10,762 research outputs found

    Optimum sol viscosity for stable electrospinning of silica nanofibres

    Get PDF
    Silica nanofibres have, due to their excellent properties, promising characteristics for multiple applications such as filtration, composites, catalysis, etc. Silica nanofibres can be obtained by combining electrospinning and the sol–gel process. To produce silica nanofibres most of the time organic solutions are applied containing a carrying polymer, which is afterwards removed by a thermal treatment to form pure ceramic nanofibres. Although electrospinning of the pure silica precursors without carrying polymer is preferred, the parameters influencing the stability of the electrospinning process are however largely unknown. In addition, this knowledge is essential for potential upscaling of the process. In this study, the optimum viscosity to electrospin in a stable manner is determined and the way to obtain this viscosity is evaluated. Sols with a viscosity between 120 and 200 mPa.s could be electrospun in a stable way, resulting in uniform and beadless nanofibres. Furthermore, this viscosity region corresponded with nanofibres having the lowest mean nanofibre diameters. Electrospinning with diluted sols was possible as well, but electrospinning of the fresh sols was more stable. These results illustrate the importance of the viscosity and degree of crosslinking of the sol for the stable electrospinning of silica nanofibres and demonstrate that upscaling of the electrospinning process of silica nanofibres is feasibl

    Self-crimping bicomponent nanofibres electrospun from polyacrylonitrile and elastomeric polyurethane

    Full text link
    Two polymer solutions were brought together via a microfluidic device and subjected to an electrospinning process. The two polymer solutions flowed into the microfluidic channel side-by-side with very little intermixing due to their laminar nature. High speed stretching of the polymer solutions resulted in side-by-side bicomponent fibres. The electrospun nanofibres exhibited an extremely high propensity to self-crimp when an elastomeric polymer (polyurethane) and a normal polymer (polyacrylonitrile PAN) were involved in the electrospinning process. The formation of self-crimping fibre morphology was attributed to the differential shrinkage of the two polymers.<br /

    Ghent University-Department of Textiles: annual report 2013

    Get PDF

    Controlled synthesis of TiO2 hierarchical nanofibre structures via electrospinning and solvothermal processes : photocatalytic activity for degradation of methylene blue

    Get PDF
    The present article describes a new titanium oxide‐based (TiO2) photocatalyst that shows promise for acceleration of dye degradation. A hierarchical TiO2 nanostructure comprising nanorods on‐nanofibres has been prepared using a sol&ndash;gel route and electrospinning. Calcination of electrospun nanobre mats was performed in air at 500 &deg;C. The TiO2 nanofibre surface was then exploited as a &lsquo;seeding ground&rsquo; to grow TiO2 nanorods by a solvothermal process in NaOH. The nanofibres had a diameter of approximately 100 nm while the nanorods were evenly distributed on the nanofibre surface with a mean diameter of around 50&ndash;80 nm. The hierarchical nanostructure showed enhanced photocatalytic activity when compared to pure TiO2 nanofibres. This improved efficiency in degrading methylene blue through the photocatalytic process was attributed to the larger specific surface area of the TiO2 nanostructures, as well as high surface‐to‐volume ratio and higher reactive surface resulting in enhanced surface adsorption and interfacial redox reaction.<br /

    Synthesis and characterisation of controllably functionalised polyaniline nanofibres

    Get PDF
    A novel method for functionalising solution based polyaniline (PAni) nanofibres is reported whereby the degree of side-chain attachment can be controllably altered. The covalent attachment of functional side-groups to the surface of PAni nanostructures is achieved by post-polymerisation reflux in the presence of a nucleophile and the functionalised nanomaterial can be purified by simple centrifugation. The technique is therefore easily scalable. We demonstrate that control over the extent of side-chain attachment can be achieved simply by altering the amount of nucleophile added during reflux. We provide evidence that covalently attached carboxlate side-chains influence the doping mechanism of polyaniline and can be used to introduce self-doping behaviour. Acid functionalised nanofibres remain redox active and retain their optical switching capabilities in response to changes in the local chemical environment, thus making them suitable for adaptive sensing applications

    Modal Coupling of Single Photon Emitters Within Nanofiber Waveguides

    Get PDF
    Nanoscale generation of individual photons in confined geometries is an exciting research field aiming at exploiting localized electromagnetic fields for light manipulation. One of the outstanding challenges of photonic systems combining emitters with nanostructured media is the selective channelling of photons emitted by embedded sources into specific optical modes and their transport at distant locations in integrated systems. Here, we show that soft-matter nanofibers, electrospun with embedded emitters, combine subwavelength field localization and large broadband near-field coupling with low propagation losses. By momentum spectroscopy, we quantify the modal coupling efficiency identifying the regime of single-mode coupling. These nanofibers do not rely on resonant interactions, making them ideal for room-temperature operation, and offer a scalable platform for future quantum information technology

    Decoration of titania nanofibres with anatase nanoparticles as efficient photocatalysts for decomposing pesticides and phenols

    Get PDF
    Using a series of partial phase transitions, an effective photocatalyst with fibril morphology was prepared. The catalytic activities of these materials were tested against phenol and herbicide in water. Both H-titanate and TiO2-(B) fibres decorated with anatase nanocrystals were studied. It was found that anatase coated TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior photocatalysts but could also be readily separated from the slurry after photocatalytic reactions due to its fibril morphology
    corecore