitoring (NILM) 

to recognize major loads in buildings. Depending on their characteristics, household 

appliances can be clustered into two categories as high-power demand response loads 

and plug-in back-up demand response loads, according to [19]. In this study, several 

appliances of both categories were targeted using different features such as transient 

impedance. Although a hardware-based classification approach was explained, it just 

targets the individual appliance and does not take into account its combination with other.  
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 Wang et al. [20] attempted to classify residential appliance based on their 

working styles. At the meter level, power consumption of household appliances can be 

seen as a combination of two basic units, triangles and rectangles. These units are utilized 

to form and reduce the overlap in the feature space, according to [20]. Fast switching 

events produced by appliance are mapped into triangles. The attribute set includes the 

start time, peak time, peak value, and the end time, for the triangle class. In each second, 

effective voltage value, effective current value, and real power are monitored and 

sampled. Although the proposed method does not utilize a high frequency measurement 

method, pattern of appliances with a known profile may be recognized using this method 

[21].    

Chang et al. [22] proposed the same methodology as [16], with a small 

modification to the test bed. Instead of measuring the electrical current using a traditional 

current transformer (CT), a coreless Hall CT is utilized to reduce the produced distortion 

by the hysteresis of the iron cores.  Although the non-sinusoidal current waves can be 

detected using a new coreless current transformer, loads that have an operational modes 

or with low power consumption are not tested here. 

Froehlich et al. [23] developed a method to disaggregate end-use energy by 

means of voltage noise. Instead of digitizing electrical current waveforms which requires 

a professional installation to be measured, any electrical socket can be utilized to 

compute the voltage signals, as stated by [23]. This method transfers a transient voltage 

noise into a feature vector that can be detected by a fast Fourier transform (FFT) and 
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classified by a support vector machine (SVM).  FFT is performed on one microsecond 

sliding window.  

Although several electrical events can be detected and classified by this 

methodology, FFT is sensitive to size of the chosen window. Also, it is well known that 

SVM is very sensitive to the choice of the kernel function type [24]. Therefore, it was not 

clear whether SVM have been utilized as a binary classifier or multiclass classifier. If it is 

the former, there would be imbalance in the data set; as consequence, the stated accuracy 

may not be accurate which might not be relevant to the events. If it is the latter, training 

SVM as multiclass classifier is very time consuming.  

Chang et al. [25] improved the proposed methodology in [22] by means of 

applying Parseval’s theorem to the coefficients of Daubechies mother wavelet to extract 

the energy spectra of the transient signals. Although the study was conducted using a 

similar test-bed system as in [22], it utilizes a member of one wavelet family based on 

Daubechies mother wavelet. However, it does not take into account other families such as 

Symlets, Coiflets and Biorthogonal families.  

 

2.3 Summary 

 In non-intrusive load monitoring, each appliance’s power can be extracted from 

the total measured power using power signatures. The methods of analysis used to find 

such power signatures can be classified depending on the analysis mode used as steady-

state or transients.  
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In previous work, steady-state power signatures have been derived using a step 

change in the power to identify appliance operation. The advantage of using steady-state 

power signatures is that it doesn’t need high sampling rate and also the power can be 

detected based on each appliance rating [1].  However, the challenge in this approach is 

the potential overlap with low power appliances and/or when two appliances have almost 

same ratings. Also, the use of power signatures based on active power (P) and reactive 

power (Q) may be affected due to the use of power factor correction devices.  

As a result, a third power quantities has been proposed which is called distortion 

power (D) in addition to the active and reactive power. Since distortion power is a 

measure of the power resulted from harmonic distortion, the power signatures in steady-

state are susceptible to any harmonic distortion from an external source which makes the 

approach problematic. Moreover, when using the active power, reactive power and 

distortion power as the power signatures in steady-state analysis mode, some modern 

appliances such as battery chargers cannot be detected.  

Also, instead of using power signatures, the current signal computed in steady 

state have been used in conjunction with voltage. The use of voltage-current (V-I) 

trajectory has been also proposed in the literature in steady state analysis mode, however, 

the main issue with this approach is when two similar electrical appliances are turned on 

or off coincidentally, the method fails to discriminate between them and also the features 

of different appliances but with the same characteristics may not be classified. 

The main limitation of using steady-state methods reported in the literature is this 

methods are only applicable when all transients die out. Since this usually involves few 
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cycles and sometimes almost few seconds that must elapse to ensure that all transient die 

out, this results into time delay until the algorithms start to collect data to perform the 

classification. The issue of time delay in the response of all methods based on steady state 

analysis has turned the attention to methods that rely on signatures in transients to 

overcome the slow response problem.  

Most of the transient analysis methods rely on the information contained in 

transients resulting from the switching of appliances when they come into operation [26].  

Therefore, transient signatures may be characterized by magnitude, frequency and time 

features. Based on previous work, the analysis methods used can be classified as either 

frequency domain or time domain methods. Frequency domain methods relies on Fourier 

transformer which provides magnitude-frequency spectrum to find transient signatures in 

the signals’ frequency content. On the other hand, time domain methods use the time 

information in the signal as the feature for classification and detection of the appliances. 

Also the use of Short-Time Fourier Transform (STFT) has been reported in the literature 

which provide time-frequency spectrum. The main limitation of Fourier-based techniques 

is the tradeoff between time and frequency resolution. Moreover, Fourier analysis is 

based on sine and cosine function which limits its applicability to signals that can take 

same shape as those basic function. However, in transient the signals usually behaves in a 

different way from sine and cosine and hence Fourier-based techniques may not be a 

suitable tool.  

Wavelet transform which is a time-frequency analysis method has been reported 

in the literature. Despite being able to address the trade-off between time and frequency 
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resolution through the adaptive window, unlike Fourier which uses a fixed window 

throughout the analysis, there are many parameters that could affect the detection process 

when using wavelets. For example, wavelet families have a rich library of basic functions 

that could be used (e.g., Daubechies, Coiflets, Symlets, and Biorthogonal) and it is not 

clear in the literature which wavelet should be suitable in the analysis. Moreover, the 

choice of the number of wavelet decomposition levels plays a role in the analysis and this 

needs to be justified.  

