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ABSTRACT Next-generation communication networks, also known as NextG or 5G and beyond, are the
future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices,
systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG
networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence
(AI) technologies in the last decades and support a wide range of new applications. Among advanced
technologies, Al has a significant and unique contribution to achieving these goals for beamforming,
channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks.
However, the security threats and mitigation for Al-powered applications in NextG networks have not been
investigated deeply in academia and industry due to being new and more complicated. This paper focuses
on an Al-powered IRS implementation in NextG networks along with its vulnerability against adversarial
machine learning attacks. This paper also proposes the defensive distillation mitigation method to defend and
improve the robustness of the Al-powered IRS model, i.e., reduce the vulnerability. The results indicate that
the defensive distillation mitigation method can significantly improve the robustness of Al-powered models
and their performance under an adversarial attack.

INDEX TERMS Security, next-generation networks, adversarial machine learning, model poisoning, intel-
ligent reflecting surfaces.

I. INTRODUCTION

In recent years, next-generation networks, also called NextG
or 5G and beyond, have been paying attention more in
academia and industry along with high demand and new
ways of communication need from consumers. Accord-
ing to the report released by the International Telecom-
munication Union (ITU), the mobile data traffic based
on NextG will constantly increase each year and reach
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thousands of exabytes [1]. NextG networks aim to connect
billions of devices, systems, and applications to meet high
data rate and low latency requirements to support new appli-
cations, especially delay-sensitive services using the Internet,
from digital twins, virtual reality, metaverse, industry 4.0,
self-driving cars, online education, to eHealth services and
many more [2]. Fortunately, NextG networks can meet these
requirements and support these applications with advanced
communication, computing, and Artificial Intelligence (AI)
technologies. Al is an extraordinary contributor among
them to innovative technologies in NextG networks [3].
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Intelligent Reflecting Surfaces (IRS) is one of those inno-
vative technologies, in addition to Massive Multiple-Input
Multiple-Output (MIMO) and millimeter wave, to improve
the performance of NextG wireless networks in terms of data
rate and channel capacity. Recently, IRS has received exten-
sive attention in the literature due to its powerful capability
of reconfiguring wireless communication environments. IRS
is typically composed of a large amount of low-cost passive
reflecting elements [4]. By cooperatively tuning the phase
shifts of all reflecting elements, the reflected signals can be
constructively or destructively added to the receiver [5]. Con-
sequently, wireless communication environments could be
changed dynamically to enhance or degrade communication
performance.

Inspired by the tremendous achievements of Al,
Al-powered models have also been applied to IRS-driven
wireless communication in NextG wireless networks to
improve performance [4], [6], [7], [8]. However, the secu-
rity threats (e.g., model poisoning or adversarial machine
learning attacks) and mitigation methods (e.g., adversarial
training or defensive distillation) have not been investigated
in Al-powered applications of NextG networks due to being
new, complicated, and multi-disciplinary topics (e.g., next-
generation communications, cybersecurity, and Al) [9], [10].

To fill the gap, this paper will focus on Al-powered IRS
applications in 5G and beyond networks, and their vulnera-
bilities, which have received limited attention. Vulnerabilities
of an Al-powered model are one of the top security concerns
and deserve a thorough investigation. For example, a trained
Al model might be manipulated by adding noise to the data,
i.e., targeted and non-targeted adversarial attacks. The adver-
sarial attacks are generated by adding a perturbation to a
legitimate data point, i.e., an adversarial example, to fool the
Al-powered models.

The major contributions of this paper are summarized as
follows:

« Evaluate the vulnerabilities of an Al-powered IRS model
under widely used adversarial attacks, including Fast
Gradient Sign Method (FGSM), Basic Iterative Method
(BIM), Projected Gradient Descent (PGD), and Momen-
tum Iterative Method (MIM).

o Propose a defensive distillation mitigation method to
train a more robust model to improve the robustness of
the Al-powered IRS model.

o Conduct the comprehensive simulations to assess the
robustness of the proposed Al-powered IRS system
with undefended and defended models under the
above-mentioned adversarial attacks.

