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ABSTRACT

Given climate change concerns and incessantly increasing energy demands of the present
time, improving energy efficiency becomes of significant environmental and economic
impact. Monitoring household electrical consumption through a non-intrusive appliance
load monitoring (NIALM) system achieves significant efficiency improvement by provid-
ing appliance-level energy consumption and relaying this information back to the user. This
paper focuses on feature extraction and clustering, which constitute two of the four modules
of the proposed automatic-setup NIALM system, the other two being labeling and classifi-
cation. The feature extraction module applies the Estimation of Signal Parameters via Rota-
tional Invariance Techniques (ESPRIT), a well-known parametric estimation technique, to
the drawn electric current. The result is a compact representation of the signal in terms of
complex numbers referred to as poles and residues. These complex numbers are then used
to determine a feature vector consisting of the contribution of the fundamental, the third and
the fifth harmonic currents to the maximum of the total load current. Once a signature is
extracted, the clustering module applies distance-based rules inferred off-line from various
databases and decides either to create a new class out of the new signature or to discard it
and increase the count of an existing signature. As a result, the feature space is clustered
without the a priori knowledge of the number of appliances into singleton clusters. Results
obtained from a set of appliances indicate that these two modules succeed in creating an
unlabeled database of signatures.
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1. INTRODUCTION
Soaring energy prices and growing global warming concerns have triggered governments and policy makers

to promote efficient energy systems that can save considerable amounts of energy and, as a result, reduce carbon
emissions (e.g., [1], [2]). In 2007, the European Council set the following ambitious targets to be achieved by 2020:
reducing emissions of greenhouse gases by 20% with respect to the 1990 levels, improving energy efficiency with the
aim of saving 20% of the European Union energy consumption, and raising the renewable energy sources share to
20% [3]. Load monitoring as a part of energy management system can substantially reduce energy consumption of a
certain household [4]. Indeed, a detailed review of more than 60 feedback studies suggests that considerable energy
saving can be achieved using real-time appliance level consumption information as opposed to monthly bills or weekly
advice on energy consumption [5]. Load monitoring can also provide critical information for the demand response
programs offered by utility companies that improves the load forecasting accuracy and provides a convenient platform
for utility companies to realize a real-time pricing [6], [7].

One method of load monitoring is distributed direct sensing, which requires a sensor at each device or appli-
ance in order to measure consumption. Although conceptually straightforward and potentially highly accurate, direct
sensing is often expensive due to time consuming installation and the requirement for one sensor for each device or
appliance. In response to limitations with the direct sensing approach, researchers have explored methods to infer dis-
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aggregated energy usage via a single sensor. Pioneering work in this area is non-intrusive appliance load monitoring,
first introduced by George Hart in the late 1980s [8]. In contrast to the direct sensing methods, NIALM relies solely
on single-point measurements of voltage and current on the power feed entering the household. NIALM consists of
four steps: data acquisition, event detection, feature extraction, and event classification. The raw current and voltage
waveforms are transformed into a feature vector, i.e. a more compact and meaningful representation that may include
real power, reactive power, current-voltage phase difference, and harmonics (e.g., [9], [10]). These extracted features
are monitored for changes, identified as events (e.g., an appliance turning “on” or “off”), and classified down to the
appliance or device category level using a classification algorithm, which usually compares the features to a preexist-
ing database of signatures. Several reviews and comparative studies of feature extraction and classification methods
for electric loads in residential and commercial buildings can be found in the literature [11–14].

Depending on the degree of non-intrusiveness, the literature differentiates between manual-setup NIALM
(MS-NIALM) and automatic-setup NIALM (AS-NIALM) systems. The manual setup is a non-intrusive appliance
behavior tracker that requires a one-time intrusive period for setup. During the intrusive setup period, individual
appliances are manually switched on and off to learn their signatures. On the other hand, the automatic setup is a
process that sets itself up using prior information about potential appliances. AS-NIALM hence extracts the signatures
and labels them without any sort of manual intervention, which would greatly facilitate mass installation of smart
meters. To the author’s knowledge, no AS-NIALM system has hitherto been implemented. It is hence the main goal
of this work to pave the way for such a solution.