To automate the process of appliance detection in non-intrusive load monitoring 

application, supervised machine learning techniques have been used. Since the problem 

of non-intrusive appliance load monitoring involves more than two appliances, the binary 

classification problem can be transformed into several binary classification problems and 

then a binary machine learning classifier can be used. Machine learning algorithms 

usually try to find decision boundaries to find patterns in the feature vectors so that the 

appliance’s operation can be detected. The machine learning process usually starts by 

building the classification model using training data set and then use the testing data set 

to let the machine learning classifier to predict new instances. The classification accuracy 

is usually used as the measure of the performance of the classifier.  
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3. Methodology 

3.1   Introduction 

This chapter starts by presenting the mathematical formulation of the power 

components used in steady-state analysis mode for non-intrusive load monitoring 

followed by a presentation of Fourier Transform to extract the power components at the 

power system frequency (i.e., 60 Hz). The fundamentals of wavelet transform as a time-

frequency analyzing tool used in this thesis to extract the hidden features in the electrical 

signals is also presented.  

In order to automate the process of non-intrusive load disaggregation, Decision 

Tree (DT) classifier is introduced as the machine learning tool to perform such task. The 

mathematical background and the parameters setting of such algorithm is introduced. 

Also this chapter presents the classification accuracy measure which is used in this work 

to assess the performance of the Decision Tree classification model developed for non-

intrusive load monitoring. 

3.2   Fourier Transform 

In signal analysis Fourier Transform (FT) provides an amplitude-frequency 

spectrum of the time domain analysis signal x(t) using the following formula: 

𝑋(𝑓) =  ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡            
∞

−∞
     (3.1) 

In Fourier Transform any periodic signal can be presented using an infinite sum of 

periodic complex exponential function from minus infinity to plus infinity as the integral 
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shows. When Fourier Transform (FT) is applied to the time domain voltage and current 

signals the corresponding fundamental components can be extracted from which the three 

power components active P, reactive Q and apparent power S can be computed.   

𝑃1 = 𝑉1𝐼1𝑐𝑜𝑠𝜃1      (3.2) 

𝑄1 = 𝑉1𝐼1𝑠𝑖𝑛𝜃1      (3.3) 

𝑆1 = 𝑉1𝐼1      (3.4) 

Where, the subscript ‘1’ is used to refer to the fundamental power system component 

(i.e., 60 Hz), V and I are the root mean square of the voltage and current signals and θ1 is 

the phase angle displacement.  

 

The main limitation of Fourier transform is that it assumes that the signal is 

periodic and hence it is not suitable for transient signals. Also Fourier Transform suffers 

fixed window size and hence there is always a tradeoff between time and frequency 

resolution.  

3.3   Wavelet Transform 

Wavelet means a small wave and it has a finite length. The continuous wavelet 

transform can be formulated mathematically as following:  

𝐶(𝑎, 𝑏) =  ∫ 𝑓(𝑡)𝜑𝑎,𝑏(𝑡)𝑑𝑡
∞

−∞
                (3.5) 

where,  𝜑𝑎,𝑏(𝑡) =  𝑎
1

2𝜑(
𝑡−𝑏

𝑎
) represents a window function and the term a is for scaling 

and the term b for translation.  
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Wavelet transform is a time-frequency representation of any signal. Unlike, all 

Fourier-based transforms (Discrete Fourier, Fast Fourier or Short Time Fourier 

Transform) which suffer fixed size window, wavelet transform is able to provide variable 

size window as shown in figure 3.1 and hence time and frequency resolutions are not 

compromised. Scaling parameter in Wavelet transform is inversely related to frequency 

parameter. High scales indicate low frequencies and low scales indicate to high 

frequencies. 

 

Fig. 3.1: Time-scale of wavelet transform. 

3.3.1 Discrete Wavelet Transform 

In wavelet analysis, the signal x(t) can be expressed in terms of the basic 

functions in approximations and details.  

𝑥(𝑡) =  ∑ 𝑐𝐴0(𝑘)∅𝑗,𝑘(𝑡)𝑘      (3.6) 

𝑥(𝑡) =  ∑ 𝑐𝐴1(𝑘)∅𝑗−1,𝑘(𝑡)𝑘 + ∑ 𝑐𝐷1(𝑘)𝜑𝑗−1,𝑘(𝑡)𝑘    (3.7) 
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The process starts by extracting the signal component at scale index j and 

generate the two sets of coefficients cA1(k) and cD1(k) at scale j-1. Also, given the two 

sets of coefficients at scale j-1, the original signal x(t) can be obtained using cA0(k). The 

former process is usually known as decomposition step while the latter is commonly 

known as reconstruction step. This decomposition/reconstruction process can be seen as 

filtering of the analysis signal using low-pass and high pass filters.  

 

𝑐𝐴1 = ∑ ℎ0(𝑘 − 2𝑛)𝑐𝐴0(𝑘)𝑘     (3.8) 

𝑐𝐷1 = ∑ ℎ1(𝑘 − 2𝑛)𝑐𝐴0(𝑘)𝑘     (3.9) 

Where, cA1 and cD1 represent the approximation and detail wavelet coefficients at level 1, 

h0 and h1 represent the low-pass and high pass filter coefficients. The down-sampling 

involved in the computation of the wavelet coefficients is simply done by omitting every 

other value of the samples making the discrete-time signal x(n). Since down-sampling is 

performed during the decomposition phase, an up-sampling process is performed during 

the reconstruction phase.  

Several wavelet basis functions can be chosen to perform the analysis and hence 

different filter characteristics can be used in the decomposition phase. The following is a 

brief summary of each wavelet family and its characteristics.  

3.3.1.1 Daubechies Wavelet 

This family is named after the scientist Ingrid Daubechies who has invented the 

compactly supported orthonormal wavelets for discrete wavelet analysis. Figure 3.2 (a) 

and (b) shows the scaling and wavelet functions of Daubechies of order 2 and 3 



 

24 

 

 

respectively. Figure 3.3 (a) and (b) shows the frequency responses of the Daubechies 

filters of order 2 and 3 respectively.  

Inspection of figure 3.3 reveals that Daubechies filters of higher order tend to 

have sharp fall-off characteristics in the transition band. This property is needed to 

eliminate any unwanted signal components in the stop band of the filter. In this thesis, ten 

members of this family (Daubechies 1 to Daubechies 10) are used in the non-intrusive 

load monitoring.  

