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Dagger Categories of Tame Relations

Bart Jacobs

Abstract. Within the context of an involutive monoidal category the
notion of a comparison relation cp : X ⊗X → Ω is identified. Instances
are equality = on sets, inequality ≤ on posets, orthogonality ⊥ on ortho-
modular lattices, non-empty intersection on powersets, and inner prod-
uct 〈− |−〉 on vector or Hilbert spaces. Associated with a collection of
such (symmetric) comparison relations a dagger category is defined with
“tame” relations as morphisms. Examples include familiar categories in
the foundations of quantum mechanics, such as sets with partial in-
jections, or with locally bifinite relations, or with formal distributions
between them, or Hilbert spaces with bounded (continuous) linear maps.
Of one particular example of such a dagger category of tame relations,
involving sets and bifinite multirelations between them, the categorical
structure is investigated in some detail. It turns out to involve sym-
metric monoidal dagger structure, with biproducts, and dagger kernels.
This category may form an appropriate universe for discrete quantum
computations, just like Hilbert spaces form a universe for continuous
computation.

Primary 68Q55; Secondary 18D10, 81P68 Dagger category, quantum
semantics

1. Introduction

So-called tame relations were introduced in [3] in the construction of a partic-
ular (monoidal) dagger category of formal distributions. The phrase ‘tame’
refers to finiteness restrictions in two directions, and is best illustrated in
the context of relations. So suppose we have a relation r ⊆ X × Y ; it can
be described equivalently as a function X → P(Y ), where P is powerset, or
via reversal, as a function Y → P(X). The relation is called tame, if both
these functions factorise via the finite powerset Pfin , as in X → Pfin(Y ) and
Y → Pfin(X). Concretely, this means that for each x ∈ X there are only
finitely many y ∈ Y with r(x, y), and vice-versa. Such relations are often
called (locally) bifinite. They may be used to model finitely non-determinstic
reversible computations.

http://arxiv.org/abs/1101.1077v1
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In [3] tameness is used in the context of polynomials. Let S[X ] be the col-
lection of (multivariate) polynomials, with variables in a setX and coefficients
in a semiring S; similarly S[[X ]] is used for possibly infinite such polynomials
(or power series, or formal distributions). For certain analogues of relations,
giving rise to mappings S[X ] → S[[Y ]] and S[Y ] → S[[X ]], tameness means
that these mappings factor via finite polynomials, as in S[X ] → S[Y ] and
S[Y ]→ S[X ]. For details, see Subsection 4.6 below.

This paper starts by identifying a general context in which this notion
of tameness makes sense. It involves the notion of a comparison relation
cp : X⊗X → Ω. Such a relation requires an ambient category with tensors ⊗

and involution (−), as described for instance in [8, 2, 12]. A relation r : X ⊗
Y → Ω is then tame, if it factors via such comparisons, via appropriate
maps r∗ and r∗. It is shown that such categories of tame relations give rise to
dagger categories, assuming the underlying comparison relation is symmetric.
Section 4 illustrates how this general construction encompasses several known
categories that are relevant in the foundations of quantum mechanics, such as
orthomodular lattices with Galois connections, or sets with partial injections
or with bifinite relations, or with bifinite multirelations, or with bistochastic
relations. Some of these constructions are also described more abstractly,
in terms of the monads involved, namely lift, finite powerset, multiset and
distribution monads, see Subsection 4.3.

The formal distributions example from [3] is re-described in the present
general setting. Additionally, bounded (or continuous) maps between Hilbert
spaces are shown to correspond to tame relations (see Lemma 4.6).

Finally, one particular example category of tame relations, arising via
the multiset monad from the monad construction just mentioned, is further
investigated in Section 5. We refer to this as the category BifMRel of sets
and bifinite multirelations. Morphisms X → Y are functions r : X × Y → S,
into a semiring S, such that for each x ∈ X there are only finitely many y
with r(x, y) 6= 0. This means that the relation factors both as X →MS(Y )
and as Y →MS(X), whereMS is the multiset monad which “counts in S”.
Such bifinite multirelations may be used to model finitely weighted, reversible
computations. It is show that this category BifMRel has, besides daggers,
tensors ⊗ and biproducts ⊕. Moreover, it has dagger kernels, as described
in [10]. Thus, the category BifMRel resembles the category Hilb of Hilbert
spaces. It is suggested that this category BifMRel is the discrete analogue
of Hilb, useful for discrete quantum computations, such as usually occurring
in a quantum computer science context (see e.g. [20, 21]). This suggestion
requires further support via more extensive investigation.

