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Abstract 

Delamination and brittle matrix fracture has since long been a problem of fibre reinforced 

composites. This paper investigates if polycaprolactone (PCL) nanofibre nonwovens can increase 

the interlaminar fracture toughness of resin transfer moulded glass fibre/epoxy laminates, without 

causing problems during impregnation and without negatively affecting other (mechanical) 

properties.  

The mode I fracture toughness was shown to be dependent on both the nanofibre content as well 

as on how the nanofibres were introduced into the laminates. Almost 100% improvement in 

fracture toughness could be achieved by electrospinning the PCL nanofibres on both sides of the 

glass fibre mats prior to impregnation. This led to a mode I fracture toughness of over 1200 J/m2. 
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Tensile and dynamic mechanical properties of the toughened laminates were not affected by the 

PCL nanofibres. It could be concluded that even state of the art infusion resins with a high intrinsic 

fracture toughness can benefit significantly from nanofibre toughening. 

Keywords A: Nano composites, E: Resin transfer moulding (RTM), B: Delamination, B: Fracture 

toughness 

1 Introduction 

Delamination and brittle matrix fracture has since long been a problem of fibre reinforced 

composites [1-3]. A lot of research has been devoted to prevent delamination by modifying the 

epoxy matrix, either by chemically modifying the resin and hardener components,  e.g. by using 

dendritic hyper branched polymers [4], or by adding additional components to the epoxy resin, e.g. 

mixing in rubber particles or creating specific thermoplastic phase morphologies in the matrix [5-

12]. Although creating a rubbery phase inside of the epoxy matrix often increases the fracture 

toughness of the laminates, this increase is often accompanied with a decrease in other 

mechanical properties such as stiffness and strength. In the research of M.R. Dadfar et al.  the mode 

I interlaminar fracture toughness (GIc) of the glass epoxy laminates increased from 220 J/m2 to 

about 500 J/m2 whereas the elastic modulus and tensile strength went down from 28.4 GPa to 

17.8 GPa and  584 MPa to 489 MPa respectively [12]. More recently, the effect of nanoparticles 

such as nanoclay, carbon nanotubes, nanowhiskers and vapour grown carbon nanofibres on the 

toughness of the epoxy matrix has been studied [13-15]. Although an increase in bulk fracture 

toughness could often be accomplished by adding these additional components to the epoxy 

matrix, the absolute increase in interlaminar fracture toughness of the composite laminates 

remains moderate at best [16-18]. For example, Masahiro Arai et al. could improve the mode I 

initiation interlaminar fracture toughness (GIc,ini) of carbon fibre epoxy laminates from 200 J/m2 to 

approximately 300 J/m2 whereas the propagation fracture toughness (GIcprop) increased form 500 

J/m2 to 650 J/m2. W.X. Wang et al. obtained an increase in GIC from 140 J/m2 to 220 J/m2 using 

nanowhiskers [17, 18]. In addition, all the toughening systems mentioned above have two 
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common disadvantages: (1) it is difficult to get a homogeneous dispersion of extra phases into the 

epoxy matrix and final laminate, and (2) the resin viscosity increases tremendously when these 

phases are mixed into the resin prior to moulding. These problems are of course very problematic 

for all infusion applications, such as resin transfer moulding (RTM). 

Thermoplastic nanofibrous structures could offer a solution for the increased viscosity and the 

inhomogeneous dispersion, as nanofibre nonwovens can be readily deposited in between the 

primary reinforcing fibre layers prior to infusion. Thus, the viscosity of the epoxy resin is not 

affected. Although the idea of using electrospun nanofibres as a secondary reinforcement in 

composite structures has already been proposed by Dzenis and Reneker in 1999 [19], it is only 

since the last few years that the interlaminar toughening effects of thermoplastic nanofibres are 

being reported. Bilge et al. showed that P(St-co-GMA) nanofibrous interlayers can improve the 

open hole strength of carbon/epoxy laminates [20]. Palazetti et al. reported about the use of nylon 

6.6 nanofibrous mats to increase the interlaminar properties and impact resistance of composites. 