The results indicate that Al-powered models used in NextG
networks are vulnerable to adversarial attacks, while the mod-
els can be more secure against adversarial attacks through the
proposed defensive distillation mitigation method. Note that
the scope of this study is limited to one of 5G physical layer
applications, i.e., Al-powered IRS, its vulnerability analysis
under selected adversarial attacks, and the proposed defensive
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FIGURE 1. A typical IRS-assisted wireless communication system.

distillation mitigation method. Other attack types like the
Carlini & Wagner (C&W) attack are compute-intensive and
require more iterations than traditional methods. Our study
uses a less compute-intensive and more efficient way to create
adversarial examples.

The remainder of the paper is organized as follows:
Section II provides the background information about the
IRS and common adversarial attacks. Section III presents the
system overview, including the Al model and defense distil-
lation for mitigation. Section IV shows experimental results,
and Section V discusses the results along with observations.
Section VI concludes the paper.

II. PRELIMINARIES

This section provides background information and related
works, including IRS and popular adversarial attacks using
FGSM, BIM, PGD, and MIM.

A. INTELLIGENT REFLECTING SURFACES (IRS)

IRS is commonly proposed to improve wireless commu-
nication quality in various applications. Consider a typical
IRS-aided wireless communication system as depicted in
Figure 1. The IRS is deployed to enhance the communica-
tion performance between a transmitter and a receiver. The
receiver gets the Line of Sight (LOS) signal through the LOS
link as well as constructive reflected signals from IRS through
the IRS-Rx link at the same time such that the communication
performance between the transmitter and receiver could be
significantly improved.

In the literature, there are several studies on IRS and secu-
rity concerns [4], [7], [8]. Al-powered models, e.g., neu-
ral networks, have been integrated into IRS-aided systems
to improve wireless communication performance. Authors
in [11] propose the concept of Intelligent Spectrum Learn-
ing (ISL) to optimize IRS to tackle the interfering signals
by dynamically controlling the IRS elements. The ISL first
employs a well-trained convolutional neural network to real-
ize a multi-class classification for the incident signals, and
then the IRS elements can be turned on/off depending on
the class of that signal by using an IRS binary control.
Moreover, a dynamic “‘think-and-decide” function allows the
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reflection of incident signals to be blocked or passed based
on the state of the IRS element block. Therefore, the Signal-
to-Interference-plus-Noise Ratio (SINR) of the overall sys-
tem can be improved. The study [12] presents a novel deep
learning-based channel tracking algorithm in IRS-assisted
UAV communication systems. The algorithm first designs a
deep neural network with off-line training for signal denois-
ing, and then a stacked bi-directional long short-term memory
is developed to track the time-varying channel. Simulations
demonstrate that this algorithm improves channel tracking
performance while requiring fewer overheads for pilots than
the benchmark algorithm. An IRS architecture is deployed
to prevent the communications of multiple legitimate users
from eavesdropping in the presence of multiple eavesdrop-
pers [13]. They propose an approach that uses deep reinforce-
ment learning to determine the optimal beamforming policy
since the system is highly dynamic and complex.

It is challenging to acquire channel knowledge to esti-
mate the Tx-IRS and IRS-Rx channel link in an IRS-assisted
system since all the reflecting elements are expected to be
nearly passive. Authors in [14] propose a new IRS architec-
ture where all elements are passive except for a few active
sensing elements and adopted a deep learning technique to
assist the IRS in addressing this problem. Specifically, the
transmitter and receiver first transmit two orthogonal uplink
pilots to the active elements of IRS, and the active elements
estimate the sampled channel vectors to construct the multi-
path signature as the environment descriptors. Motivated by
recent advances in deep learning, this paper then proposes to
train a neural network to observe the environment descrip-
tors to predict the achievable rate with each IRS interaction
vector. Based on the predictions, the IRS interaction vector
corresponding to the highest predicted achievable rate will
be used to reflect the transmitted data from the transmitter to
the receiver. In our paper, we refer to the model above as the
Al-powered IRS model and will investigate and examine the
vulnerability of this model and apply the defensive distillation
mitigation method.