In this paper, the first two modules of an AS-NIALM system are presented. The system consists of the
following four modules: feature extraction, clustering, labeling and classification. The feature extraction module
applies the ESPRIT method, a well-known subspace-based estimation technique, to the drawn electric current. The
result is a compact representation of the current in terms of complex numbers referred to as poles and residues [15,16].
These complex numbers are shown to be characteristic of the considered load and thus can serve as features for the
subsequent classification layer. In [17], [18], poles and residues of current signals were estimated using the matrix
pencil method. For both synthetic and real data, results indicate that poles and residues extracted by ESPRIT allow an
almost perfect reconstruction of drawn electric currents. Once a signature is extracted, the clustering module applies
distance-based rules inferred offline from various databases and decides either to create a new class out of the new
signature or to discard it and increase the count of an existing signature. Signatures can hence be analyzed instantly and
are not stored in memory. As a result, singleton clusters are formed without the a priori knowledge of the number of
appliances. Results obtained from a database of a household indicate that these two modules succeed in distinguishing
signatures of different appliances.

The objectives of this paper are summarized in the following three points:

1. show that the reduced number of poles and residues estimated by ESPRIT enable an accurate reconstruction of
synthetic and real signals

2. show that the fundamental and higher harmonic currents determined from poles and residues yield a feature
space with reduced inter-cluster overlap

3. propose a rule-based technique that assigns a set of signatures into singleton clusters.

The rest of the paper is organized as follows. Section 2 presents the signal model, the covariance matrix, the
principle of ESPRIT and the validation on simulated and real data. In Section 3, the feature space is given. Sections
4 explains the rule-based clustering approach and evaluates its performance on several load combinations. Finally,
section 5 provides the summary and conclusion.

2. MODEL-BASED FEATURE EXTRACTION
2.1. Signal Model

For a sinusoidal driving voltage of the form v(t) = V
√

2 sin(ωt), the drawn electric current can be modeled
as a linear combination of d cisoids (complex-valued sinusoidal signals) weighted by complex residues according to
the following damped exponential signal model:

i (t) ≈
d∑

m=1

rm exp {(αm + j2πfm)t}+ b (t) (1)

where rm is the residue of the mth cisoid, αm is its attenuation factor, fm is its frequency, and b(t) is additive white
Gaussian noise with zero mean and variance 2σ2. After sampling, the time variable, t, is replaced by tk = kts, where
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ts = 6.25× 10−4 s is the chosen sampling period. The discrete current signal becomes:

i (k) ≈
d∑

m=1

rmz
k
m + b (k) k = 1, 2, . . . , N (2)

where
zm = exp {(αm + j2πfm)ts} m = 1, 2, . . . , d (3)

is the mth complex pole. Under matrix form, the signal model is expressed by:

i = Ar + b (4)

with the following notational definitions:

i =
[
i (1) i (2) ... i (N)

]T
(5)

A =
[

a1 a2 . . . ad
]

(6)

am =
[
zm z2m . . . zNm

]T
(7)

r =
[
r1 r2 ... rd

]T
(8)

b =
[
b(1) b(2) ... b(N)

]T
. (9)

The superscript T denotes the transpose operator.
The feature extraction problem can now be stated as follows. Given the electric current data sequence

{i(k)}Nk=1 use a feature extraction method to extract the complex poles {zm}dm=1 and residues {rm}dm=1 of the load.

2.2. The Covariance Matrix

The N ×N covariance matrix of the data vector i is defined by:

R = E
[
iiH
]

(10)

where E and H are the expectation and the conjugate-transpose operators, respectively. Using equation (4) and
developing, R can be written as

R = ARiA
H + 2σ2I (11)

where Ri and 2σ2I denote the covariance matrices of the cisoids and noise, respectively. In practice, R is estimated
from M independent realizations or snapshots of the data vector i and is termed the sample covariance matrix

R̂ =
1

M

M∑
r=1

iri
H
r . (12)

The covariance matrix is Hermitian and positive semi-definite. According to the spectral theorem [19], every Hermitian
matrix can be diagonalized by a unitary matrix (a matrix is said to be unitary if and only if its inverse is equal to its
conjugate transpose) and that the resulting diagonal matrix has only real entries. This means that all eigenvalues
of R are real and, due to its positive semi-definiteness, nonnegative. More importantly, eigenvectors with distinct
eigenvalues are orthogonal. It is this remarkable property of orthogonality that forms the basis of subspace-based
estimation methods. Being Hermitian, R admits the following eigenvalue decomposition (EVD):

R = Udiag{λ1, . . . , λN}UH

= [Ui Un] diag {λ1, . . . , λN} [Ui Un]
H

(13)

where U is the unitary matrix of eigenvectors, λ1 ≥ λ2 ≥ · · · ≥ λd > λd+1 = · · · = λN = 2σ2 are the eigenvalues,
and Ui = [u1 . . .ud] and Un = [ud+1 . . .uN ] contain the eigenvectors associated with the signal (largest d) and
noise (smallest N − d) eigenvalues, respectively. Indeed, the subspace spanned by the eigenvectors of Ui is termed
the signal subspace, whereas the subspace spanned by the eigenvectors of Un is termed the noise subspace.
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2.3. Estimation of Signal Parameters via Rotational Invariance Techniques