The GIc  increased from 473 J/m2 to 496 J/m2 [21, 22]. Jin Zhang et al. showed that GIc of a carbon 

fibre epoxy laminate could be increased from 175 J/m2 to about 320 J/m2 (depending on nanofibre 

diameter and interlayer thickness) using polyetherketone cardo nanofibres [23]. Gang Li et al. 

used polysulfone (PSF) nanofibres to increase the GIc of carbon fibre epoxy laminates from 310 

J/m2 up to 870 J/m2. Furthermore, it was shown that the use of PSF nanofibrous nonwovens leads 

to a more efficient toughening than the use of PSF films of equal weight [24]. 

All research papers mentioned above used prepreg material on which the nanofibres were 

deposited. Although prepreg materials are often used in industry, e.g. aerospace industry almost 

exclusively uses prepreg materials, resin infusion has substantially gained importance for the 

production of big composite parts such as windmill blades and yacht parts. Modern infusion 

moulded laminates make use of low viscosity and high toughness epoxy resins. The mode I 

interlaminar fracture toughness of these laminates is typically higher than 600 J/m2. This fracture 

toughness is much higher than that of the prepreg materials studied so far in literature [20-24]. 
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This paper aims to investigate if high toughness polycaprolactone (PCL) nanofibre nonwovens can 

increase the interlaminar fracture toughness of these infusion moulded laminates even more, 

without causing problems during infusion and without negatively affecting other (mechanical) 

properties of the laminates.  

2 Materials and methods 

2.1 Materials 

All composite laminates were reinforced with unidirectional E-glass fabric (Roviglas R17/475). The 

reinforcement had a weight of 475 g/m² in the fibre direction and a weight of 17 g/m² in the 

perpendicular direction.  

The epoxy resin was composed of EPIKOTE resin MGS RIMR 135 with EPIKURE curing agent 

MGS RIMH 137 (Momentive). This is an infusion resin designed for windmill applications and it 

has a low viscosity and a high toughness. 

Polycaprolactone pellets and solvents 98 v% formic acid and 99.8 v% acetic acid were supplied by 

Sigma–Aldrich and used as received. 

2.2 Electrospinning 

Prior to electrospinning, an appropriate solvent system was selected to allow for the production of 

nanofibre nonwovens in a stable and reproducible way. Furthermore the toxicity of the solvent 

system should be low, in order to make the system relevant for industrial application. 

PCL can be electrospun in a stable and reproducible manner from a 1:1 formic acid/acetic acid 

solution which has a relatively low toxicity [25, 26]. Therefore, 14 wt% of PCL was dissolved in a 

1:1 solution of formic acid and acetic acid. To obtain large uniform nanofibrous nonwovens, the 

nanofibres were produced using a multi-nozzle electrospinning set-up. This multi-nozzle method, 

an in house developed technology [22], diverges from a mono-nozzle set-up mainly by the number 

of nozzles, the general methodology itself is identical. It consists out of 32 nozzles, each fed by 16 
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syringes. The nozzles are placed in 4 alternating rows which have a movement in the transverse 

direction to ensure uniform deposition of nanofibres. In the meantime, a grounded collector is 

moving in the longitudinal or production direction. The speed of the groundcollector is adjusted to 

obtain the required areal density of the nanofibrous nonwovens. All nanofibrous nonwovens were 

spun in a conditioned room at 23 ± 2 °C and 50 ± 5 % RH. The tip-to-collector distance was 12.5 

cm and the flow rate was set at 1 ml/h (per nozzle). The voltage was set between 20 kV and 25 kV 

until a stable process was achieved. Nanofibrous structures were both produced as stand-alone 

structures as well as deposited structures. The stand-alone nanofibrous nonwovens were 

electrospun on an aluminium foil, and were peeled off afterwards. The deposited structures were 

directly electrospun onto glass fibre mats. In both cases the fibre diameter of the nanofibrous 

structures was 400 ± 100 nm. 

2.3 Vacuum assisted resin transfer moulding and preparation of PCL toughened laminates 

The composite laminates were manufactured by vacuum assisted resin transfer moulding 

(VARTM). The glass fibre mats were stacked into a steel mould, either in a [0°]8 or in a [0°/90°]2s 

configuration. All laminates consisted out of 8 layers of glass fibres and had a total thickness of 3 ± 

0.1 mm. Three different configurations were used to introduce the nanofibres into the laminates. In 

addition to these three configurations, reference samples were produced containing only glass 

fibres. 