B. ADVERSARIAL ATTACKS
Machine Learning (ML)-based models are trained to auto-
matically learn the underlying patterns and correlations in
data using algorithms. Once an ML-based model is trained,
it can be used to predict the patterns in new data. The accu-
racy of the trained model is essential to achieving a high
performance, which can also be called a generalization. How-
ever, the trained model can be manipulated by targeted and
non-targeted adversarial ML attacks to fool the models. There
are various kinds of adversarial ML attacks, such as evasion
attacks, data poisoning attacks, and model inversion attacks.
Liu et al. [15] conducted a comprehensive survey on
adversarial ML for wireless and mobile systems. Adversarial
ML approaches can be used to generate and detect adversar-
ial samples, which are samples that have been specifically
designed to deceive a machine learning model. These samples
can fool a model into misclassifying an input and can be
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used to exploit certain blind spots in image classifiers. The
article reviews the state-of-the-art adversarial ML approaches
to generating and detecting adversarial samples. It provides
detailed discussions highlighting the open issues and chal-
lenges these approaches face.

An evasion attack aims to cause the ML-based models
to misclassify the adversarial examples as legitimate data
points, i.e., targeted and non-targeted evasion attacks. Tar-
geted attacks aim to force the models to classify the adver-
sarial example as a specific target class. Non-targeted attacks
aim to push the models to classify the adversarial example as
any class other than the ground truth. Data poisoning aims to
generate malicious data points to train the ML-based models
to find the desired output. It can be applied to the train-
ing data, which causes the ML-based models to produce the
desired outcome. Model inversion aims to generate new data
points close to the original data points to find the sensitive
information of the specific data points.

These adversarial attack types are given as follows.

1) FAST GRADIENT SIGN METHOD (FGSM)
FGSM is one of the most popular and straightforward
approaches to constructing adversarial examples. It is called
one-step gradient-based attack. It is used to compute the gra-
dient of the loss function with respect to the input, X, and then
the attacker creates the adversarial example by adding the
sign of the gradient to the input data. It was first introduced by
Goodfellow et al. [16]. The gradient sign is computed using
the backpropagation algorithm. The steps are summarized as
follows:

« Compute the gradient of loss function, Vxl(X, y)

o Add the gradient to the input data, X0y = X + € X

sign(Vxt),

where € is the budget. FGSM attack has been used in [17] to
attack models.

2) BASIC ITERATIVE METHOD (BIM)
BIM is one of the most popular attacks called an iterative
gradient-based attack. This attack is derived from the FGSM
attack. It is used to compute the gradient of the loss function
with respect to the input, x, and then the attacker creates the
adversarial example by adding the sign of the gradient to the
input data. The gradient sign is computed using the backprop-
agation algorithm. The steps are summarized as follows:
« Initialize the adversarial example as X4, = X
o Iterate i times, wherei =0,1,2,3,...,N
— Compute the gradient of loss function, Vxf(Xa4y, y)
— Add the gradient to the input data, X,y = Xgay +
€ x sign(Vxl),
where € is the budget, and N is the number of iterations. The
BIM attack has been used in [17] to attack models.