  

(a) 
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(b) 

Fig. 3.2: Daubechies of order 2 and 3. Scaling function in blue and wavelet function in 

red.  
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(a) 
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(b) 

Fig. 3.3: Frequency response of Daubechies filters of order 2 and 3. Low pass filter in 

blue and high pass filter in red. 

 

3.3.1.2 Coiflets Wavelet 

This family is also developed by Ingrid Daubechies but at the request of Ronald 

Coifman. Figure 3.4 (a) and (b) shows the time domain scaling and wavelet functions of 

Coifletss of order 1 and 2 respectively. The frequency response of the Coiflets filters 

shown in figure 3.5 reveal that these wavelets are characterized by more flatness in the 
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low frequency range compared to that of Daubechies filters.  Five members of this family 

(Coiflet 1 to Coiflte 5) are covered in this thesis.  

 

(a) 



 

29 

 

 

 

(b) 

Fig. 3.4: Coiflets of order 1 and 2. Scaling function in blue and wavelet function in red. 
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(a) 
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(b) 

Fig. 3.5: Frequency response of Coiflets filters of order 1 and 2. Low pass filter in blue 

and high pass filter in red. 

 

3.3.1.3 Symlets Wavelet 

This family was developed by modifying Daubechies family so that the phase 

response of the filters become symmetric. The magnitude response in the frequency 

domain is similar to that of Daubechies filters. Ten members of this family (Symlet 1 to 

Symlet 10) are included in this work.  

3.3.1.4 Biorthogonal Wavelet 
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Orthogonal wavelets are characterized by same scaling and wavelet functions in 

both stages; decomposition and reconstruction. However, in biorthogonal wavelets, two 

different set of scaling and wavelet functions are used in the decomposition and 

reconstruction stages. The decomposition and reconstruction using biorthogonal wavelet 

cans be mathematically expressed as: 

Decomposition  𝑥(𝑘) = ⟨𝑥, ∅̃⟩ and reconstruction 𝑥 = ∑ 𝑥(𝑘)∅𝑘    (3.10) 

 

3.3.2 Wavelet-based Feature Extraction 

Discrete Wavelet transform (DWT) is used in this thesis to map the target signal 

X (current signal) into the frequency domain by computing the wavelet coefficients using 

the low and high pass filtering. The energy of the wavelet coefficients usually hold 

prominent features of the target signal and therefore extracting these hidden features 

would help in the load classification process. 

In this study, the information contained in the change in the target signal X 

following the switching of loads is used for NILM. Unlike previous work in which the 

energy of the wavelet coefficients of the original signals are used directly for load 

identification, the change in the signal is used in this thesis and is computed using the 

difference between samples over the cycles. Figure 3.6 illustrates the process of 

computing the sample differences over the cycles of the target signal X to obtain Xd. 

Wavelet transform is then applied to Xd to find the approximation and details wavelet 

coefficients cA and cD using the inner product with the scaling and wavelet functions ∅ 
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and 𝜑 respectively. The energy of the computed wavelet coefficients is then calculated 

for both the approximation and detail levels j: 

𝐸𝑐𝐴 = ∑ |𝑐𝐴(𝑙)|2
𝑙    and   𝐸𝑐𝐷 = ∑ |𝑐𝐷(𝑙)|2

𝑙      (3.11) 

 

 

Fig. 3.6: Sample difference between sequences of the target signal X 

 

3.4   Machine Learning Classification 

 3.4.1 Decision Tree Classification 

The objective of this study is to develop a classification tree model using the 

power components as features for non-intrusive load monitoring applications. Decision 

Tree (DT) uses the greedy Hunt’s algorithm which relies on assessing the impurities on 

each node and then determines the best split among attributes that gives the lowest node 

impurity measured by Gini index 

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑ [𝑝(𝑚|𝑡)]2𝑐−1
𝑚=0    (3.12) 

Where 𝑝(𝑚|𝑡)  is the fraction of records belonging to class m at a given node t [27]. 
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Since Decision Tree is mainly designed to work for binary classification 

problems, the challenges comes from the binary characteristic of the method which 

means the method can only classify data into two classes. Typically in Non-intrusive 

Load Monitoring applications more than two classes (i.e., loads) need to be identified and 

hence the problem becomes of multi-class type. In order to overcome this challenge, the 

“one-against-rest” method is utilized in which one class is set as positive and the 

remaining classes are set as negative. By doing so, this multi-class problem can be 

transformed into multiple binary classification problems and hence binary decision trees 

can be applied since class’s labels are either positive or negative. 

 

3.4.2 Training, Testing and Classification Accuracy 

The Decision Tree algorithm requires two subsets; one for training and one for 

testing. The original data set obtained after computing the energy of the wavelet 

coefficients as outlined in the previous subsection is divided into two subsets. The first 

subset is used to develop the DT model needed for load classification and is known as 

training subset. The second subset is used by the DT model to predict previously unseen 

records and hence is used for testing the classifier capability to identify the loads. 

The performance of the DT classification model that is developed using the 

power components features is measured in this study using the classification accuracy 

index µ 

μ =
Number of records correctly classificed by DT

Total number of records
 (3.13) 
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Typically, in Decision Tree classifier, the training accuracy is much higher than 

the classification (or sometimes called testing) accuracy. The reason for this is because 

when the training accuracy is computed, the training records are used which are also used 

in developing the classification model and therefore, the number of misclassified cases 

become small. Since the interests is usually to assess the performance of the classifier to 

predict previously unseen cases, the classification accuracy (or testing) is used this work 

to assess the performance of the developed DT classification model for non-intrusive 

appliance monitoring.  

3.5 Contribution 

In this thesis, the wavelet transform which is a powerful time-frequency analysis 

tool is investigated to assess its effectiveness in extracting the hidden features in the 

analysis signals resulted from individual appliances operation for non-intrusive load 

monitoring application. The current signals sensed at the single point of measurement are 

sampled and the energy of the wavelet coefficients are computed using the change in the 

current sequence after being discretizing. Four wavelet families are investigated in this 

thesis; Daubechies, Symlets, Coiflets and Biorthogonal. The work presented in this thesis 

aims to identify the most appropriate wavelet to perform such analysis and be able to 

extract the hidden features in the transients’ signals using the energy-based wavelet 

coefficients. 
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In order to automate the load detection process, Decision Tree classifier which is 

a supervised machine learning is used to develop the classification model using the 

identified features obtained from the energy of the wavelet coefficients. The classification 

models corresponding to each wavelet family is tested under different power quality 

disturbances such as voltage magnitude variations, frequency variations and harmonic 

distortion.  The classification accuracy is used as a measure of the prediction performance 

of the classification model obtained from each wavelet family.     
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4. Results and Discussion 

4.1 System Description  

The set-up used to generate the data set in this research is as shown in figure 4.1. 