In the first configuration a single layer of nanofibres was directly electrospun on one side of the 

glass fibre mats. These mats are stacked on top of each other. Hence, the interlayer of two 

neighbouring plies contains a single layer of nanofibre nonwoven. This configuration will be 

referred to as the single layer deposited configuration (SLD). 

The second configuration, referred to as the double layer deposited configuration (DLD), consists 

out of one layer of nanofibres electrospun on each side of the glassfibre mats. Therefore, the 

interlayer of two neighbouring plies contained two layers of nanofibres on top of each other. 
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The third configuration was named the interlayered configuration (IL). This configuration consists 

of standalone nanofibre nonwovens placed in between the glass fibre mats. Therefore, the 

interlayer contains one layer of nanofibrous nonwoven, but that layer is not directly electrospun 

onto the glass fibre mats. 

The samples prepared for the tensile tests contained nanofibrous nonwoven, according to the 

above configurations, in each interlayer. For the double cantilever beam samples (DCB), the 

nanofibrous nonwoven was incorporated in the tested interlayer. 

Prior to infusion, the resin and hardener were mixed in a 100:30 mass ratio. A mechanical stirrer 

was used to ensure good mixing of resin and hardener. After mixing, the epoxy resin was placed 

under vacuum for 15 min to remove any air introduced during mixing.  

After injection, the glass-epoxy laminate is first cured at room temperature for 24 hours and then 

post-cured for 15 hours at 80 °C. It should be noted that although the temperature in the post 

curing step is above the melting region of PCL (approximately at 60 °C) the curing at room 

temperature is well below the melting region[27]. 

2.4 Characterisation 

Scanning electron microscopy (SEM, Joel Quanta 200 F FE-SEM) was used to investigate the 

fibre diameter of the electrospun nanofibres as well as the delamination fracture surface of the 

laminates. Prior to the SEM-measurements, the specimens were coated by a gold sputter coater 

(Balzers Union SCD 030). An optical microscope, an Olympus BX51 with an Olympus UC30 

camera, was used to visualise delamination cracks in the cross section of the composite laminates 

as well as to determine the thickness of the interlayer between two neighbouring plies.  

Mode I delamination fracture toughness was measured by DCB experiments on an 

electromechanical Instron 5800R machine following the ASTM D 5528 (2013) standard. Five 

samples were tested for each configuration. All DCB experiments were performed on 

unidirectional laminates and piano hinges were used to transfer the load to the sample. The 
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dimensions of the DCB samples were 20 x 160 x 3 mm and the initial delamination length was 50 

mm and was created using a release film with a thickness of 30µm. The crack propagation in the 

DCB samples was followed using a traveling microscope. Throughout this paper, different cross 

sections of these DCB samples will be shown, a coordinate system is used to indicate the glass 

fibre direction (X), the direction perpendicular to the unidirectional glass fibres (Y) and the 

thickness direction (Z). 

Tensile tests and open hole strength tests on the composites were performed on an 

electromechanical Instron 5800R machine with a load cell of 100 kN following the ASTM 

D3039/D3039M standard. The tests were displacement controlled with a speed of 2 mm/min and 

both displacement and load were recorded.  

The [0°/90°]2s tensile specimens were instrumented with an extensometer to measure the 

longitudinal strain. The [+45°/-45°]2s tensile specimens were instrumented with two strain gauges 

to measure shear. All signals were sampled on the same time basis. The nanofibre containing 

tensile specimens had a DLD configuration and contained 10 g/m2 or 20 g/m2 of PCL nanofibres in 

each interlayer. Four samples were tested for each of these configurations. 

The [0°/90°]2s open hole strength specimens had a width of 36 ± 0.5 mm and a central hole of 8 ± 

0.1 mm in diameter. Three samples were tested for each configuration. The nanofibre containing 

open hole specimens had a DLD configuration and contained 5 g/m2 or 20 g/m2 of PCL nanofibres 

in each interlayer. 

The dynamic mechanical analysis (DMA) was executed on a Q800 from TA Instruments. Before 

the start of the DMA experiments, a complete calibration was carried out; the temperature 

calibration was performed using an indium standard. Due to the high modulus of the samples, the 

experiments were carried out with a single cantilever clamp. The frequency was kept constant at 1 

Hz and the displacement amplitude was set to 20 µm. The experiments started with bringing the 
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DMA-temperature to 30 °C followed by an equilibration time of 15 min, after which the temperature 

was raised at 2.5 °C/min to 150 °C. At least 3 samples were tested for each configuration. 