3) PROJECTED GRADIENT DESCENT (PGD)
PGD is one of the most popular and powerful attacks [18]. Itis
used to compute the gradient of the loss function with respect
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to the input, x, and then the attacker creates the adversarial
example by adding the sign of the gradient to the input data.
The gradient sign is computed using the backpropagation
algorithm. The steps are summarized as follows:
« Initialize the adversarial example as X4, = X
o lIterate i times, where i =0,1,2,3,..., N
— Compute the gradient of loss function, Vxf(X4qy, ¥)
— Add random noise to the gradient, @Xﬂ(xadv, y) =
Vxl(Xaav, ¥) + U(€)
— Add the gradient to the input data, X,4y = Xuqy +
o X sign(@xﬂ),
where € is the budget, N is the number of iterations, and « is
the step size. PGD can generate stronger attacks than FGSM
and BIM.

4) MOMENTUM ITERATIVE METHOD (MIM)

MIM is a variant of the BIM adversarial attack, introducing
momentum and integrating it into iterative attacks [19]. It is
used to compute the gradient of the loss function with respect
to the input, x, and then the attacker creates the adversarial
example by adding the sign of the gradient to the input data.
The gradient sign is computed using the backpropagation
algorithm. The steps are summarized as follows:

o Initialize the adversarial example x,45, = X and the
momentum, p = 0
o Iterate i times, where i =0,1,2,3,..., N

— Compute the gradient of loss function, Vx€(Xa4y, y)
— Update the momentum, u = p + g X Vxl(Xaay, Y)
— Add random noise to the gradient, @xﬁ(xadv, y) =
Vxl(Xady, Y) + Z/[(E)
— Add the gradient to the input data, X,4y, = Xaav +
o X sign(@xﬂ),
where € is the budget, N is the number of iterations, 7 is the
momentum rate, and « is the step size.

Note that there are many types of adversarial attacks and
defenses. The existing defenses and adversarial attacks for
images can be applied to attack and defend on intelligent
reflecting surfaces and other fields [20], [21], [22], [23].
The cleverly-designed adversarial examples can fool the deep
neural networks with high success rates on the test images.
The adversarial examples can also be transferred from one
model to another model. In our experiments, we generated
the adversarial inputs with untargeted attacks.

lll. SYSTEM OVERVIEW

This section presents the overall system model for the pro-
posed Al-powered IRS system, as illustrated in Figure 2.
According to the figure, it is assumed that data collected
from User Equipments (UEs) is provided to the IRS predic-
tion model. The undefended model covers only conventional
training of deep neural networks, while the defended model
covers the defensive distillation-based training method. The
defensive distillation method covers the teacher and student
models. The teacher model is typically a large deep neu-
ral network, while the student model is usually a small and
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shallow neural network. In the figure, the training of the
prediction model (i.e., student model) is protected against
adversarial ML attacks in base stations. Adversarial attacks
are applied to models, i.e., undefended and defended models,
to evaluate the models’ robustness under any attacks.

A. DEEP NEURAL NETWORKS

As we briefly discussed in Section II-A, a neural network is
designed for mapping the observed environment descriptors
to the predicted achievable rate in the Al-powered IRS model.
This subsection introduces the neural network architecture
and training details below.

o Neural Network Architecture: The input of the neu-
ral network model is defined as a stack of the environ-
ment descriptors (i.e., uplink pilot signals) received from
both transmitter and receiver. Since the training process
is designed to build a function mapping descriptors to
reflection vectors, the output target of the neural network
is to be a set of predictions on the achievable rates of
every possible reflection beamforming vector. The neu-
ral network is built as a Multi-Layer Perceptron (MLP)
network, which is well-demonstrated as an effective uni-
versal approximator. The MLP is adopted to establish
the connection between the environment descriptors and
the predicted achievable rates using reflection beam-
forming vectors, as shown in Figure 3. The MLP is com-
posed of four fully connected layers. ReLU activation
function is adopted, and a dropout layer is added after
the activation function for every layer except for the last
layer. The MLP consists of the following dimensions:
M (Input), [M, 2M ](Layerl), [2M, 4M ](Layer2), [4M,
4M](Layer3), [4M, M ](Layer4), where M is the number
of the antenna elements on IRS.