Thus, the contributions of the paper are two-fold: (1) identifying the
uniformity in various models of quantum computation via a systematic ex-
position in terms of comparison relations, and (2) first investigation of one
particular promising example of such a model for discrete quantum compu-
tation, namely the category of sets and bifinite multirelations.
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2. Involutive categories, and comparisons therein

This section recalls the basics of involutive categories as presented in [12] (see
also [2, 8]). Within such involutive categories the notion of ‘comparison’ is
introduced.

A category A will be called involutive if it comes with a ‘involution’

functorA→ A, written asX 7→ X, and a natural isomorphism ιX : X
∼=−→ X

satisfying ιX = ιX : X → X.
Within such an involutive category a self-conjugate is an object X with

a map j : X → X satisfying j ◦ j = ι−1 : X → X . Such a map j is necessarily
an isomorphism. A self-conjugate is called a star-object in [2].

Each category is trivially involutive via the identity functor. The cat-
egory PoSets is involutive via order reversal (−)op. This applies also to
categories of, for instance, distributive lattices or Boolean algebras. Probably
the most standard example of an involutive category is the category VectC
of vector spaces over the complex numbers C; it is involutive via conjuga-
tion: for a vector space V ∈ VectC there is the ‘complex conjugate’ space
V ∈ VectC with the same vectors as V , but with adapted scalar multiplica-
tion s ·V v = s ·V v, for s ∈ C and v ∈ V , where s = a− ib is the conjugate of
the complex number s = a+ib ∈ C. This same involution exists on categories
of Hilbert spaces (over C).

The negation map ¬ : Bop ∼=→ B makes each Boolean algebra B self-
conjugate. The conjugation map (−) on the complex numbers makes C a

self-conjugate C
∼=→ C.

Definition 2.1. An involutive (symmetric) monoidal category is a category
A which is both involutive and (symmetric) monodial in which involution

(−) : A → A is a (symmetric) monoidal functor—via maps ζ : I → I and
ξ : X⊗Y → X ⊗ Y commuting with the monoidal isomorphisms—and ι : id ⇒

(−) is a monoidal natural transformation; this means that the following dia-
grams commutes.

I I

ι
��

X ⊗ Y

ι⊗ι
��

X ⊗ Y

ι
��

I
ζ

// I
ζ

//
I X ⊗ Y

ξ
//
X ⊗ Y

ξ
//
X ⊗ Y

(1)

One can show (see [12]) that the involution functor (−) is automatically
strong monoidal: the maps ζ : I → I and ξ : X ⊗ Y → X ⊗ Y are necessarily
isomorphisms.

In the symmetric case, with symmetry γ : X ⊗ Y
∼=−→ Y ⊗X , we often

use the ‘twist’ τ defined by:

τ
def
=

(
X ⊗ Y

ξ−1

∼=
//
X ⊗ Y

ι−1⊗id

∼=
// X ⊗ Y

γ

∼=
// Y ⊗X

)
. (2)

For Y = X this map makes X ⊗X self-conjugate.
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2.1. Comparison relations

The equality relation on a set X can be described as a map =: X×X → 2 in
Sets, where 2 = {0, 1}. We wish to capture such maps more generally under
the name ‘comparison relation’.

Definition 2.2. Assume an involutive monoidal category with a special object
Ω. A comparison relation is a map of the form cp : X ⊗X → Ω satisfying:

f = g follows from either

{
cp ◦ (id ⊗ f) = cp ◦ (id ⊗ g) or

cp ◦ (f ⊗ id) = cp ◦ (g ⊗ id)

In presence of exponents ⊸, these ‘mono requirements’ mean that the two
associated abstraction maps X → (X ⊸ Ω) and X → (X ⊸ Ω) are monic.

In a symmetric monoidal setting such a comparison relation is called
symmetric if the following diagram commutes,

X ⊗X

cp

��

τ

∼=
// X ⊗X

cp

��
Ω

j

∼=
// Ω

(3)

where a self-conjugate structure Ω
j
→ Ω is assumed, and where τ is the twist

map from (2).

In the symmetric case the two mono requirements—for each argument
separately—can be reduced to a single requirement—in one argument only:
if cp ◦ (id ⊗ f) = cp ◦ (id ⊗ g) implies f = g, then one can deduce that also
cp ◦ (f ⊗ id) = cp ◦ (g ⊗ id) implies f = g (and vice-versa).

