10,252 research outputs found

    Towards understanding the clinical significance of QT peak prolongation: a novel marker of myocardial ischemia independently demonstrated in two prospective studies

    Get PDF
    Background: QT peak prolongation identified patients at risk of death or non-fatal MI. We tested the hypothesis that QT peak prolongation might be associated with significant myocardial ischaemia in two separate cohorts to see how widely applicable the concept was. Methods and Results: In the first study, 134 stroke survivors were prospectively recruited and had 12-lead ECGs and Nuclear myocardial perfusion scanning. QT peak was measured in lead I of a 12-lead ECG and heart rate corrected by Bazett’s formula (QTpc). QTpc prolongation to 360ms or more was 92% specific at diagnosing severe myocardial ischaemia. This hypothesis-generating study led us to perform a second prospective study in a different cohort of patients who were referred for dobutamine stress echocardiography. 13 of 102 patients had significant myocardial ischaemia. Significant myocardial ischaemia was associated with QT peak prolongation at rest (mean 354ms, 95% CI 341-367ms, compared with mean 332ms, 95% CI 327-337ms in those without significant ischaemia; p=0.002). QT peak prolongation to 360ms or more was 88% specific at diagnosing significant myocardial ischaemia in the stress echocardiography study. QT peak prolongation to 360ms or more was associated with over 4-fold increase odds ratio of significant myocardial ischaemia. The Mantel- Haenszel Common Odds Ratio Estimate=4.4, 95% CI=1.2-16.0, p=0.023. Conclusion: QT peak (QTpc) prolongation to 360ms or more should make us suspect the presence of significant myocardial ischaemia. Such patients merit further investigations for potentially treatable ischaemic heart disease to reduce their risk of subsequent death or non-fatal MI

    Coronary artery spasm : role in acute myocardial ischaemia

    Get PDF
    Coronary artery spasm is an accepted cause of transient myocardial ischaemia in patients with variant angina. The electrocardiographic abnormality, ST segment elevation, which is a hallmark of this syndrome, resembles that seen experimentally when the animal coronary artery is ligated and clinically, when the human coronary artery is totally occluded by a balloon angioplasty catheter. Coronary artery spasm is defined as a severe localized constriction sufficiently profound to cause transient total or sub-total occlusion of an epicardial coronary artery resulting in myocardial ischaemia. Coronary artery spasm has also been suggested to play an important role in the pathophysiology of myocardial ischaemia throughout the wide clinical spectrum of coronary artery disease including effort angina, unstable angina, acute myocardial infarction and sudden death.peer-reviewe

    Endothelin and the ischaemic heart

    Get PDF
    Soon after its identification as a powerful vasoconstrictor peptide, endothelin (ET-1) was implicated as a detrimental agent involved in determining the outcome of myocardial ischaemia and reperfusion. Early experimental studies demonstrated that ETA selective and mixed ETA/ETB receptor antagonists can reduce infarct size and prevent ischaemiainduced ventricular arrhythmias in models of ischaemia/reperfusion, implying that ET-1 acts through the ETA receptor to contribute to injury and arrhythmogenesis. However, as our understanding of the physiology of ET-1 has expanded, the role of ET-1 in the ischaemic heart appears ever more complex. Recent evidence suggests that ET-1 exerts actions on the heart that are not only detrimental (vasoconstriction, inhibition of NO production, activation of inflammatory cells), but which may also contribute to tissue repair, such as inhibition of cardiomyocyte apoptosis. In addition, ET-1-induced mast cell degranulation has been linked to a homeostatic mechanism that controls endogenous ET-1 levels, which may have important implications for the ischaemic heart. Furthermore the mechanism by which ET-1 promotes arrhythmogenesis remains controversial. Some studies imply a direct electrophysiological effect of ET-1, via ETA receptors, to increase monophasic action potential duration (MAPD) and induce early after-depolarisations (EADs), while other studies support the view that coronary constriction resulting in ischaemia is the basis for the generation of arrhythmias. Moreover, ET-1 can induce cardioprotection (precondition) against infarct size and ventricular arrhythmias, through as yet incompletely understood mechanisms. To enable us to identify the most appropriate means of targeting this system in a therapeutically meaningful way we need to continue to explore the physiology of ET-1, both in the normal and the ischaemic heart

    Pretreatment with beta-blockers and the frequency of hypokalemia in patients with acute chest pain

    Get PDF
    Plasma potassium concentration was measured at admission in 1234 patients who presented with acute chest pain. One hundred and ninety five patients were on P blockers before admission. The potassium concentrations of patients admitted early (within four hours of onsetof symptoms) were compared with those admitted later (4-18 hours after onset of symptoms). There was a transient fall in plasma potassium concentrations in patients not pre-treated with , B blockers. This was not seen in patients who had been on P blockers before admission. Nonselective, B blockers were more effective than cardioselective agents in maintaining concentrationsof plasma potassium. These findings suggest a mechanism for the beneficial effects of ,B blockers on morbidity and mortality in acute myocardial infarction

    Impact of aortic stiffness on myocardial ischaemia in non-obstructive coronary artery disease