o Training Details: The training dataset has 54300 data
samples since the candidate receiver locations contain
54300 points as discussed in III-C. The dataset is split
into two sets, namely a training set and a testing set with
85% and 15% of the points, respectively. To measure
the quality of the predictions and make the predicted
achievable rates close to the real achievable rates in the
dataset, we define the loss function with Mean-Squared-
Error (MSE) between them. In the training process, the
batch size is set to 500 samples, and the training epochs
is set to 20. The dropout rate is set to 50%, and a L, reg-
ularization term with the factor of 10~ is added to the
loss function. The learning rate decreases by 50% every
3 epochs starting at 0.1 with Stochastic Gradient Descent
(SGD) optimizer.

B. DEFENSIVE DISTILLATION

As mentioned previously, in this paper, we leverage the defen-
sive distillation mitigation method to improve the robust-
ness of our Al-powered IRS model. Defensive distillation
is a method that applies defensive knowledge distillation to
train a more robust model [24]. Knowledge distillation was
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FIGURE 2. Overview of the proposed Al-powered IRS system architecture.
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FIGURE 3. The adopted neural network architecture is composed of four
fully connected layers. The number of the neurons of the four layers is
(2M, am, aM, M), where M indicates the number of the antenna
elements on IRS.

previously introduced by Hinton et al. [25] to compress the
knowledge of a large, densely connected neural network
(the teacher) into a smaller, sparsely connected neural net-
work (the student). It has been shown that the student could
achieve a similar performance as the teacher by mimicking
the teacher’s output, and the teacher would be used as a soft
label to train the student. Furthermore, the student could be
trained to be more resistant to adversarial attacks than the
teacher by using the label of the teacher as the label of the
student [26].

The architecture of the defensive distillation consists of the

following steps:

o Step 1: Train a model with cross-entropy loss as the
classification task’s base model (teacher).

o Step 2: Train the same model (teacher) with defensive
distillation loss (soft label + cross-entropy) to generate
the respective soft label.

o Step 3: Train a model with the soft label generated in
step 2 as the label (student) to obtain the robust model.

The defensive distillation loss function is defined as

Lp©)=0—=x)Lce B) + ALk (P (10), P (»)), (1)

where Lcg (0) and Lgz (Pr (¥|0), Pr (y)) denote the cross
entropy and Kullback Leibler (KL) divergence losses, respec-
tively. Pr (y|6) is the output of the teacher model with
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Algorithm 1 Training the Defensive Distillation

1: Input: Training data set D, base model M7, A, «, €,
number of iterations N

2: Output: Defensive distillation model Mp
3: Train the base model M7 by minimizing the cross entropy
loss Lcg on D
4: Initialize the defensive distillation model Mp = Mt
5. while iter < N do
6:  Get a batch of samples X and labels Y from D
7:  Calculate the cross entropy loss Lcr and KL diver-
gence loss Lgy of X
8:  Calculate the defensive distillation loss £p using Eq. 1
9:  Calculate the adversarial samples X,z by FGSM,
BIM, MIM, and PGD with €
10:  Calculate the new loss £}, with the adversarial samples
Xadv
11:  Update the weights of the defensive distillation model
Mp by minimizing the new loss L/,
12:  iter < iter 4+ 1
13: end while
14: return Mp

parameters 6. Pr (y) is the output of the soft label. X is a
trade-off parameter between cross entropy and KL divergence
losses. Algorithm 1 shows the pseudocode.

C. DATASET PREPARATION

To examine the performance of the Al-powered IRS
model, a publicly available ray-tracing-based DeepMIMO
dataset [27] is adopted to generate the training dataset.
DeepMIMO dataset is a parameterized dataset designed for
constructing the MIMO channels based on ray-tracing data
obtained from the accurate ray-tracing scenario simulation.
Similar to the simulation setup in [ 14], the outdoor ray-tracing
scenario ‘Ol’ is selected as shown in Figure 4. Base
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FIGURE 4. The adopted ray-tracing scenario where the large intelligent
surface (i.e., IRS) is deployed to reflect the signal from the fixed
transmitter to the candidate receivers.