3 Results and discussion 

3.1 Expressing the nanofibre content 

In composite materials, the fibre content is seen as a very important material parameter. There are 

different ways in which the nanofibre content can be expressed. In this paper, the areal density of 

the nanofibre nonwovens is used as a main parameter to indicate the nanofibre content. This has 

several advantages over other parameters such as the weight fraction to the total composite 

weight or to the resin weight. Areal density allows for easy comparison independent of the resin or 

primary reinforcing fibre density. In addition, a nanofibre weight fraction to the matrix weight does 

not take the positioning of the nanofibres in the interlayers into account. Indeed, the nanofibres are 

mainly present in the interlayers and not, or at least to a much lesser extent, in between the 

reinforcing fibres. Therefore, properties of a pure epoxy/nanofibre bulk material with the same 

weight fraction to resin content as in the laminate cannot be compared to what is present in the 

interlayer. To avoid this problem, the weight fraction of the nanofibres compared to the resin 

present in the interlayer may be used. Table 1 shows the different areal densities used and their 

corresponding calculated fibre fractions in the interlayer as well as the fraction of the nanofibres to 

the resin weight and to the total weight of the laminates for the SLD and DLD configuration. 

3.2 Effect of PCL nanofibres on the resin infusion process 

All laminates were produced using vacuum assisted resin transfer moulding. The viscosity and 

reactivity of the epoxy resin are of major importance for all infusion moulded parts. The PCL 

nanofibres had no measurable influence on this infusion process. The low viscosity infusion resin 

could easily impregnate all nanofibrous nonwovens in the interlayers. Visual examination and 

microscopic images showed no dry spots in the final laminates (the epoxy resin is transparent), 

see section 3.4.  
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3.3 The effect of nanofibre nonwoven placement on the interlaminar fracture toughness 

Three different configurations (single layer deposited (SLD), double layer deposited (DLD) and 

interlayered (IL) were tested in comparison to the reference configuration without nanofibres.  

Figure 1.A shows the mode I fracture toughness for the three different nanofibre stacking 

configurations as a function of the crack length. These values were calculated according to ASTM 

D 5528 from the load displacement curve (Figure 1.B) and the measured crack length recorded by 

a traveling microscope. The nanofibre content in the interlayer was 5 g/m2 for each configuration 

implying that the DLD samples had 2.5 g/m2 of nanofibres in each deposited nanofibre layer.It can 

be noted that both the IL configuration as well as the SLD configuration only show a marginal 

improvement over the reference laminates. In contrast the DLD configuration showed a substantial 

improvement. Both the initiation fracture toughness (GIc,ini)  and the propagation fracture toughness 

(GIc,prop) were increased by about 430 J/m2 and 280 J/m2 respectively compared to the reference 

laminate. Taking into account that due to the selection of a high toughness infusion resin, the 

reference material already had a GIc,ini of 640 ± 60J/m2, the mode I initiation fracture toughness of 

the DLD configuration was found to be as high as 1070 ± 130 J/m2. 

An explanation for the remarkable difference between these configurations is found by visually 

examining the fracture surface of the DCB samples. Figure 2 shows a comparison between a SLD 

configuration and a DLD configuration. For the SLD configuration, the PCL nanofiber layer can be 

found on the fractured sample half that contained the glass fibre mat on which the PCL nanofibres 

were deposited. Therefore, the delamination crack propagated between the embedded 

nanofibrous layer and the glass fibre mat directly above it. The microscopic analysis also supports 

this hypothesis, see Section 3.4. It is assumed that a better adhesion/interaction of the nanofibres 

with the glass fibres in case the nanofibres are directly deposited on top of the glass fibres during 

the electrospinning process is the reason for the crack propagating above the toughened 

nanofibre layer. As such, the delamination crack did not go through the toughened interlayer. 