The set-up consists of 4 different loads: Battery charger (BAT), Fluorescent Lamp (CFL), 

Personal Computer (PC) and incandescent Light Bulb (LB). The set-up is modeled in 

PSCAD/EMTDC after modeling all the loads according to [28] and [29] as shown in 

figure 4.2.  

Calibrated 

power source

BAT

CFL

PC

LB

Breaker 1

Breaker 2

Breaker 3

Breaker 4

Voltage 

transducer 

Current 

transducer 

Power computation

P, Q, S

 

Fig. 4.1: Block diagram for the four-load set-up. 
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(a) 

 

 

(b) 
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(c) 
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(d) 

Fig. 4.2: Circuit diagrams modeling the four-load set-up. (a) Battery charger, (b) 

Incandescent light bulb, (c) Fluorescent lamp and (d) Personal computer. 
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 The simulation time is set to 10 seconds and the loads are switched after 3 

seconds. The voltage and current signals are sampled at 256 samples per cycle (i.e., the 

sampling rate is 15.36 kHz). These loads are supplied from a dedicated calibrated power 

source and the measurements are taken at a single point using voltage and current 

transducers. Table 4.1 lists all possible load switching of the four breakers used in the set-

up. 

 

Table 4.1 Breakers switching status for the four-load set-up. 

Breaker 1 Breaker 2 Breaker 3 Breaker 4 

T B C D 

B T C D 

B C T D 

B C D T 

 

Each breaker is switched on after 3 seconds if it has true case (T) label. Other 

breaker variables (B or C or D) can only have binary values, either 0 or 1. If it is 1, the 

breaker is switched on at zero seconds. Otherwise, the breaker is off over this entire run, 

which is 10 seconds. In addition to the base case where no disturbance is applied, the 

following three power quality disturbances are applied: voltage variations, frequency 

variations and harmonic distortion as explained in detail in the following subsection. 
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4.2 Verification 

The verification phase is important to investigate if these models have been built 

correctly. To achieve this aim, the measured current for each load as in figure 4.3 is 

compared with the calculated currents of the four loads considered in this study as shown 

in Table 4.2.  

 

Fig. 4.3: Current waveforms for individual operation. 
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Table 4.2 Hand verification of each load current in the four-load set-up 

Load Type Measured Current Calculated Current 

Battery Charger 3.05 3.18 

Fluorescent lamp 0.21 0.21 

Personal Computer 0.92 0.92 

Incandescent light bulb 0.50 0.50 

 

Beside the verification for the individual operation for each load, the values for 

their combinations have been verified. Then, the values of these models have been 

compared with the [28] and [29], and they matched. As a result, the data set for each load 

and its combinations are acquired accurately.  These four loads have been studied as in 

figure 4.4 

 

Fig. 4.4: Proposed monitoring system. 
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 After that, the data set will be preprocessing and utilized by wavelet transform. 

Therefore, the second step is to verify wavelet transform.  The energy of the coefficients 

for different cases have been calculated by hand and compared with those who found by 

computerization. The results matched.  

The final verification is for the machine learning classification. Although the 

performance for each models has been assessed by DTC using the classification 

accuracy, the classification accuracy for several cases has been verified by hand.   

 

4.3 Test Cases 

The four-load system described earlier is used to generate the data set needed to develop 

the DT classification model. The process starts by switching on each individual load after 

3 seconds while considering all possible combinations of the remaining loads prior to the 

switching take place. For example, if we consider the battery charger as the load to be 

switched on, eight cases represent the remaining loads taking all possible combinations as 

listed in Table 4.3 with the rest of the loads remaining in their states from the beginning 

of the simulation till the end (i.e., 10 seconds).  

 

Since there are four loads to be switched on, thirty two cases (4 loads × eight 

cases) are the result of this switching process. This process is repeated but after applying 

three types of power quality disturbances: 1) Voltage magnitude variation (± 5% in 1% 

step), 2) frequency variation ranging from 55Hz to 65 Hz in 1Hz step, and 3) harmonic 
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distortion by adding 5th harmonic ranging from 1% to 5% in 1% step. This brings the 

total number of cases to 864 cases which is the outcome of the following sum: 11 voltage 

variation cases × 32 switching cases = 352, 11 frequency variation cases × 32 switching 

cases = 352, and 5 harmonic distortion cases × 32 switching cases = 160. 

 

The current signals measured at the point of common coupling and obtained from 

all 864 cases are then used to compute the sample difference to obtain the change in the 

current and hence the signal Xd. Discrete wavelet transform (DWT) is then applied and 

the energy of the coefficients for six decomposition levels is computed.  

 

The choice of six wavelet decomposition levels is to ensure that the power system 

frequency (i.e., 60 Hz) is centered in the approximation level as shown in Table 4.4. The 

resultant data set consisting of 864 records and 7 attributes (one approximation level and 

six detail levels) represents the data set to be used for the classification using Decision 

Tree classifier. 
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Table 4.3 Switching strategy to generate the data set for the battery load 

Cases Battery CFL PC ILB 

1 

Load to be 

switched on 

at 3 seconds 

OFF OFF OFF 

2 OFF OFF ON 

3 OFF ON OFF 

4 OFF ON ON 

5 ON OFF OFF 

6 ON OFF ON 

7 ON ON OFF 

8 ON ON ON 

 

Table 4.4 Wavelet frequency sub-bands for six decomposition levels  

Wavelet decomposition level Frequency sub-band in Hz 

d1 3840 – 7680 

d2 1920 – 3840 

d3 960   – 1920 

d4 480   – 960 

d5 240   – 480 

d6 120   – 240 

a6 0       – 120 
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 4.3 Numerical Results 

            The set up shown in figure 4.1 is used as the test bed to assess the performance of 

the classification model developed.  