Station 3 (BS 3) is set as an IRS, which is equipped with
an UPA (Uniform Planar Array) with 32 x 32 (M = 1024)
or 64 x 64 (M = 4096) antennas at the mmWave 28GHz
setup. The transmitter is fixed in row R850 and column 90,
and the candidate receiver locations are in the uniform x-y
grid from row R1000 to R1300 (i.e., 54300 points). Both
the transmitter and receiver are assumed to have a single
antenna. The antenna elements have a gain of 3dBi and a
transmit power of 35dBm. Table 1 summarizes the adopted
parameters in the DeepMIMO dataset. The generated Deep-
MIMO dataset includes the channel vectors between the IRS
and the transmitter/receiver of the specified subcarriers for
all candidate user locations in the x-y grid. With these chan-
nel vectors and given the randomly selected active elements,
we can construct the sampled active channel vectors between
the active elements of IRS and the transmitter/receiver. Note
that the channel vectors depend on the various elements of the
surrounding environment [14]. Therefore, the sampled active
channel vectors (i.e., environment descriptors) can be used
to describe the wireless environment and fed into the deep
neural networks described earlier.

D. PERFORMANCE METRIC

This study evaluates the Al-powered IRS model through the
Mean Squared Error (MSE) performance metric. MSE scores
are utilized to analyze the model vulnerabilities under unde-
fended and defended conditions. The equation regarding the

TABLE 1. The adopted DeepMIMO dataset parameters.

DeepMIMO Dataset Parameter Value
Frequency band 28GHz
Active BSs 3
Number of Antennas (Mg, My, M.) € {(1,32,32); (1, 64, 64)}
Active users (receivers) From row R1000 to R1300
Active transmitter row R850 column 90
System bandwidth 100MHz
Number of OFDM subcarriers 512
OFDM sampling factor 1
OFDM limit 64
Number of channel paths 1
Antenna spacing 0.5
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MSE score is given below.

A AN

n

MSE = )

where:

o Y;: The actual t™ instance,

o f/t : The forecasted t instance,

« n: The total number of instance

MSE score measures the average squared difference
between the actual and predicted values. A high MSE score
represents a high prediction error.

IV. EXPERIMENTAL RESULTS

This section analyses the results obtained from the experi-
ments related to Al-powered IRS models against adversarial
machine learning attacks. Results are represented in three
ways: (1) bar plots showing the impact of each adversarial
machine learning attack on the performance of undefended
and defended models, i.e., MSE, (2) histogram plots show-
ing the MSE metric values for each attack of defended and
undefended models, and (3) the table showing the prediction
performance results of defended and undefended models for
each adversarial attack. Figure 5-6 show the bar plots, while
Figure 7-10 show the histogram plots. Table 2 shows the pre-
diction performance results of the defended and undefended
Al-powered IRS models against the attacks.

The trained Al-powered IRS model is implemented using
Python 3.7.13 and the TensorFlow 2.8.2 framework run-
ning on Google Colab Tesla T4 GPU with 16GB of mem-
ory. Adversarial inputs are generated using Cleverhans 4.0.0.
library.

The adversarial attack on Al-powered models has become
more popular with various attack methods. This study uses
FGSM, MIM, BIM, and PGD methods to generate adversar-
ial examples. The performance of each model is evaluated
through the MSE metric.