The basic idea behind ESPRIT is to exploit the rotational invariance of the underlying signal subspace induced
by the Vandermonde structure of the mode matrix A without having to know A [20], [21]. In particular, this rotational
invariance can be established by partitioning A into two adjacent frequency sub-bands, preferably with maximum
overlapping. The reason for maximum sub-band overlapping is to maintain the resolution capability of the algorithm.
For both the damped and undamped exponential models, it is then easily verified that the following relation holds:

A2 = A1Φ (14)

where A1 and A2 are (N − 1) × d dimensional matrices obtained from A by removing its last and first rows,
respectively:

A =

[
A1

−

]
=

[
−
A2

]
(15)

and Φ is a d× d full rank diagonal matrix that gathers the signal poles:

Φ = diag {z1, z2, . . . , zd} . (16)

Therefore, in contrast to polynomial-rooting-based methods such as root-MUSIC, ESPRIT can be adapted to parameter
estimation of the damped exponential model representing the drawn electric current since the shift invariance structure
is maintained. It is worth noting that in the case of the undamped exponential model (unit-modulus cisoids) z∗ = 1/z
and Φ becomes a unitary matrix since ΦΦH = ΦHΦ = I. However, for the damped exponential case, the complex
numbers on the diagonal of Φ have moduli less than one and Φ becomes a contractive operator. The objective of
ESPRIT is hence to estimate the diagonal elements of Φ from data samples.

Since the subspace spanned by the mode vectors of A is equal to the subspace spanned by the eigenvectors
of Ui (the signal subspace) defined in section (2.2.), there must exist a unique, nonsingular d× d dimensional matrix
G such that

Ui = AG. (17)

Partitioning Ui in the same way as done for A gives

Ui =

[
Ui1

−

]
=

[
−

Ui2

]
. (18)

Using equation (17) allows to express Ui1 and Ui2 as

Ui1 = A1G (19)
Ui2 = A2G = A1ΦG. (20)

Equation (19) implies
A1 = Ui1G

−1. (21)

Replacing the above equation in equation (20) yields

Ui2 = Ui1G
−1ΦG. (22)

which can also be expressed as
Ui2 = Ui1Ψ. (23)

where
Ψ = G−1ΦG. (24)

Therefore, Φ and Ψ are similar matrices and the sought diagonal elements of Φ are the eigenvalues of Ψ. The
estimation problem then amounts to estimating Ψ from Ui and computing its eigenvalues. Equation (24) is the key
relationship in the development of ESPRIT and its properties.

In practice, the covariance matrix is estimated from a finite number of noisy snapshots as described in section
(2.2.). The result is that the subspace spanned by the eigenvectors of Ûi is only an estimate of the signal subspace
and different from the subspace spanned by the mode vectors of A. Moreover, the spans of the eigenvectors of Ûi1

and Ûi2 are different. Thus, the objective of finding a matrix Ψ that satisfies equation (23) is no longer achievable.
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A commonly employed criterion for such type of problems is the least-squares criterion that yields the following
approximate solution for Ψ:

Ψ̂ =
(
ÛH

i2Ûi2

)−1

ÛH
i2Ûi1. (25)

Knowing that both Ûi1 and Ûi2 contain errors, estimating Ψ using the total least-squares (TLS) criterion is more
appropriate. The TLS solution is given by:

Ψ̂ = −W12W
−1
22 (26)

where the d × d dimensional matrices W12 and W22 are determined from a matrix W that results from the singular
value decomposition of an (N − 1)× 2d dimensional matrix V = [Ûi2 Ûi1] as follows:

V = EΩWH (27)

W =

[
W11 W12

W21 W22

]
. (28)

2.4. Linear Loads

To validate ESPRIT as a feature extraction method, its poles and residues were first compared with those
obtained from the theoretical expressions of the following linear elementary loads: series RC, series RL, parallel RL
and series RLC. The RC and RL circuits lead to first order differential equations in time, whereas the RLC circuit leads
to a second order differential equation. Using Euler’s formula and rearranging allow to rewrite the current expression
obtained from the solution of the differential equation characterizing the load in the form of equation (1). The poles
and residues of each elementary load can then be readily identified. Table 1 gives the residues, attenuation factors,
frequencies, and dependent parameters of the four studied elementary loads. As can be seen from this table, first order
circuits (RL and RC) are characterized by two purely imaginary conjugate poles representing their forced response and
one real pole representing their natural response, whereas the second order circuit (RLC) has, beside the two purely
imaginary conjugate poles of its forced response, two conjugate complex poles related to its natural response.