4.3.1 Fourier-based Analysis 

            Table 4.5 lists the classification accuracies obtained after applying the one-

against-rest approach in case of using the computed power components (i.e., active, 

reactive and apparent power) using Fourier transform using the approaches in [1] and [3]. 

Table 4.5 lists the percentage mean classification accuracy obtained using the power 

components and the individual load classification accuracies.  

 Visual inspection of the table reveals that for all positive classes the maximum 

classification accuracy obtained is 78.08% for the personal computer. On the other hand 

the mean classification accuracy when considering the four loads is 73.19%.  

The main reason for this low classification accuracy is because of the errors 

introduced by Fourier since it assumes that the analyzed signal is periodic and hence it 

does not perform well in case of non-periodic signals and hence the performance of the 

Decision tree classification model would be degraded. This justifies the low classification 

accuracies of individual loads and also the mean classification accuracy.  
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Table 4.5 Classification accuracies in percent using one-against-rest approach. 

Positive class Accuracy using actual power 

Battery 68.29 

CFL 73.97 

PC 78.08 

LB 72.40 

Mean 73.19 

 

4.3.2 Wavelet-based Analysis 

            The classification accuracies obtained when using different wavelet families to 

compute the energy of the wavelet coefficients for classification of the four loads in the 

system shown in figure 4.1 are computed and listed in Tables 4.6 – 4.12.  

The tables list the absolute classification accuracies when each load type (e.g. 

battery charger, fluorescent light, personal computer and incandescent light bulb) is 

considered as the positive class in the classification process.  

The tables also list the mean classification accuracy of the classification model of 

the four loads for each wavelet basic function.  
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Table 4.6 Classification accuracies in percent using one-against-rest approach 

(Daubechies (DB) of orders 1 to 5). 

Positive class DB1 DB2 DB3 DB4 DB5 

Battery 99.76 98.61 98.14 97.45 97.45 

CFL 94.67 97.22 96.29 96.52 92.12 

PC 99.30 98.84 97.45 99.53 95.60 

LB 96.06 98.14 96.99 89.35 94.21 

Mean 97.45 98.20 97.22 95.71 94.84 

 

 

Table 4.7 Classification accuracies in percent using one-against-rest approach in 

transients (Daubechies (DB) of orders 6 to 10) 

Positive class DB6 DB7 DB8 DB9 DB10 

Battery 95.83 97.22 99.07 98.84 98.37 

CFL 89.35 92.36 96.52 96.29 96.52 

PC 98.84 99.76 98.84 98.37 98.37 

LB 93.51 94.21 95.60 94.90 95.13 

Mean 94.38 95.89 97.51 97.10 97.10 
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Table 4.8 Classification accuracies in percent using one-against-rest approach in 

transients (Coiflets (COIF) of orders 1 to 5) 

Positive class COIF1 COIF2 COIF3 COIF4 COIF5 

Battery 98.37 98.37 98.37 99.53 95.60 

CFL 92.82 92.82 90.50 95.60 96.99 

PC 98.84 98.84 98.14 99.30 97.45 

LB 93.51 93.51 92.36 96.29 94.90 

Mean 95.89 95.89 94.84 97.68 96.23 

 

 

Table 4.9 Classification accuracies in percent using one-against-rest approach in 

transients (Symlets (SYM) of orders 1 to 5) 

Positive class SYM1 SYM2 SYM3 SYM4 SYM5 

Battery 99.76 98.611 98.14 98.14 98.84 

CFL 94.67 97.22 96.29 96.75 96.52 

PC 99.30 98.84 97.45 100.00 96.29 

LB 96.06 98.14 96.99 96.75 91.89 

Mean 97.45 98.20 97.22 97.91 95.89 
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Table 4.10 Classification accuracies in percent using one-against-rest approach in 

transients (Symlets (SYM) of orders 6 to 10) 

Positive class SYM6 SYM7 SYM8 SYM9 SYM10 

Battery 96.52 96.75 97.45 96.06 95.83 

CFL 96.06 90.97 95.13 93.75 95.37 

PC 100.00 98.37 99.07 97.91 98.37 

LB 93.51 91.20 93.05 95.83 95.13 

Mean 96.52 94.32 96.18 95.89 96.18 

 

 

Table 4.11 Classification accuracies in percent using one-against-rest approach in 

transients (Biorthogonal (BIOR) of orders 1.3 to 3.5) 

Positive class BIOR1.3 BIOR1.5 BIOR3.1 BIOR3.3 BIOR3.5 

Battery 99.76 98.61 97.45 97.45 98.37 

CFL 94.67 92.59 94.44 95.37 96.99 

PC 99.30 97.22 95.60 96.52 96.06 

LB 96.06 95.83 96.99 94.67 95.37 

Mean 97.45 96.06 96.12 96.00 96.70 
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Table 4.12 Classification accuracies in percent using one-against-rest approach in 

transients (Biorthogonal (BIOR) of orders 3.7 to 6.8) 

Positive class BIOR3.7 BIOR3.9 BIOR4.4 BIOR5.5 BIOR6.8 

Battery 98.61 99.07 96.06 96.99 97.68 

CFL 96.29 97.45 96.06 93.98 93.98 

PC 97.91 98.37 97.68 96.75 98.61 

LB 94.90 94.21 94.44 92.12 93.98 

Mean 96.93 97.28 96.06 94.96 96.06 

 

 

Inspection of Tables 4.6 to 4.12 reveals that the best mean overall classification 

accuracy achieved is 98.20% when using Daubechies of order 2 and Symlets of order 2. 

On the other hand, in case of each individual load, several wavelets can be identified to 

perform well and have contributed to improving the classification accuracy.  

The results show that in case of battery charger load, Daubechies and Symlets of 

order 1 provide 99.76% classification accuracy while in case of fluorescent light 

Biorthogonal 3.9 provides 97.45% classification accuracy. Symlets 4 and Symlets 6 are 

able to effectively classify the personal computer load at 100% accuracy while 

Daubechies of order 2 was able to classify the incandescent light bulb at 98.14% 

accuracy.    

