114 research outputs found

    The Structure of First-Order Causality

    Get PDF
    Game semantics describe the interactive behavior of proofs by interpreting formulas as games on which proofs induce strategies. Such a semantics is introduced here for capturing dependencies induced by quantifications in first-order propositional logic. One of the main difficulties that has to be faced during the elaboration of this kind of semantics is to characterize definable strategies, that is strategies which actually behave like a proof. This is usually done by restricting the model to strategies satisfying subtle combinatorial conditions, whose preservation under composition is often difficult to show. Here, we present an original methodology to achieve this task, which requires to combine advanced tools from game semantics, rewriting theory and categorical algebra. We introduce a diagrammatic presentation of the monoidal category of definable strategies of our model, by the means of generators and relations: those strategies can be generated from a finite set of atomic strategies and the equality between strategies admits a finite axiomatization, this equational structure corresponding to a polarized variation of the notion of bialgebra. This work thus bridges algebra and denotational semantics in order to reveal the structure of dependencies induced by first-order quantifiers, and lays the foundations for a mechanized analysis of causality in programming languages

    Hoare Semigroups

    Get PDF
    A semigroup-based setting for developing Hoare logics and refinement calculi is introduced together with procedures for translating between verification and refinement proofs. A new Hoare logic for multirelations and two minimalist generic verification and refinement components, implemented in an interactive theorem prover, are presented as applications that benefit from this generalisation

    Nets, relations and linking diagrams

    Full text link
    In recent work, the author and others have studied compositional algebras of Petri nets. Here we consider mathematical aspects of the pure linking algebras that underly them. We characterise composition of nets without places as the composition of spans over appropriate categories of relations, and study the underlying algebraic structures.Comment: 15 pages, Proceedings of 5th Conference on Algebra and Coalgebra in Computer Science (CALCO), Warsaw, Poland, 3-6 September 201

    Presentation of a Game Semantics for First-Order Propositional Logic

    Get PDF
    Game semantics aim at describing the interactive behaviour of proofs by interpreting formulas as games on which proofs induce strategies. In this article, we introduce a game semantics for a fragment of first order propositional logic. One of the main difficulties that has to be faced when constructing such semantics is to make them precise by characterizing definable strategies - that is strategies which actually behave like a proof. This characterization is usually done by restricting to the model to strategies satisfying subtle combinatory conditions such as innocence, whose preservation under composition is often difficult to show. Here, we present an original methodology to achieve this task which requires to combine tools from game semantics, rewriting theory and categorical algebra. We introduce a diagrammatic presentation of definable strategies by the means of generators and relations: those strategies can be generated from a finite set of ``atomic'' strategies and that the equality between strategies generated in such a way admits a finite axiomatization. These generators satisfy laws which are a variation of bialgebras laws, thus bridging algebra and denotational semantics in a clean and unexpected way

    Dagger Categories of Tame Relations

    Get PDF
    Within the context of an involutive monoidal category the notion of a comparison relation is identified. Instances are equality on sets, inequality on posets, orthogonality on orthomodular lattices, non-empty intersection on powersets, and inner product on vector or Hilbert spaces. Associated with a collection of such (symmetric) comparison relations a dagger category is defined with "tame" relations as morphisms. Examples include familiar categories in the foundations of quantum mechanics, such as sets with partial injections, or with locally bifinite relations, or with formal distributions between them, or Hilbert spaces with bounded (continuous) linear maps. Of one particular example of such a dagger category of tame relations, involving sets and bifinite multirelations between them, the categorical structure is investigated in some detail. It turns out to involve symmetric monoidal dagger structure, with biproducts, and dagger kernels. This category may form an appropriate universe for discrete quantum computations, just like Hilbert spaces form a universe for continuous computation
    corecore