104 research outputs found

    Defensive Distillation-Based Adversarial Attack Mitigation Method for Channel Estimation Using Deep Learning Models in Next-Generation Wireless Networks

    Get PDF
    Future wireless networks (5G and beyond), also known as Next Generation or NextG, are the vision of forthcoming cellular systems, connecting billions of devices and people together. In the last decades, cellular networks have dramatically grown with advanced telecommunication technologies for high-speed data transmission, high cell capacity, and low latency. The main goal of those technologies is to support a wide range of new applications, such as virtual reality, metaverse, telehealth, online education, autonomous and flying vehicles, smart cities, smart grids, advanced manufacturing, and many more. The key motivation of NextG networks is to meet the high demand for those applications by improving and optimizing network functions. Artificial Intelligence (AI) has a high potential to achieve these requirements by being integrated into applications throughout all network layers. However, the security concerns on network functions of NextG using AI-based models, i.e., model poisoning, have not been investigated deeply. It is crucial to protect the next-generation cellular networks against cybersecurity threats, especially adversarial attacks. Therefore, it needs to design efficient mitigation techniques and secure solutions for NextG networks using AI-based methods. This paper proposes a comprehensive vulnerability analysis of deep learning (DL)-based channel estimation models trained with the dataset obtained from MATLAB\u27s 5G toolbox for adversarial attacks and defensive distillation-based mitigation methods. The adversarial attacks produce faulty results by manipulating trained DL-based models for channel estimation in NextG networks while mitigation methods can make models more robust against adversarial attacks. This paper also presents the performance of the proposed defensive distillation mitigation method for each adversarial attack. The results indicate that the proposed mitigation method can defend the DL-based channel estimation models against adversarial attacks in NextG networks

    Security Hardening of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks

    Get PDF
    Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the security threats and mitigation for AI-powered applications in NextG networks have not been investigated deeply in academia and industry due to being new and more complicated. This paper focuses on an AI-powered IRS implementation in NextG networks along with its vulnerability against adversarial machine learning attacks. This paper also proposes the defensive distillation mitigation method to defend and improve the robustness of the AI-powered IRS model, i.e., reduce the vulnerability. The results indicate that the defensive distillation mitigation method can significantly improve the robustness of AI-powered models and their performance under an adversarial attack

    Security Hardening of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks

    Get PDF
    Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the security threats and mitigation for AI-powered applications in NextG networks have not been investigated deeply in academia and industry due to being new and more complicated. This paper focuses on an AI-powered IRS implementation in NextG networks along with its vulnerability against adversarial machine learning attacks. This paper also proposes the defensive distillation mitigation method to defend and improve the robustness of the AI-powered IRS model, i.e., reduce the vulnerability. The results indicate that the defensive distillation mitigation method can significantly improve the robustness of AI-powered models and their performance under an adversarial attack.publishedVersio

    EdgeRIC: Empowering Realtime Intelligent Optimization and Control in NextG Networks

    Full text link
    Radio Access Networks (RAN) are increasingly softwarized and accessible via data-collection and control interfaces. RAN intelligent control (RIC) is an approach to manage these interfaces at different timescales. In this paper, we develop a RIC platform called RICworld, consisting of (i) EdgeRIC, which is colocated, but decoupled from the RAN stack, and can access RAN and application-level information to execute AI-optimized and other policies in realtime (sub-millisecond) and (ii) DigitalTwin, a full-stack, trace-driven emulator for training AI-based policies offline. We demonstrate that realtime EdgeRIC operates as if embedded within the RAN stack and significantly outperforms a cloud-based near-realtime RIC (> 15 ms latency) in terms of attained throughput. We train AI-based polices on DigitalTwin, execute them on EdgeRIC, and show that these policies are robust to channel dynamics, and outperform queueing-model based policies by 5% to 25% on throughput and application-level benchmarks in a variety of mobile environments.Comment: 16 pages, 15 figure

    Defensive Distillation-based Adversarial Attack Mitigation Method for Channel Estimation using Deep Learning Models in Next-Generation Wireless Networks

    Get PDF
    Future wireless networks (5G and beyond), also known as Next Generation or NextG, are the vision of forthcoming cellular systems, connecting billions of devices and people together. In the last decades, cellular networks have dramatically grown with advanced telecommunication technologies for high-speed data transmission, high cell capacity, and low latency. The main goal of those technologies is to support a wide range of new applications, such as virtual reality, metaverse, telehealth, online education, autonomous and flying vehicles, smart cities, smart grids, advanced manufacturing, and many more. The key motivation of NextG networks is to meet the high demand for those applications by improving and optimizing network functions. Artificial Intelligence (AI) has a high potential to achieve these requirements by being integrated into applications throughout all network layers. However, the security concerns on network functions of NextG using AI-based models, i.e., model poisoning, have not been investigated deeply. It is crucial to protect the next-generation cellular networks against cybersecurity threats, especially adversarial attacks. Therefore, it needs to design efficient mitigation techniques and secure solutions for NextG networks using AI-based methods. This paper proposes a comprehensive vulnerability analysis of deep learning (DL)-based channel estimation models trained with the dataset obtained from MATLAB’s 5G toolbox for adversarial attacks and defensive distillation-based mitigation methods. The adversarial attacks produce faulty results by manipulating trained DL-based models for channel estimation in NextG networks while mitigation methods can make models more robust against adversarial attacks. This paper also presents the performance of the proposed defensive distillation mitigation method for each adversarial attack. The results indicate that the proposed mitigation method can defend the DL-based channel estimation models against adversarial attacks in NextG networks.publishedVersio