An equality relation =: X×X → 2 = {0, 1} on a set X is given by (x =
x) = 1 and (x = x′) = 0 for x 6= x′. This is a symmetric comparison relation
in the category Sets, with trivial (identity) involution. More interestingly,
for a poset (X,≤), the order forms a non-symmetric comparison relation
≤ : Xop × X → 2 in PoSets. The involution (−)op in the type of the first
argument is needed for monotonicity, since: x ≥ x′ and x ≤ y and y ≤ y′

implies x′ ≤ y′. The mono requirement translates (in one argument) to: x = y

follows from x ≤ z iff y ≤ z for all z.
A non-trivial symmetric example is the inner product 〈− |−〉 : H ⊗

H → C on a Hilbert space H (over C). The bilinearity and antilinear-
ity requirements of an inner product are captured via tensor and conjuga-
tion in the input type of the operation: it yields 〈s · x | y〉 = s · 〈x | y〉 and
〈x1 + x2 | y〉 = 〈x1 | y〉 + 〈x2 | y〉, and similarly, 〈x | s · y〉 = s · 〈x | y〉 and
〈x | y1 + y2〉 = 〈x | y1〉 + 〈x | y2〉. The symmetry requirement for a compar-

ison relation says that 〈y |x〉 = 〈x | y〉. The mono requirement holds, since
if 〈x | z〉 = 〈y | z〉 for all z, then 0 = 〈x | z〉 − 〈y | z〉 = 〈x − y | z〉. By taking
z = x− y we get 〈x − y |x− y〉 = 0, from which we conclude x − y = 0 and
thus x = y.

Remark 2.3. Notice that our notion of comparison does not involve the usual
inner product requirements 〈x |x〉 ≥ 0 and 〈x |x〉 = 0 ⇒ x = 0 for Hilbert
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spaces. Such requirements are not needed for what we wish to achieve (in
the next section) and involve additional assumptions, namely the presence
of zero objects (or maps). The kind of inner product that is captured via a
comparison relation corresponds to a Minkowski inner product.

Although we do not pursue this here, we would like to mention that in
presence of such a zero one can introduce complementation with respect to a
comparison relation: for U ⊆ X , take U⊥ = {x ∈ X | ∀x′ ∈ U. cp(x, x′) = 0}.
For sets this gives ordinary complement, and for Hilbert spaces it yields
orthocomplementation of closed subsets.

3. Tame relations

This section introduces the setting in which one can define tameness for
relations, leading to the first result, namely that such tame relations give rise
to a dagger category (Proposition 3.5).

Definition 3.1. A comparison cluster consists of a collection
(
Xi ⊗Xi

cpi−→ Ω
)
i

of comparison maps in an involutive monoidal category (with a shared target
object Ω). This cluster is called symmetric if each of the comparison relations
cpi is symmetric.

In the category Sets each object carries a comparison relation =: X ×
X → 2. But there also situations where only specific objects in a category
carry such a relation. For instance, in the category JSL of (finite) join semilat-
tices the free objects carry such comparisons. Recall that free semilattices are
given by finite powersets Pfin(X) = {U ⊆ X | U is finite}. They carry a com-
parison relation cpX : Pfin(X)⊗Pfin(X)→ 2 in JSL, where cpX(U ⊗ V ) = 1
iff U ∩ V 6= ∅. The tensor ⊗ in JSL arises because of bilinearity: ∅ ∩ V 6= ∅
never holds, and (U1 ∪ U2) ∩ V 6= ∅ iff either U1 ∩ V 6= ∅ or U2 ∩ V 6= ∅.
Hence these cpX : Pfin(X)⊗Pfin(X)→ 2 form a comparison cluster in JSL,
indexed by sets X .

Similarly, we may consider the collection of Hilbert spaces with their

inner products
(
H ⊗ H

〈− |−〉H
−−−−−→ C

)
H∈Hilb

as a comparison cluster in the

category VectC of vector spaces over C.

More formally, we understand the index elements i in Definition 3.1 as
objects of a discrete category (no arrows except identities). The mapping
i 7→ Xi then forms a functor, like the finite powerset Pfin above. We do
not need morphisms between these index elements. This functorial view is
sometimes convenient, so we may describe a comparison cluster in a category

A as a collection
(
F (X)⊗F (X)

cpX−−→ Ω
)
X∈D

, where D is a discrete category

and F : D→ A is a functor.