The presented results show that Symlets family outperform other wavelets such as 

Coiflets and Biorthogonal in terms of the mean classification accuracy. On the other 
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hand, despite both Symlet 2 and Daubechies 2 provide the same mean classification 

accuracy, Symlets outperform Daubechies in terms of individual load detection and 

classification which has been observed from the classification accuracies of detecting 

individual loads. In case of battery charger, for instance, the records are seen as a binary 

classification problem that includes a positive class which is the battery charger versus 

the negative class, which is represented by the rest of loads. Symlet 2 is able to detect 108 

cases for the positive class and 318 cases for the negative class. These represent the true 

positive and true negative classification cases, respectively. However, it incorrectly 

predicted 6 records as a positive class.  

4.4 Discussion 

            The problem of non-intrusive load monitoring can be addressed using Fourier 

transform or using wavelet transform. In this chapter, both transforms have been used to 

detect and classify four loads (e.g., battery charger, fluorescent light, personal computer, 

and incandescent light bulb). Decision tree classier is used to develop the classification 

model and the mean classification accuracies are computed. Also, the classification 

accuracies when considering each load as a positive class in the classification process are 

computed and compared.  

The results have shown that the mean classification accuracy obtained using the 

wavelet transform is significantly higher compared to that obtained using Fourier 

transform with an absolute difference of 25.01%. This large absolute percentage 

difference explains the capability of wavelets to handle transients and hence better 
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detecting and classifying the loads in non-intrusive load monitoring applications. 

Moreover, since the wavelet library is rich in different wavelet basic functions (e.g. 

Daubechies, Symlets, Coiflets and Biorthogional) having different wave shape, they can 

better match the transient pattern as opposed to Fourier which are limited only to the sine 

and the cosine wave shape.  

After investigating the effectiveness of different wavelet families and different 

wavelet orders, it can be concluded that Symlets wavelet family and in particular Symlets 

of order 2 can provide the best accuracy in detecting and classifying the loads in the non-

intrusive load monitoring application.   
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5. Conclusion  

           5.1 Principal Contribution  

This thesis presents a new approach using wavelets and machine learning applied 

to non-intrusive load monitoring. Several Wavelet functions from different wavelet 

families (i.e., Daubechies, Coiflets, Symlets and Biorthogonal) have been used in the 

analysis and the results have been evaluated. As a non-intrusive approach, the current 

signal measured at the point of load interconnection is sampled at 256 samples per cycle 

and the difference between the current samples is computed so that the change between 

cycles of the current signal is used for wavelet analysis.  

The energy of the wavelet coefficients of the change in the current signal is 

computed using different wavelet functions that belong to the wavelet families listed 

earlier. Six wavelet decomposition levels are used and the energy of the wavelet 

coefficients of the six wavelet decomposition levels are presented to the Decision tree 

classifier.   

 

In order to automate the classification of the detect load appliance, Decision Tree 

classifier is used to develop the classification model using the energy of the wavelet 

coefficients in the six wavelet levels. The Gini index is used to identify the best split at 

each node of the developed tree among the seven attributes (i.e., one approximation level 

and six detail levels). Several power quality disturbances have been considered in this 

study, such as voltage variations, frequency variations and harmonic distortion. The 
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classification accuracy is used to assess the classification model performance in detecting 

the correct appliance’s operation.   

           5.2 Conclusion  

In this thesis, several test cases have been studied including Fourier transform and 

wavelet transform as the analysis tool. Also Decision Tree machine learning classifier is 

used to develop classification models for the cases that have been considered. Four loads 

representing most common appliances load in electric power system have been 

considered in this study and a test bed has been modeled using PSCAD/EMTDC 

commercial software package.  

The results of applying the proposed wavelet analysis and machine learning 

classifier have shown that different classification accuracies can be obtained for different 

wavelet families and also different wavelet functions. Two types of classification 

accuracies are used in this thesis to assess the performance of the proposed approach; 1) 

individual load classification accuracy and 2) overall mean classification accuracy.  

The results have shown that the best overall mean classification accuracy 

achieved is 98.20% when using Daubechies of order 2 and Symlets of order 2. On the 

other hand, in case of each individual load classification accuracy, several wavelets can 

be identified to perform well and have contributed to improving the classification 

accuracy. The results show that in case of battery charger load, Daubechies and Symlets 

of order 1 provide 99.76% classification accuracy while in case of fluorescent light 

Biorthogonal 3.9 provides 97.45% classification accuracy. Symlets 4 and Symlets 6 are 
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able to effectively classify the personal computer load at 100% accuracy while 

Daubechies of order 2 was able to classify the incandescent light bulb at 98.14% 

accuracy.    

Moreover, in comparison with Fourier transform-based approach in which the 

power components such as active, reactive and apparent power are used, the maximum 

classification accuracy obtained is 78.08% for the personal computer. On the other hand 

the mean classification accuracy when considering the four loads is 73.19%. This large 

difference in the obtained classification accuracy between the Symlets-based approach 

and the Fourier-based approach is due to the errors introduced by Fourier since it assumes 

that the analyzed signal is periodic and hence it does not perform well in case of non-

periodic signals.  

  5.3 Recommendations and Future Work 

The work presented in this thesis has shown that the use of wavelet analysis can 

be more effective compared to Fourier analysis techniques. The main reason is due to the 

diversity of wavelet function shapes unlike Fourier which is limited only to sine and 

cosine. Therefore, Wavelet transform and in particular Symlets family has proven to be 

very useful in non-intrusive appliance load monitoring since it has been shown to achieve 

both best overall mean and individual load classification accuracies.  

Since different Symlets wavelets have shown to provide different individual load 

classification accuracies, it is recommended as future work to investigate the potential of 

mixing different Symlets members to improve the classification accuracies.  Since in 

non-intrusive load monitoring different loads may have different transient patterns, it may 
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be recommended to choose only a subset of the 10 Symlets members to use in the 

analysis and hence increasing the classification accuracies. It is worth noting that when 

mixing different Symlets at different orders, the dimension of the feature vector increases 

which may increase the computational complexity.  

The non-intrusive load appliance monitoring may be considered as multi-class 

problem. The work presented in this thesis uses the one-against-rest approach which 

treats the multi-class problem as multiple binary classification problem. The main 

advantage of such approach is its simplicity due to only limiting the number of classes 

into two (one class positive and one class negative). However, increasing the number of 

loads results in increased number of classification problems which adds more complexity. 