    Compute- and Data-Intensive Networks: The Key to the Metaverse

    Full text link
    The worlds of computing, communication, and storage have for a long time been treated separately, and even the recent trends of cloud computing, distributed computing, and mobile edge computing have not fundamentally changed the role of networks, still designed to move data between end users and pre-determined computation nodes, without true optimization of the end-to-end compute-communication process. However, the emergence of Metaverse applications, where users consume multimedia experiences that result from the real-time combination of distributed live sources and stored digital assets, has changed the requirements for, and possibilities of, systems that provide distributed caching, computation, and communication. We argue that the real-time interactive nature and high demands on data storage, streaming rates, and processing power of Metaverse applications will accelerate the merging of the cloud into the network, leading to highly-distributed tightly-integrated compute- and data-intensive networks becoming universal compute platforms for next-generation digital experiences. In this paper, we first describe the requirements of Metaverse applications and associated supporting infrastructure, including relevant use cases. We then outline a comprehensive cloud network flow mathematical framework, designed for the end-to-end optimization and control of such systems, and show numerical results illustrating its promising role for the efficient operation of Metaverse-ready networks

    ACUTA eNews September 2010, Vol 39, No. 9

    Get PDF
    ln This lssue Survey Paints a Picture of Technology on Campus From ACUTA Headquarters: Net Neutrality Heats Up........... Jeri A. Semer, CAE, Executive Dir. Tech Talk: Let There Be Light......... Kevin Tanzillo, Dux PR Nominations Open for 2011 ACUTA Institutional Excellence Awards FYI: Useful Information from the Campus.......... Courtesy of Eric Weil, Student Monitor Webinar: Overcoming Implementation Challenges with DAS at TAMU Here\u27s How We Collaborate Learn More about WiFi, FMC, Green IT, and More from Your Desktop Info Links......... Randy Hayes, Univ. of Northern Iowa In Memory What Ifs... ........... Gary Audin, Delphi, Inc. Thanks to Exhibitors and Sponsors at Summer Seminar Washington Update Newsletter Welcome New Member Check It Out: Press Releases... Job Posting... RFIs/RFPs..... Special Deal

    ACUTA eNews September 2006, Vol. 35, No. 9

    Get PDF
    ln This lssue Prepaid Calling Cards From ACUTA Headquarters: Looking Ahead...................... Jeri A. Semer, CAE, ACUTA Executive Director Tech Talk: As a Framework, lTlL Leads the Way................ Kevin Tanzillo, Dux PR DC Update................ Jeanne Jansenius, University of the South Wiretaps: lnterpreting the Constitution Becomes a Controversy.............. Pat Scott, ACUTA Comm. Mgr. Board Report............... Riny Ledgerwood, San Diego State Univ. ACUTA Sec./Treasurer ACUTA One-Day Workshop: Making Convergence Work Be a State/Province Coordinator........... Mary Lou Emmons, lndiana Univ., Bloomington lnfo Links................... Randy Hayes, Univ. of Northern lowa More Winners from ACUTA Annual Conference Your Site Could Be a Site to See Welcome New Members Committee Profile: Membership Committee Annual Conference Photo Revie

    ACUTA eNews February 2007, Vol. 36, No. 2

    Get PDF
    In This Issue Nominate Now for ACUTA Board of Directors 2007-08 From the President.............. Carmine Piscopo, RCDD, Providence College Nominations Still Open for Institutional Excellence Awards............. Pat Todus, Northwestern Univ. Tech Talk: Visibility for Your School and ACUTA............. Kevin Tanzillo, Dux PR DC Update............ Jeanne Jansenius, Sewanee, The University of the South Overheard on the Listserv: Pricing VoIP FYI: Useful Information from the Campus........... Student Monitor Web Tip: What\u27s New on ACUTA Website...... Aaron Fuehrer, ACUTA Information Technology Manager Board Report.......... Riny Ledgerwood, San Diego State Univ., ACUTA Sec./Treasurer Info Links............ Randy Hayes, Univ. of Northern Iowa Remembering Harry Kyle Welcome New Members Thanks to Journal Advertisers for 200
    • …
    corecore