Definition 3.2. Assume a comparison cluster
(
F (X)⊗ F (X)

cpX−−→ Ω
)
X∈D

, as
described above, in a involutive monoidal categoryA. A map in A of the form
r : F (X) ⊗ F (Y ) → Ω is called a relation. Such a relation is called tame if
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there are necessarily unique maps r∗ : F (X)→ F (Y ) and r∗ : F (Y )→ F (X)
in A for which the following diagram commutes.

F (Y )⊗ F (Y )

cpY
**UUUUUUUUUUUUUUU

F (X)⊗ F (Y )

r

��

r∗⊗id
oo id⊗r∗

// F (X)⊗ F (X)

cpX
ttiiiiiiiiiiiiiii

Ω

(4)

Given another (tame) relation s : F (Y )⊗F (Z)→ Ω we define a composition
s • r as:

s • r =
(
F (X)⊗ F (Z)

r∗⊗id
// F (Y )⊗ F (Z)

s // Ω
)
.

Notice that if r is a tame relation, r∗ and r∗ determine each other: r∗
determines r, as r = cp ◦ (r∗ ⊗ id), and thus r∗ via the mono-property of
cp. As we shall see in the examples below, commutation of the triangles (4)
amounts to an adjointness correspondence.

Recall the symmetric comparison cluster
(
X × X

=
−→ 2

)
X∈Sets

given

by equality. A relation r : X × Y → 2 is tame (wrt. this cluster) if there are
functions r∗ : X → Y and r∗ : Y → X such that, for all x ∈ X and y ∈ Y ,

r∗(x) = y ⇐⇒ r(x, y) = 1 ⇐⇒ x = r∗(y).

This means that r∗ and r∗ are each other’s inverses. One can interpret this
as: set-theoretic reversible computation requires isomorphisms (bijections).

Before we can form a category of tame relations, we need the following
results.

Lemma 3.3. In the context of the previous definition:

1. comparison relations are tame, with (cpX)∗ = idF (X) = (cpX)∗;
2. for tame relations r : F (X) ⊗ F (Y ) → Ω and s : F (Y ) ⊗ F (Z) → Ω,

the relation composition s • r is tame, with (s • r)∗ = s∗ ◦ r∗ and
(s • r)∗ = r∗ ◦ s∗;

Proof The first point is immediate, and for the second point we show that
the maps s∗ ◦ r∗ and r∗ ◦ s∗ satisfy the appropriate equations, making the
relation s • r tame:

cp ◦ ((s∗ ◦ r∗)⊗ id) = cp ◦ (s∗ ⊗ id) ◦ (r∗ ⊗ id)

= s ◦ (r∗ ⊗ id)

= s • r

cp ◦ (id ⊗ (r∗ ◦ s∗)) = cp ◦ (id ⊗ r∗) ◦ (id ⊗ s∗)

= r ◦ (id ⊗ s∗)

= cp ◦ (r∗ ⊗ id) ◦ (id ⊗ s∗)

= cp ◦ (id ⊗ s∗) ◦ (r∗ ⊗ id)

= s ◦ (r∗ ⊗ id)

= s • r. �
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The comparison cluster
(
Xop × X

≤
−→ 2

)
X∈PoSets

from the previous
section is non-symmetric. A relation r : X × Y → 2 in PoSets is tame if
there are monotone functions r∗ : X → Y and r∗ : Y → X such that for all
x ∈ X and y ∈ Y ,

r∗(x) ≤ y ⇐⇒ r(x, y) = 1 ⇐⇒ x ≤ r∗(y).

Thus a tame relation r comes from a Galois connection. As is well-known,
Galois connections are closed under composition, in the obvious manner. But
exchanging r∗ and r∗ does (in general) not yield another Galois connection—
but see Subsection 4.1 for a remedy for orthomodular lattices. In the next
result we shall use symmetry to obtain such reversals, in the form of daggers.

Lemma 3.4. For a tame relation r : X⊗Y → Ω we define a swapped version:

r† =
(
F (Y )⊗ F (X)

r∗⊗id
// F (X)⊗ F (X)

cp
// Ω

)
.

Assuming that the comparison cluster is symmetric, we get:

1. r† is the same as the composite:

F (Y )⊗ F (X)
τ−1

∼=
// F (X)⊗ F (Y )

r // Ω
j

∼=
// Ω,

where τ is the twist map from (2);
2. (r†)∗ = r∗ and (r†)∗ = r∗, making also r† tame.