Table 1. The residues, attenuation factors, frequencies, and dependent parameters of elementary loads.

rm αm fm Dependent Parameters

Se
ri

es
R

C ±V
√
2

2jR
cos(φ)e∓jφ 0 ±50 τ = RC

− 1

R

(
vC0 − V

√
2 sin(φ) cos(ωt0 − φ)

)
e
t0
τ − 1

τ
0 φ = arctan

( −1
RCω

)

Se
ri

es
R

L ±V
√
2

2jR
cos(φ)e∓jφ 0 ±50 τ = L/R

iL0 −
V
√
2

R
cos(φ) sin(ωt0 − φ)e

t0
τ − 1

τ
0 φ = arctan

(
Lω
R

)

Pa
ra

lle
lR

L ± V
√
2

2jR cos(φ)
e∓jφ 0 ±50

φ = arctan
(
R
Lω

)
iL0 −

V
√
2

R cos(φ)
sin(ωt0 − φ) 0 0

Se
ri

es
R

L
C ±V

√
2

2jR
cos(φ)e∓jφ 0 ±50 φ = arctan[ 1

R
(Lω − 1

Cω
], ω0 = 1√

LC

Ae−k1ω0t0 k1ω0 0 k1 = −ξ −
√
ξ2 − 1, k2 = −ξ +

√
ξ2 − 1

Be−k2ω0t0 k2ω0 0 A = k1
k1−k2

(A2 − k2A1), B = k2
k2−k1

(A2 − k1A1)

The dependent parameters, A and B, of the RLC circuit are expressed in terms of A1 and A2 given by:

A1 = vc0
C

L
+
V
√

2

R
cos(φ) cos(ωt0 − φ)

ω0

ω
(29)

A2 = iL0 −
V
√

2

R
cos(φ) sin(ωt0 − φ) (30)

2.5. Nonlinear Loads

A nonlinear load is one for which the relationship between the current through the load and the voltage across
the load is a nonlinear function. A simple view of the nature of nonlinear loads can be presented using Ohm’s Law,
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which states that the voltage is the product of the load resistance and the current (V = RI). For a linear load, the
resistance (R) is a constant; for a nonlinear load, the resistance varies. When AC power is supplied to a nonlinear load,
the result is the creation of currents that do not oscillate at the supply frequency. These currents are called harmonics.
Harmonics occur at multiples of the supply (fundamental) frequency. For instance, if the fundamental frequency is
50 Hz, the so-called second harmonic is 100 Hz, the third harmonic is 150 Hz, and so on. Any number of harmonics
can be created by a particular piece of equipment depending on that equipment’s electrical characteristics. Therefore,
the current drawn by nonlinear loads can be still represented by equation 1 where harmonics appear in the form of
pole-residue couples at frequencies multiples of 50 Hz.
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(b) Series RL
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(c) Parallel RL
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Figure 1. The analytic and reconstructed currents of the series RC, series RL, parallel RL, and series RLC circuits
along with their forced and natural responses.

2.6. Results

Assuming zero initial conditions (iL0 = 0 and/or vC0 = 0), the following numerical values were used to
determine the electric current data sequence from which ESPRIT extracted poles and residues: {R = 100 Ω, C = 0.1
mF} for the series RC circuit, {R = 10 Ω, L = 100 mH} for both the series and parallel RL circuits, and {R = 1 Ω,
L = 20 mH, C = 60 mF} for the series RLC circuit. A duration of ten periods or 0.2 s was chosen for the current
which, at ts = 6.25 × 10−4 s, is equivalent to 320 samples, and ESPRIT was applied at each period. Figures 1a-1d
show the current obtained from the analytic expression of poles and residues in table 1 and its reconstruction obtained
from the poles and residues extracted by ESPRIT. An almost perfect agreement can be seen between the two curves
indicating the accuracy of the characteristic complex numbers extracted by ESPRIT. In addition, the figures show the
forced and natural responses of each of the four elementary circuits.

To evaluate the performance of ESPRIT on nonlinear loads, a current consisting of a fundamental (I1 =
100%) and four harmonics (I5 = 18.9%, I7 = 11%, I11 = 5.9%, and I13 = 4.8%) was considered. This current
can be represented by ten pairwise complex conjugate pole-residue couples. ESPRIT was then used to extract these
ten couples, which served to reconstruct the current as shown in Figure 2. As can be seen, ESPRIT is successful in
estimating the pole-residue couples of the load.
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Figure 2. The analytic and reconstructed currents of a nonlinear load. The inset zooms in on a half period of the
drawn current in order to show the accuracy of reconstruction.