It is recommended for future work to apply a multi-class classification approach to the 

Decision tree classifier.  

 

 

 

 

 

 

 



 

59 

 

 

References 

[1] G. W. Hart, "Nonintrusive appliance load monitoring," Proceedings of the IEEE, 

vol. 80, pp. 1870-1891, 1992. 

[2] A. Cole and A. Albicki, "Nonintrusive identification of electrical loads in a three-

phase environment based on harmonic content," in Instrumentation and 

Measurement Technology Conference, 2000. IMTC 2000. Proceedings of the 17th 

IEEE, 2000, pp. 24-29. 

[3] J. Roos, I. Lane, E. Botha, and G. Hancke, "Using neural networks for non-

intrusive monitoring of industrial electrical loads," in Instrumentation and 

Measurement Technology Conference, 1994. IMTC/94. Conference Proceedings. 

10th Anniversary. Advanced Technologies in I &amp; M., 1994 IEEE, 1994, pp. 

1115-1118. 

[4] L. K. Norford and S. B. Leeb, "Non-intrusive electrical load monitoring in 

commercial buildings based on steady-state and transient load-detection 

algorithms," Energy and Buildings, vol. 24, pp. 51-64, 1996. 

[5] M. L. Marceau and R. Zmeureanu, "Nonintrusive load disaggregation computer 

program to estimate the energy consumption of major end uses in residential 

buildings," Energy Conversion and Management, vol. 41, pp. 1389-1403, 2000. 

[6] A. I. Cole and A. Albicki, "Algorithm for nonintrusive identification of residential 

appliances," in Circuits and Systems, 1998. ISCAS'98. Proceedings of the 1998 

IEEE International Symposium on, 1998, pp. 338-341. 



 

60 

 

 

[7] S. Gupta, M. S. Reynolds, and S. N. Patel, "ElectriSense: single-point sensing 

using EMI for electrical event detection and classification in the home," in 

Proceedings of the 12th ACM international conference on Ubiquitous computing, 

2010, pp. 139-148. 

[8] H. Lam, G. Fung, and W. Lee, "A Novel method to construct taxonomy electrical 

appliances based on load signaturesof," Consumer Electronics, IEEE 

Transactions on, vol. 53, pp. 653-660, 2007. 

[9] J. Liang, S. K. Ng, G. Kendall, and J. W. Cheng, "Load signature study—Part I: 

Basic concept, structure, and methodology," Power Delivery, IEEE Transactions 

on, vol. 25, pp. 551-560, 2010. 

[10] A. Marchiori, D. Hakkarinen, Q. Han, and L. Earle, "Circuit-level load 

monitoring for household energy management," Pervasive Computing, IEEE, vol. 

10, pp. 40-48, 2011. 

[11] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar, "Non-intrusive load 

monitoring approaches for disaggregated energy sensing: A survey," Sensors, vol. 

12, pp. 16838-16866, 2012. 

[12] T. Pang-Ning, M. Steinbach, and V. Kumar, "Introduction to data mining," in 

Library of Congress, 2006. 

[13] S. B. Leeb, S. R. Shaw, and J. L. Kirtley Jr, "Transient event detection in spectral 

envelope estimates for nonintrusive load monitoring," Power Delivery, IEEE 

Transactions on, vol. 10, pp. 1200-1210, 1995. 



 

61 

 

 

[14] A. I. Cole and A. Albicki, "Data extraction for effective non-intrusive 

identification of residential power loads," in Instrumentation and Measurement 

Technology Conference, 1998. IMTC/98. Conference Proceedings. IEEE, 1998, 

pp. 812-815. 

[15] H.-H. Chang, H.-T. Yang, and C.-L. Lin, "Load identification in neural networks 

for a non-intrusive monitoring of industrial electrical loads," in Computer 

Supported Cooperative Work in Design IV, ed: Springer, 2008, pp. 664-674. 

[16] H.-H. Chang, "Non-intrusive demand monitoring and load identification for 

energy management systems based on transient feature analyses," Energies, vol. 

5, pp. 4569-4589, 2012. 

[17] S. R. Shaw, S. B. Leeb, L. K. Norford, and R. W. Cox, "Nonintrusive load 

monitoring and diagnostics in power systems," Instrumentation and 

Measurement, IEEE Transactions on, vol. 57, pp. 1445-1454, 2008. 

[18] M. Zeifman and K. Roth, "Nonintrusive appliance load monitoring: Review and 

outlook," Consumer Electronics, IEEE Transactions on, vol. 57, pp. 76-84, 2011. 

[19] D. He, W. Lin, N. Liu, R. G. Harley, and T. G. Habetler, "Incorporating Non-

Intrusive Load Monitoring Into Building Level Demand Response," Smart Grid, 

IEEE Transactions on, vol. 4, pp. 1870-1877, 2013. 

[20] Z. Wang and G. Zheng, "Residential appliances identification and monitoring by 

a nonintrusive method," Smart Grid, IEEE Transactions on, vol. 3, pp. 80-92, 

2012. 



 

62 

 

 

[21] G. Hoogsteen, J. O. Krist, V. Bakker, and G. J. Smit, "Non-intrusive appliance 

recognition," in Innovative Smart Grid Technologies (ISGT Europe), 2012 3rd 

IEEE PES International Conference and Exhibition on, 2012, pp. 1-7. 

[22] H.-H. Chang, K.-L. Chen, Y.-P. Tsai, and W.-J. Lee, "A new measurement 

method for power signatures of nonintrusive demand monitoring and load 

identification," Industry Applications, IEEE Transactions on, vol. 48, pp. 764-

771, 2012. 

[23] J. Froehlich, E. Larson, S. Gupta, G. Cohn, M. Reynolds, and S. Patel, 

"Disaggregated end-use energy sensing for the smart grid," IEEE Pervasive 

Computing, vol. 10, pp. 28-39, 2011. 

[24] C. J. Burges, "A tutorial on support vector machines for pattern recognition," 

Data mining and knowledge discovery, vol. 2, pp. 121-167, 1998. 

[25] H. Chang, K. Lian, Y. Su, and W. Lee, "Power Spectrum-Based Wavelet 

Transform for Non-Intrusive Demand Monitoring and Load Identification," 2013. 