Figure 5 shows MSE values for the selected attack methods
under attack powers from € = 0.01 to € = 0.8. MSE values
look similar for MIM, BIM, and PGD methods, i.e., around
0.09, for all attack powers. On the other hand, MSE values
increase along with a higher attack power (¢ > 0.5) for
BIM attacks and go from 0.009 to 0.0128. The results also
indicate that Al-powered models are dramatically vulnera-
ble to adversarial attacks. The mitigation methods have been
widely used to increase the Al-powered model’s robustness
against adversarial attacks. In this study, the defensive dis-
tillation method is applied in the model to reduce the vul-
nerability against adversarial attacks. The performance of the
Al-powered model is evaluated in terms of MSE after apply-
ing the mitigation method. Figure 6 shows the models’ perfor-
mance, i.e., MSE values, against adversarial attacks from € =
0.01 to € = 0.8 after applying the selected mitigation method.
The figure shows that the Al-powered model is still sensitive
to adversarial attacks. However, the model’s robustness is
better against adversarial attacks. According to the figure, the
model can resist any attack under low attack power (¢ < 0.3).
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machine learning attack under different attack powers (¢).

The MSE values increase along with a high attack power
(e > 0.3) as expected. However, the impact of the mitigation
method on the performance is not the same for all attacks. For
example, the MSE values can go up to 0.006 and 0.008 under
the PGD and MIM attack, respectively, while only going up
to 0.003 under the BIM attack with a very high attack power
(e = 0.8). It is very interesting that there is no impact on
the attack power under the FGSM attack if the mitigation
method is applied to the model. The results also indicate that
the defensive distillation method significantly contributes to
the model’s robustness against adversarial attacks.

The histogram plots investigate the distribution of MSE
values for undefended and defended models under adversarial
attacks. In Figure 7-10, (a) represents the undefended mod-
els, while (b) represents defended models for each attack,
i.e., FGSM, BIM, MIM, and PGD, respectively. According
to the results, the undefended models, i.e., (a), represent a
little right-skewed distribution, which has a peak to the left
of the distribution and data values that taper off to the right.
MSE values vary from 0.005 to 0.025 for all attack types, and
around 50% percent of MSE values are between 0.006 and
0.009. It is compatible with Figure 5-6. On the other hand, itis
difficult to define the histogram plots for defended models,
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FIGURE 9. Distribution of MSE values for undefended and defended

models under MIM attack.

i.e., (b). According to the results, Figure 7, 8, 10 (b) rep-
resent a little right-skewed distribution like the undefended
model ones, while Figure 9 (b) does not represent any dis-
tribution. The most MSE values are clustered around 0.0,
i.e., 30% - 60%. It means the Al-powered model can cor-
rectly predict the target values. It is also clear that the percent
of the high MSE values (< 0.015) is much lower than the
undefended model. The defended models are more effective
against FGSM and BIM attacks, as shown in Figure 7 and 8.
It is obvious that the mitigation methods can dramatically
improve the model robustness under FGSM attacks, i.e., 90%
of MSE values are less than 0.005. On the other hand, the
defended models are not successful against MIM and PGD
attacks compared to FGSM and BIM, as shown in Figure 9
and 10. Although low MSE values, i.e., < 0.005, are clustered
around 50%, the MSE values still go up to 0.015 for MIM and
PGD attacks.

Table 2 shows the impact of a specific € value on the
MSE performance metrics of the Al-powered IRS model for
each adversarial attack in detail. The value of € ranges from
0.01 to 0.8. The higher the value of € means, the more pow-
erful attack on the Al-powered model is expected. Except
for BIM, the MSE values are usually around 0.0092-0.0095
for undefended models under any attack power and
type. It reaches up to 0.012 under a high attack power
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TABLE 2. Prediction performance results in terms of the MSE metric.

e values
0.01 0.1 0.3 0.5 0.7 0.8

FGSM Upd_ef. 0.009161  0.009162  0.009169  0.009177  0.009187  0.009193

Distil. 0.000632  0.000631  0.00063 0.000628  0.000628  0.000629
BIM Upd‘ef. 0.009205 0.009308 0.009191 0.010089 0.011761  0.012642

Distil. 0.000555  0.000625 0.001321  0.002208  0.002895  0.002957
MIM Upd;f. 0.009206  0.009402  0.009402  0.009269  0.009438  0.009539

Distil. 0.00057 0.000663  0.003606  0.006696  0.008069  0.00836
PGD Upd_ef. 0.009206  0.009398  0.009582  0.009382  0.00937 0.009389

Distil. 0.000555  0.00065 0.00294 0.005439  0.00618 0.006191

Percent
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0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
MSE MSE
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FIGURE 10. Distribution of MSE values for undefended and defended
models under PGD attack.