Hence, only marginal improvement compared to the reference was found. 
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In contrast, for the DLD configuration, parts of the embedded nanofibrous layer can be found on 

both halves of the fractured sample. This indicates that the delamination crack propagated, at 

least partially, through the toughened interlayer. Therefore, in the DLD configuration, more energy 

was required for the delamination crack to propagate through the nanofibre toughened interlayer, 

and hence, the fracture toughness of the DLD configuration is significantly higher than the SLD 

configuration. 

In a DCB experiment, a release film is used to initiate the delamination in between the central plies 

of the laminate. Thus the film was on top of the nanofibrous nonwoven for the SLD configuration, 

whereas for the DLD configuration, the film was in between two nanofibrous layers. To verify the 

film placement had no effect on the observed differences between the SLD and DLD 

configurations, modified DCB specimens were designed in which there was a 1mm gap between 

the nanofibrous reinforcement and the release film. Thus the delamination crack started in front of 

the nanofibrous reinforcement. No difference in mode I fracture toughness was found for these 

modified specimens compared to the standard designed specimens. Again a substantial 

improvement for the DLD configuration was observed compared to the other configurations. 

3.4 Microscopic analysis of the fracture behaviour 

SEM images were taken from the fracture surfaces of the DCB samples, see Figure 3 and Figure 

4. In addition, optical microscopy was used to analyse the cross section of these samples. The 

images were taken just before the tip of the crack path and perpendicular to the glass fibre 

orientation and crack propagation direction, Figure 5.  

Figure 3 illustrates imprints of the PCL nanofibres, indicating the nanofibrous structure is at least 

partially maintained during the impregnation and curing process. The room temperature curing 

step is assumed to be crucial in this perspective. During this step, a solid matrix is formed, which 

prevents the PCL nanofibres to mix with the epoxy matrix during the post-curing step at 80 °C, 

which is above the melting point of PCL. 
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Comparing the images of the fracture surface of a nanofibre toughened laminate, Figure 4B, to the 

reference laminate, Figure 4A, PCL rich zones can clearly be noted. On a macroscopic level, it is 

assumed that these zones represent spots where the glass fibres were strongly attached to the 

PCL nanofibrous web. These glass fibres in turn microscopically bridge the crack front until they 

are finally broken or completely pulled out of the PCL rich zone. On a nano scale level, these 

zones contain the plastically deformed PCL and PCL nanofibres bridging matrix particles, as 

shown in Figure 4B. This effect is present both in the case of a DLD as well as a SLD 

configuration. This phenomenon could therefore explain the slightly higher fracture toughness of 

the single layer configuration as compared to the reference. For the DLD configuration, it is 

suggested that a crack path deflection during initiation has an even more important role. This is 

indeed illustrated in Figure 5, showing the crack front alternatingly propagates above and below 

the nanofibre toughened interlayer when a DLD configuration is used. In case of the SLD 

configuration, the crack path stays preferably above the nanofibrous layer. The toughening effect 

is also illustrated through the visual examination of the crack surface. Figure 2 shows that the PCL 

rich layer distribution over the two sample halves is more or less constant in the fibre direction and 

fluctuates mainly in the direction perpendicular to the glass fibres. It is this fluctuation that can be 

seen in the macroscopic images in Figure 5, where the crack goes through the nanofibrous layer 

at several locations, after which it continues on the other side of the toughened interlayer until a 

next jump through the interlayer occurs. From the crack surface, Figure 2, it can be noted that 

most of these jumps were initiated at the start of the experiment, during the initiation of the 

delamination crack. When the delamination crack is initiated, it will meet the PCL toughened 

interlayer. At this point, a crack path deflection effect is likely to occur since it requires more 

energy to go through the toughened interlayer than to propagate below or above it. For the SLD 

configuration, the delamination crack went above the toughened interlayer across the whole width 

of the sample. As explained in Section 3.3, this is most likely due to a better interaction between 

the nanofibres and the glass fibre mat on which they were deposited as opposed to the glass fibre 

mat above it. For the DLD configuration, it can be assumed that the interaction between the 
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nanofibrous interlayer and the top and bottom glass fibre mat is similar. As a result, the crack front 

does not go above the toughened interlayer across the whole width of the sample. Instead, the 

crack front went below or above the toughened interlayer at specific positions, depending on small 

variations in nanofibre to glass fibre interactions across the width of the sample. Thus the crack 

front had to pass through the toughened interlayer to go from one side to the other. 

