105,951 research outputs found

    Ca2+-activated K+channels modulate microglia affecting motor neuron survival in hSOD1G93A mice

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a multifactorial disease characterized by the progressive degeneration of motor neurons (MN) and muscle paralysis. Despite current treatments, patients survive less than 3–5 years after the initial diagnosis. Most ALS cases are sporadic (sALS), and only 5-10% have a familial origin (fALS). Among the latter, about 20% express a dominant mutant form of the Cu, Zn superoxide dismutase (SOD1) (Rothstein, 2009). Transgenic mice expressing a mutant SOD1 develop MN pathology, with muscle denervation and weakness similar to ALS patients (Fischer et al., 2004). Many evidence demonstrate that ALS is non-cell autonomous, with multiple co-players involved in disease progression (Robberecht et al, 2013). In particular, signals from both glial cells and muscles initiate and sustain MN degeneration (Boillée et al., 2006; Dobrowolny et al, 2008). Recent studies described a critical role for microglia in amyotrophic lateral sclerosis (ALS), where these CNS-resident immune cells participate in the establishment of an inflammatory microenvironment that contributes to motor neuron degeneration. Understanding the mechanisms leading to microglia activation in ALS could help to identify specific molecular pathways which could be targeted to reduce or delay motor neuron degeneration and muscle paralysis in patients. The intermediate-conductance calciumactivated potassium channel KCa3.1 has been reported to modulate the “pro-inflammatory” phenotype of microglia in different pathological conditions. We here investigated the effects of blocking KCa3.1 activity in the hSOD1G93AALS mouse model, which recapitulates many features of the human disease. We report that treatment of hSOD1G93A mice with a selective KCa3.1 inhibitor, 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34), attenuates the “pro-inflammatory” phenotype of microglia in the spinal cord, reduces motor neuron death, delays onset of muscle weakness, and increases survival. Specifically, inhibition of KCa3.1 channels slowed muscle denervation, decreased the expression of the fetal acetylcholine receptor γ subunit and reduced neuromuscular junction damage. Taken together, these results demonstrate a key role for KCa3.1 in driving a pro-inflammatory microglia phenotype in ALS

    Increased levels of interleukin-6 exacerbate the dystrophic phenotype in mdx mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is characterized by progressive lethal muscle degeneration and chronic inflammatory response. The mdx mouse strain has served as the animal model for human DMD. However, while DMD patients undergo extensive necrosis, the affected muscles of adult mdx mice rapidly regenerates and regains structural and functional integrity. The basis for the mild effects observed in mice compared with the lethal consequences in humans remains unknown. In this study, we provide evidence that interleukin-6 (IL-6) is causally linked to the pathogenesis of muscular dystrophy. We report that forced expression of IL-6, in the adult mdx mice, recapitulates the severe phenotypic characteristics of DMD in humans. Increased levels of IL-6 exacerbate the dystrophic muscle phenotype, sustaining inflammatory response and repeated cycles of muscle degeneration and regeneration, leading to exhaustion of satellite cells. The mdx/IL6 mouse closely approximates the human disease and more faithfully recapitulates the disease progression in humans. This study promises to significantly advance our understanding of the pathogenic mechanisms that lead to DMD

    Increased circulating levels of interleukin-6 induce perturbation in redox-regulated signaling cascades in muscle of dystrophic mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked genetic disease in which dystrophin gene is mutated, resulting in dysfunctional or absent dystrophin protein. The pathology of dystrophic muscle includes degeneration, necrosis with inflammatory cell invasion, regeneration, and fibrous and fatty changes. Nevertheless, the mechanisms by which the absence of dystrophin leads to muscle degeneration remain to be fully elucidated. An imbalance between oxidant and antioxidant systems has been proposed as a secondary effect of DMD. However, the significance and precise extent of the perturbation in redox signaling cascades is poorly understood. We report that mdx dystrophic mice are able to activate a compensatory antioxidant response at the presymptomatic stage of the disease. In contrast, increased circulating levels of IL-6 perturb the redox signaling cascade, even prior to the necrotic stage, leading to severe features and progressive nature of muscular dystrophy

    Disruption of muscle architecture and myocardial degeneration in mice lacking desmin.