(BIM and € = 0.8). However, MSE values dramatically
go down, e.g., from 0.0091/0.0092 to 0.0005/0.0006 for
FGSM/BIM/MIM/PGD, once the mitigation method is
applied. It is clear that the mitigation method significantly
affects the robustness of the model, but not for all types
of attacks. For example, MSE values are the same for the
defended model under the FGSM attack at all attack pow-
ers. The mitigation method can handle FGSM-type attacks
because of its simplicity. However, MSE values increase for
the defended model under the other type of attacks at a
high attack power level. For example, MSE values go from
0.0005 to 0.002, 0.0005 to 0.008, and 0.0005 to 0.006 for
BIM, MIM, and PGD attacks, respectively. MSE values are
the highest under the MIM attack (0.008 at 0.8 of the attack
power). The MIM is the most effective adversarial attack type
among the selected attacks.

V. DISCUSSION
This study investigates Al-powered IRS models in NextG
networks and their vulnerabilities against adversarial attacks
and the contribution of mitigation methods to the model
robustness. The models’ vulnerabilities are studied for var-
ious adversarial attacks, i.e., FGSM, BIM, MIM, and PGD,
as well as the mitigation method, i.e., defensive distillation.
The results show that Al-powered IRS models are vulner-
able to adversarial attacks. On the other hand, the mitiga-
tion methods can significantly improve the model robustness
under adversarial attacks. According to the results, adversar-
ial attacks on Al-powered IRS models and the use of the
proposed mitigation method can be summarized as:

Observation 1: Al-powered IRS models are vulnerable to
adversarial attacks, especially BIM with a high attack power
(e > 0.5).

Observation 2: There is no significant impact of the attack
power (€) on some adversarial attacks, i.e., FGSM.
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Observation 3: The defensive distillation mitigation
method significantly increases the model robustness, espe-
cially under FGSM and BIM attacks.

Observation 4: The MSE values histogram usually repre-
sents a smaller right-skewed distribution, especially for the
undefended models.

Observation 5: Around 50% percent of MSE values are
between 0.006 and 0.009 for the undefended models.

Observation 6: The most MSE values are clustered around
0.0, i.e., 30% - 60% for the defended model.

Observation 7: The most effective adversarial attack types
are BIM and MIM for undefended and defended models,
respectively.

VI. CONCLUSION AND FUTURE WORK
The next generation networks, i.e., NextG or 5G and beyond,
have dramatically enhanced along with advanced communi-
cation, computing, and Al technologies in the last decade.
Al is the most important contributor to NextG networks’
improvement in terms of performance. This paper investi-
gates the vulnerability of Al-powered IRS models against
adversarial attacks (i.e., FGSM, BIM, PGD, and MIM) and
the impact of the proposed mitigation method, i.e., defen-
sive distillation, on the improvement of models’ robustness
in NextG networks. The results indicate that the Al-powered
NextG networks are vulnerable to adversarial attacks. On the
other hand, mitigation methods can make the models more
robust against adversarial attacks. According to the overall
results, the most effective adversarial attack types are BIM
and MIM for undefended and defended models, respectively.
The proposed mitigation method can provide better results for
the attacks, including FGSM, BIM, MIM, and PGD, in terms
of increasing the model robustness and reducing the vulnera-
bility.

In future work, the authors will focus on automatic mod-
ulation classification using an Al-powered model in NextG
networks and its vulnerability under adversarial attacks.
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