3.5 The effect of nanofibre content on the interlaminar fracture toughness 

The nanofibre content is varied from 2.5 g/m2 to 40 g/m2 of PCL nanofibres in the interlayer. Figure 

6 illustrates the mode I interlaminar fracture toughness of the resin transfer moulded laminates, 

both for the SLD and the DLD configuration.  

For the SLD configuration the fracture toughness shows no important variation with nanofibre 

content and has a value of around 765 ± 100 J/m2 for initiation and 1060 ± 100 J/m2 for 

propagation. These values are slightly better than the 640 J/m2 and 950 J/m2 obtained for the 

reference laminates without nanofibres in the interlayer. It should also be noted that even though 

the thickness of the interlayer increases significantly when high amounts of PCL nanofibres are 

added to the laminate, the interlaminar fracture toughness remains almost constant. This 

observation supports the hypothesis that in case of a SLD configuration, the crack mainly 

propagates above the nanofibre layer. Hence, the obtained fracture toughness is less dependent 

on the nanofibre content.  

For the DLD configuration, the initiation fracture toughness increases rapidly with increasing 

nanofibre content up to a value of 1070±130 J/m² when 5 g/m2 of nanofibres are added in the 

interlayer. When more than 5 g/m2 of nanofibres are added to the interlayer, the initiation facture 

toughness still increases although at a much slower rate. For the maximum value of 20 g/m2  the 

initiation fracture toughness increased up to 1240 ± 170 J/m2. This is an increase of almost 100% 

compared to the reference laminates. As opposed to the initiation fracture toughness, the 

propagation fracture toughness is shown to be relatively independent of the nanofibre content. The 
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propagation fracture toughness is approximately 1200 J/m2 for all nanofibre contents. This is 

around 250 J/m2 higher compared to the reference laminates. Overall it is clear the fracture 

toughness of the laminate increased significantly when a DLD configuration is used. 

3.6 Effect of PCL nanofibre toughening on tensile properties and open hole strength  

The tensile properties and open hole strength of the DLD laminate were also evaluated and 

compared to the reference. Tensile tests were performed on [0°/90°]2S and [+45°/-45°]2S laminates. 

From these tests an elastic modulus, shear modulus, tensile strength and shear strength were 

calculated. 

It can be noted, Table 2, that the tensile properties of the laminates where hardly affected by the 

presence of the nanofibres, both the tensile strength and Young’s modulus are maintained. In 

addition an improvement in open hole strength from 360 ± 7 MPa to 387 ± 19 MPa for the 5 g/m2 

DLD configuration and to 383 ± 14 MPa for the 20 g/m2 DLD configuration can be observed. This 

improvement is attributed to the fact that nanofibre toughened laminates show less delamination 

during the open hole test. This is clearly illustrated in Figure 7 showing two open hole samples 

after testing (5 g/m2 DLD configuration). The nanofibre toughened specimen clearly shows less 

delamination compared to the reference sample. 

3.7 Dynamic mechanical properties. 

Dynamic mechanical analysis verified the PCL nanofibres had no negative effect on the modulus 

of the glass epoxy laminates above room temperature. The DMA curves of the nanofibre 

containing samples are overlapping with the reference. Thus, even above the melting point of PCL 

(60°C) the modulus of the nanofibre containing samples is nearly identical to the reference.  

In addition the glass transition temperature of the nanofibre containing laminate, which can be 

evaluated from the step in the storage modulus at 77°C is identical to that of the neat glass epoxy 

laminate. 
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Conclusion 

The effect of PCL nanofibres on the interlaminar fracture toughness of resin transfer moulded 

glass fibre epoxy laminates was studied. The infusion process is not negatively influenced by the 

presence of the PCL nanofibres. The way in which the nanofibres are arranged into the laminate 

has a major effect on the mode I fracture toughness of the laminates. A DLD configuration in 

which the nanofibres were directly electrospun on both sides of the unidirectional glass fibre mats 

is clearly superior over the other tested configurations. More specifically, the obtained 

improvement was a function of the nanofibre content in the DLD samples. For a nanofibre content 

of 20 g/m2 in the interlayers, an improvement in initiation interlaminar fracture toughness of almost 

100% was obtained. The initiation fracture toughness increased from 640 J/m2 for the reference 

laminates to 1230 J/m² for the nanofibre toughened laminates. The improved fracture toughness of 

the DLD configuration was also confirmed in the open hole strength tests, where the nanofibre 

containing samples showed significantly less delamination around the central hole. 