    Get PDF
    Objective: High aortic stiffness may reduce myocardial perfusion pressure and contribute to development of myocardial ischaemia. Whether high aortic stiffness is associated with myocardial ischaemia in patients with stable angina and non-obstructive coronary artery disease (CAD) is less explored. Methods: Aortic stiffness was assessed as carotid-femoral pulse wave velocity (PWV) by applanation tonometry in 125 patients (62±8 years, 58% women) with stable angina and non-obstructive CAD participating in the Myocardial Ischemia in Non-obstructive CAD project. PWV in the highest tertile (>8.7 m/s) was taken as higher aortic stiffness. Stress-induced myocardial ischaemia was detected as delayed myocardial contrast replenishment during stress echocardiography, and the number of left ventricular (LV) segments with delayed contrast replenishment as the extent of ischaemia. Results: Patients with higher aortic stiffness were older with higher LV mass index and lower prevalence of obesity (all p<0.05), while angina symptoms, sex, prevalence of hypertension, diabetes, smoking or LV ejection fraction did not differ between groups. Stress-induced myocardial ischaemia was more common (73% vs 42%, p=0.001) and the extent of ischaemia was larger (4±3 vs 2±3 LV segments, p=0.005) in patients with higher aortic stiffness. In multivariable logistic regression analysis, higher aortic stiffness was associated with stress-induced myocardial ischaemia independent of other known covariables (OR 4.74 (95% CI 1.51 to 14.93), p=0.008). Conclusions: In patients with stable angina and non-obstructive CAD, higher aortic stiffness was associated with stress-induced myocardial ischaemia. Consequently, assessment of aortic stiffness may add to the diagnostic evaluation in patients with non-obstructive CAD.publishedVersio

    Electrocardiographic changes in hiatal hernia: a case report

    Get PDF
    We describe the case of a 78-year-old woman admitted to our department for suspected silent myocardial ischaemia with the evidence of T wave inversion in anterior lead. All the instrumental exams excluded inducible myocardial ischaemia. A gastroscopy showed a moderate hiatal hernia. We postulate that electrocardiogram modification could be attributed to hiatal hernia

    Beating heart coronary surgery and renal function: a prospective randomised study (Presented at 18th Spring Meeting of the Association of Cardiothoracic Anaesthetists: Selected abstracts, Cambridge, UK. 22 June 2001)

    Get PDF
    Introduction Cardiopulmonary bypass (CPB) is widely regarded as an important contributor to renal failure, a well recognised complication, following coronary artery surgery (CABG). Off-pump coronary surgery (OPCAB) is intuitively considered renoprotective. We examine the extent of renal glomerular and tubular injury in low-risk patients undergoing either OPCAB or on-pump coronary artery bypass (ONCAB).Methods Forty patients awaiting elective CABG were prospectively randomized into those undergoing OPCAB (n = 20) and ONCAB (n = 20). Table 1 illustrates the exclusion criteria. Glomerular and tubular injury were assessed, respectively, by urinary excretion of microalbumin and retinol binding protein (RBP) indexed to urinary creatinine [1]. Daily measurements were made from admission to postoperative day 5. Fluid balance, serum creati-nine and blood urea were also monitored. Results No mortality or renal complication was observed. Both groups had similar demographic make-up. The OPCAB group received fewer coronary grafts than their counterparts (1.8 versus 2.8; P = 0.002). Serum creatinine and blood urea remained normal in both groups throughout the study. A dramatic and similar rise in mean ± 2SD urinary RBP:creatinine ratio occurred in both groups peaking on day 1 (3183 ± 2534 versus 4035 ± 4078; P = 0.43) before returning to baseline levels. These trends were also observed with the urinary microalbumin:creatinine ratio (5.05 ± 2.66 versus 6.77 ± 5.76; P = 0.22). ONCAB patients had a significantly more negative fluid balance on postoperative day 2 (-183 ± 1118 versus 637 ± 847 ml; P &lt; 0.05). Conclusions Although renal dysfunction did not clinically occur in any patient, sensitive indicators revealed significant and similar injury to both renal tubules and glomeruli following either OPCAB or ONCAB. These suggest that avoidance of CPB per se does not offer additional renoprotection to patients at low risk of perioperative renal insult during CABG

    Identification of the growth arrest and DNA damage protein GADD34 in the normal human heart and demonstration of alterations in expression following myocardial ischaemia

    Get PDF
    Growth arrest and DNA damage protein 34 (GADD34) is a multifunctional protein upregulated in response to cellular stress and is believed to mediate DNA repair and restore protein synthesis. In the present study we have examined GADD34 immunoreactivity in human myocardial tissue at defined survival times following cardiac arrest and determined alterations in expression following ischaemia. In the normal human heart, GADD34 immunoreactivity was generally intense and present within most cells. GADD34 immunoreactivity was downregulated in tissue displaying ischaemic damage and remained intense in adjacent non-infarcted tissue. Unlike brain, GADD34 was not found to be upregulated in the peri-infarct zone. Cells displaying apoptotic changes were located in regions displaying reduced GADD34 immunoreactivity. In the brain, it is thought that GADD34 supports re-initiation of protein synthesis following ischaemia. Similarly, GADD34 may perform important functions in cardiac tissue in response to ischaemia
    corecore