    Get PDF
    Desmin, the muscle specific intermediate filament (IF) protein encoded by a single gene, is expressed in all muscle tissues. In mature striated muscle, desmin IFs surround the Z-discs, interlink them together and integrate the contractile apparatus with the sarcolemma and the nucleus. To investigate the function of desmin in all three muscle types in vivo, we generated desmin null mice through homologous recombination. Surprisingly, desmin null mice are viable and fertile. However, these mice demonstrated a multisystem disorder involving cardiac, skeletal, and smooth muscle. Histological and electron microscopic analysis in both heart and skeletal muscle tissues revealed severe disruption of muscle architecture and degeneration. Structural abnormalities included loss of lateral alignment of myofibrils and abnormal mitochondrial organization. The consequences of these abnormalities were most severe in the heart, which exhibited progressive degeneration and necrosis of the myocardium accompanied by extensive calcification. Abnormalities of smooth muscle included hypoplasia and degeneration. The present data demonstrate the essential role of desmin in the maintenance of myofibril, myofiber, and whole muscle tissue structural and functional integrity, and show that the absence of desmin leads to muscle degeneration

    CADASIL: A monogenic condition causing stroke and subcortical vascular dementia

    Get PDF
    Mutations in Notch3 are the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), an inherited small vessel disease leading to subcortical strokes and vascular dementia. The phenotypic presentation is variable but remarkable for a high frequency of migraine with aura. Magnetic resonance images show a microangiopathic pattern of lesions. Prominent involvement of the temporopolar white matter and involvement of the temporopolar arcuate fibers are conspicuous findings seen in many patients, The underlying angiopathy is characterized by a unique type of ultrastructural basal lamina deposits and by degeneration of vascular smooth muscle cells which are the major source of Notch3 expression. In line with these findings there is evidence for a functional impairment of vascular smooth muscle cells. CADASIL has opened a new perspective in studying basic mechanisms of vessel wall degeneration and ischemic tissue damage related to small vessel disease. Copyright (C) 2002 S. Karger AG, Basel

    Stimulator Listrik Guna Menjaga Kemampuan Kontraksi Otot Ekstremitas Atas

    Get PDF
    The cause of slow development of physiotherapy in after stroke patients is caused by muscle contraction was not optimal again. In previous research, have successfully designed and tested a non-clinical electrical stimulator in order to maintain the ability of lower limb muscle contractions. This research design a four channel electrical stimulator in order to maintain the ability for muscle contractions of the upper limb of stroke patients so they do not experience muscle degeneration. Electrical stimulator used in previous studies should be retested if all the parameters used in upper limb muscles in accordance with the amount required by upper limb muscles. After being tested on normal subjects, obtained voltage parameters should be adjusted and has a maximum stimulation of 70 V

    Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is characterized by muscle degeneration and progressive weakness. There is considerable inter-patient variability in disease onset and progression, which can confound the results of clinical trials. Here we show that a common null polymorphism (R577X) in ACTN3 results in significantly reduced muscle strength and a longer 10\u2009m walk test time in young, ambulant patients with DMD; both of which are primary outcome measures in clinical trials. We have developed a double knockout mouse model, which also shows reduced muscle strength, but is protected from stretch-induced eccentric damage with age. This suggests that \u3b1-actinin-3 deficiency reduces muscle performance at baseline, but ameliorates the progression of dystrophic pathology. Mechanistically, we show that \u3b1-actinin-3 deficiency triggers an increase in oxidative muscle metabolism through activation of calcineurin, which likely confers the protective effect. Our studies suggest that ACTN3 R577X genotype is a modifier of clinical phenotype in DMD patients
    • …
    corecore