It can be concluded that even state-of-the-art infusion resins can benefit from nanofibre 

toughening. This toughening effect was attributed to a good adhesion of deposited nanofibres onto 

the glass fibre mats, as well as to the inherent tough and ductile properties of the PCL nanofibres 

themselves. It is assumed that these properties resulted in glass fibre bridging as well as a crack 

path deflection effect during initiation of the delamination. Due to this crack path deflection, the 

delamination crack propagated partially through the nanofibre toughened interlayer (in case of a 

DLD configuration) resulting in a significant increase in fracture toughness. The tensile, shear and 

dynamic mechanical properties were not significantly influenced by the presence of PCL 

nanofibres in the interlayers.  
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Figure 1: Mode I fracture toughness as a function of crack length (A) and load-displacement 

curves (B), showing significant increases when a double layer deposited (DLD) configuration is 

used as compared to a single layer deposited configuration (SLD) or interlayered configuration (IL). 

 

Figure 2: Fracture surface of DCB samples showing how the impregnated nanofibrous PCL 

nonwoven is distributed over the two sample halves after fracture in case of the DLD (left) and 

SLD (right) configuration. 

 

Figure 3: SEM image of PCL nanofibres (left) and a fracture surface of a DLD configuration DCB 

specimen showing imprints of PCL nanofibres (right). 
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Figure 4: SEM image of reference (A) and DLD PCL nanofibre containing (B) DCB fracture 

surfaces. High amounts of plastic deformation and fractured pieces of epoxy matrix held together 

by PCL rich zones can be observed in (B). 

 

Figure 5: Cross-sectional optical microscopy images of double layer deposited configuration (DLD) 

and single layer deposited configuration (SLD). The crack path is perpendicular to the image plane 
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and goes above and below the nanofibre toughened interlayer when a DLD configuration is used.

 

Figure 6: Effect of PCL nanofibre content on GIC,ini and GIC,prop for single and double layer 

deposited configurations. 
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Figure 7: Open hole specimens show significantly less delamination when 5 g/m2 of nanofibres are 

present in each interlayer using a DLD configuration. 
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Tables  

Table 1: Different ways of expressing the nanofibre content of the glass-epoxy laminates. 

  
Areal density 
in interlayer 

Thickness 
interlayer wt% to resin 

wt% to resin 
in interlayer 

wt% to 
laminate 

  (g/m²) (µm) (%) (%) (%) 

Single layer 
deposited 
configuration 

2.5 ± 0.2 30 ± 5 0.92 ± 0.07 7 ± 2 0.26 ± 0.02 
10 ± 0.5 67 ± 7 3.69 ± 0.18 13 ± 2 1.05 ± 0.05 
40 ± 0.5 176 ± 12 14.77 ± 0.18 19 ± 2 4.21 ± 0.05 

            

Double layer 
deposited 
configuration 

2.5 ± 0.2 17 ± 5 0.92 ± 0.07 13 ± 5 0.26 ± 0.02 
5 ± 0.5 43 ± 7 1.85 ± 0.18 10 ± 3 0.53 ± 0.05 

10 ± 0.6 53 ± 15 3.69 ± 0.22 16 ± 6 1.05 ± 0.06 
  20 ± 0.5 89 ± 15 7.39 ± 0.18 19 ± 4 2.11 ± 0.05 

 

Table 2: Tensile properties of composite laminates show no decrease when PCL nanofibres are 

added (DLD configuration). 

 

Nanofibre 
content (g/m²) σxx (MPa) Exx (GPa) 

Ref [0°/90°]2S  0  574 ± 50 25 ± 1 

Nf [0°/90°]2S 10  596 ± 50 24 ± 1 

Nf [0°/90°]2S 20  603± 20 25± 1 

  τ max (MPa) Gxy (GPa) 

Ref [+45°/-45°]2S 0  62 ± 2 4.4 ± 0.2 

Nf[+45°/-45°]2S 10  59 ± 2 3.9 ± 0.2 

Nf[+45°/-45°]2S 20  60± 1 4.2 ± 0.2 

 

 

 

 