[26] C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, et al., "Power 

signature analysis," Power and Energy Magazine, IEEE, vol. 1, pp. 56-63, 2003. 

[27] L. Olshen and C. J. Stone, "Classification and regression trees," Wadsworth 

International Group, 1984. 

[28] C. Venkatesh, D. S. Kumar, D. S. Sarma, and M. Sydulu, "Modelling of nonlinear 

loads and estimation of harmonics in industrial distribution system," in Fifteenth 

National Power Systems Conference (NPSC), IIT Bombay, 2008, pp. 592-597. 



 

63 

 

 

[29] P. R. Nasini, N. R. Narra , and A. Santosh, "Modeling and harmonic analysis of 

domestic/industrial loads," in International Journal of Engineering Research and 

Application 2012, pp. 485-491. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

64 

 

 

Appendix A 

Decision Tree Classifier (DTC) is considered as a binary classifier that works by 

assigning a class label for each leaf node based on features of the root and internal nodes. 

Assuming we have instances belong to two classes as in figure A.1 and we want to apply 

DTC on instances in the dotted oval at the same figure.  

 

Fig. A.1: Instances for classification. 

These seven instances would be classified based on the best split among attributes 

that gives the lowest node impurity measured by Gini index 

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑ [𝑝(𝑚|𝑡)]2𝑐−1
𝑚=0    (A.1) 

Where 𝑝(𝑚|𝑡)  represents the relative frequency of class 𝑚 at node 𝑡. 

Where the Gini index for the best split is calculated as  

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 =  ∑
𝑛𝑖

𝑛
 𝐺𝑖𝑛𝑖(𝑖)𝑘

𝑖=1                            (A.2) 

where, 𝑛𝑖 is number of records at child I, and the total number of records at parent node is 

represented by 𝑛. 

These instances can be classified as in figure A.2. 
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Fig. A.2: Splitting attributes. 

Based on the shape, the instances can be discriminated as four squares and four triangles. 

Then, 𝐺𝑖𝑛𝑖 and 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 equal  

𝐺𝑖𝑛𝑖 = 1 − (
4

8
)2 −(

4

8
)2 = 0.5 

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 = (0.5 ∗  
4

8
) + (0.5 ∗  

4

8
) = 0.5  

Based on the color, it can be seen as six blue instances and two non-blue. Therefore, 𝐺𝑖𝑛𝑖 

and 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 are 0.375. Therefore, based on the measure of impurity, the instances 

should be divided using the color because the aim is to reduce the impurity.  
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Appendix B 

In 1D Discrete Wavelet Transform (DWT), signals are analyzed based on 

orthogonal vectors into approximations and details. Then, the approximations can be 

further decomposed into two sub-signals and so on. Figure B.1 explains how the discrete 

time domain signal decomposes.  Theses orthogonal vectors are the wavelet function and 

the scaling function. Approximations and details are computed by taking the inner 

product of the signal and the scaling and wavelet coefficients, respectively.  The 

approximations represent the low-pass filter and the details represent the high-pass filters.  

 

Fig. B.1: Analyzing signal using DWT. 

The maximum level of the analysis is determine based on B.1. 

 𝐿𝑒𝑣𝑒𝑙𝑚𝑎𝑥 =  
log (𝑛)

log (2)
                            (B.1) 

Where n is the number of sample of each signal.  
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Several wavelet families have been utilized in the literature for different 

applications; however, for the simplicity, Daubechies of order 1 (Db1) is used to explain 

how wavelet transom works.  

In Db1, the coefficients of scaling function and for the wavelet function are 

∅ = (
1

√2
,

1

√2
)                            (B.2) 

φ = (
1

√2
,

−1

√2
)                            (B.3) 

Assume 𝑥 is a vector and represented by 16 values  

    𝑥 = (3, 2, 7, 6, 14, 3, 6, 5, 41, 23, 7, 3, 8, 9, 5, 4) 

To find the approximation at the first level, we take the inner product between each pairs 

of the discrete time signal and the scaling function. 

𝐴1 = (
3 + 2

√2
,
7 + 6

√2
,
14 + 3

√2
,
6 + 5

√2
,
41 + 23

√2
,
7 + 3

√2
,
8 + 9

√2
,
5 + 4

√2
) 

= (
5√2

2
,
13√2

2
,
17√2

2
,
11√2

2
, 32√2, 5√2,

17√2

2
,
9√2

2
) 

To compute the energy for the approximation at the first level 

EA1 = (
5√2

2
)2 + ( 

13√2

2
)2 + (

17√2

2
)2 + (

11√2

2
)2 + (32√2)2 + (5√2)2

+ (
17√2

2
)2 + (

9√2

2
)2 = 2585 

Likewise, to find the detail at the first level, we take the inner product between each pairs 

of the discrete time signal and the wavelet function. 

𝐷1 = (
3 − 2

√2
,
7 − 6

√2
,
14 − 3

√2
,
6 − 5

√2
,
41 − 23

√2
,
7 − 3

√2
,
8 − 9

√2
,
5 − 4

√2
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      = (
√2

2
,
√2

2
,
11√2

2
,
√2

2
, 9√2, 2√2,

−√2

2
,
√2

2
) 

To find the energy for the detail at the first level 

ED1 = (
√2

2
)2 + ( 

√2

2
)2 + (

11√2

2
)2 + (

√2

2
)2 + (9√2)2 + (2√2)2 + (

−√2

2
)2

+ (
√2

2
)2 = 233 

Then, the approximation at the first level is decomposed to find the approximation and 

the detail at the second level as following: 

𝐴2 = (
(5 + 13)√2

2√2
,
(17 + 11)√2

2√2
,
(32 + 5)√2

2√2
,
(17 + 9)√2

2√2
, ) = (9, 14,37,13) 

EA2 = (9)2 + ( 14)2 + (37)2 + (13)2 = 1815 

𝐷2 = (
(5 − 13)√2

2√2
,
(17 − 11)√2

2√2
,
(32 − 5)√2

2√2
,
(17 − 9)√2

2√2
, ) = (−4, 3,

27

2
, 4) 

ED2 = (−4)2 + ( 3)2 + (
27

2
)2 + (4)2 = 223.25 

The maximum level of decomposition depends on the length of the vector. In this 

example, the vector can be analyzed at three level of decomposition.  

 