2.7. Validation on Real Data

In this section, the validation of ESPRIT is carried out on currents of three representative loads: a television
set, a vacuum cleaner, and an economy lamp. As for the case of synthetic data, ESPRIT was applied at each period.
Figures 3a-3c show the current drawn by the appliances and its reconstruction based on the pole-residue estimates
of ESPRIT. The close agreement shown in the figures indicates that the exponential model of equation 1 and its
parameters estimated by the ESPRIT accurately predict the response of the actual loads. It is worth mentioning that
the number of pole-residue couples d increases with the nonlinearity of the load. For instance, the current of the
vacuum cleaner could be accurately reconstructed from four pole-residue couples, whereas that of the economy lamp
needed up to twelve couples.
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(b) Vacuum cleaner
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Figure 3. The measured and reconstructed currents of a TV, vacuum cleaner and economy lamp.
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3. FEATURE SPACE
The feature space contains 900 signatures uniformly distributed among the following nine appliances: incan-

descent lamp, halogen lamp, economy lamp, water heater, electric convector, oven, two-burner hot plate, television
set, and computer. As shown in Figure 4, each signature (represented by a point in the the three-dimensional feature
space) is characterized by three pole-residue products corresponding to the maxima of the fundamental, third and fifth
harmonic currents. The restriction to three frequencies has the sole aim of representing the feature space graphically.
From the feature space, ten clusters representing the nine appliances can be clearly distinguished. The additional
cluster is due to the two-burner hot plate which is represented by two clusters, one for each burner. It can hence be
concluded that the studied appliances can be fairly distinguished using the fundamental and higher harmonics.
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Figure 4. The feature space showing the disaggregated contribution of the fundamental and harmonic currents to the
maximum of the total current for several appliances.

4. RULE-BASED CLUSTERING
Rule-based clustering is accomplished by applying specific knowledge rather than specific technique. This

is a key idea in expert systems technology. It reflects the belief that human experts do not process their knowledge
differently from others, but they do possess different knowledge. With this philosophy, when one finds that their
expert system does not produce the desired results, work begins to expand the knowledge base, not to re-program the
procedures.

The clustering module has the task of reducing the feature space into singleton clusters. Moreover, applying
clustering prior to classification has been recently shown to improve the accuracy of classification methods [22]. Form-
ing singleton clusters is rather challenging given the cluster dispersion of some appliances and the unknown number
of clusters. To this end, the clustering module calculates the Euclidean distance between the first three elements of the
present signature and those of each of the signatures in the unlabeled database. Based on the following rules inferred
offline by a human expert from several household appliances, the clustering module then decides either to create a new
unlabeled signature in the database or to increase the count of an existing signature:

1: if the unlabeled database is empty then
2: add present signature
3: else
4: Determine the minimum distance from the present signature to signatures in the database
5: if MAX CURRENT> 3 and MIN DIST> 0.5 then
6: add present signature
7: else if 0.3 <MAX CURRENT< 3 and MIN DIST> 0.2 then
8: add present signature
9: else if 0 <MAX CURRENT< 0.3 and MIN DIST> 0.05 then

10: add present signature
11: else
12: Increase the count of the nearest signature
13: end if
14: end if

Towards automatic setup of non intrusive appliance load monitoring ... (Khaled Chahine)
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MAX CURRENT and MIN DIST represent the maximum of the current and the minimum distance in Amperes,
respectively.

The outcome of this phase is a compact database of unlabeled signatures to which additional features such
as the active power and the current-voltage phase difference can be added. In other words, the unlabeled database is
an M × N array where M is the number of identified signatures and N is the number of features in each signature.
Applying the clustering module to the 900 signatures of the feature space shown in Figure 4 yields nine singleton
clusters depicted as blue squares in Figure 5. It can be noticed that the clustering module represented the two clusters
corresponding to the electric convector and the one-burner hotplate by one cluster due to their heavy overlap, thus
missing the tenth cluster.
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Figure 5. The feature space showing the singleton clusters determined by the clustering module.

5. CONCLUSION
This paper discussed the first two modules of an automatic-setup NIALM system. First, the feature extraction

module employed ESPRIT to extract complex poles and residues from the electric current. These complex numbers
were then used to determine a feature space with reduced inter-cluster overlap. Second, a clustering approach based
on rules derived offline by a human expert was proposed to assign a set of signatures into singleton clusters. Results
indicated that these two modules succeed in creating an unlabeled database of signatures. Further research would be
to update the clustering rules through testing the developed modules on other datasets.
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