Proof For the first point we obtain, by symmetry (3):

j ◦ r ◦ τ−1 = j ◦ cp ◦ (id ⊗ r∗) ◦ τ−1

= j ◦ cp ◦ τ−1 ◦ (r∗ ⊗ id) by naturality of τ
(3)
= cp ◦ (r∗ ⊗ id)

= r†.

By construction of r† as cp ◦ (r∗ ⊗ id), the map r∗ plays the role of (r†)∗. It
is easy to see that r∗ acts as (r†)∗:

cp ◦ (id ⊗ r∗)
(3)
= j ◦ cp ◦ τ−1 ◦ (id ⊗ r∗)

= j ◦ cp ◦ (r∗ ⊗ id) ◦ τ−1

= j ◦ r ◦ τ−1

= r†, as just shown. �

We summarise the situation.

Proposition 3.5. A comparison cluster cp =
(
F (X)⊗ F (X)

cpX−−→ Ω
)
X

in a
category A gives rise a category TRel(A, cp) of tame relations; it has indices

X as objects, and its morphisms X → Y are tame relations F (X)⊗F (Y )→
Ω. Comparison relations cpX form identity maps on X, and composition is
given by •, as in Definition 3.2.

In case the comparison cluster is symmetric, TRel(A, cp) is a dagger
category, with dagger (−)† as in Lemma 3.4.
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Proof We briefly check the basic properties, using Lemma 3.3 and 3.4.

cp • r = cp ◦ (r∗ ⊗ id) cp† = cp ◦ (cp∗ ⊗ id)

= r = cp ◦ (id ⊗ id)

s • cp = s ◦ (cp∗ ⊗ id) = cp

= s ◦ (id ⊗ id) (s • r)† = cp ◦ ((s • r)∗ ⊗ id)

= s = cp ◦ (r∗ ⊗ id) ◦ (s∗ ⊗ id)

t • (s • r) = t ◦ ((s • r)∗ ⊗ id) = r† ◦ ((s†)∗ ⊗ id)

= t ◦ ((s∗ ◦ r∗)⊗ id) = r† • s†

= t ◦ (s∗ ⊗ id) ◦ (r∗ ⊗ id) r†† = cp ◦ ((r†)∗ ⊗ id)

= (t • s) ◦ (r∗ ⊗ id) = cp ◦ (r∗ ⊗ id)

= (t • s) • r = r. �

In the sequel we focus on symmetric comparison clusters. We end this
section with some easy but useful observation.

Lemma 3.6. For a map r : X → Y in the dagger category TRel(A, cp) of a
symmetric comparison cluster one has:

r is a dagger mono, i.e. r† • r = id ⇐⇒ r∗ ◦ r∗ = id

r is a dagger epi, i.e. r • r† = id ⇐⇒ r∗ ◦ r∗ = id.

As a result we can characterise dagger isomorphisms (or: unitary maps) as:

r is a dagger iso
def
⇐⇒ r† = r−1 ⇐⇒

{
r∗ ◦ r∗ = id

r∗ ◦ r∗ = id
⇐⇒ (r†)∗ = (r∗)−1.

Proof Assume r† • r = id. Then, using Lemma 3.3 and 3.4, r∗ ◦ r∗ = r∗ ◦
(r†)∗ = (r† • r)∗ = cp∗ = id. Conversely, if r∗ ◦ r∗ = id, then r† • r =
r† ◦ (r∗ ⊗ id) = cp ◦ (r∗ ⊗ id) ◦ (r∗ ⊗ id) = cp = id. The dagger epi case is
handled similarly, and the result for dagger isos follows by combining these
two cases. �

Later on, in Section 5, we shall see examples of dagger monos in a
category of tame relation (see especially Lemma 5.3).

Lemma 3.7. In the same context as the previous lemma, an endomap r : X →
X is self-adjoint (i.e. r† = r) iff r∗ = r∗.

It is a projection (i.e. r • r = r = r†) iff r∗ = r∗ and r∗ ◦ r∗ = r∗.

Proof If r = r† then r∗ = (r†)∗ = r∗. Conversely, if r∗ = r∗, then r† = cp ◦
(r∗ ⊗ id) = cp ◦ (r∗ ⊗ id) = r.

If r is a projection, then it is a self-adjoint and so r∗ = r∗. Further,
cp ◦ (r∗ ⊗ id) = r = r • r = r ◦ (r∗ ⊗ id) = cp ◦ (r∗ ⊗ id) ◦ (r∗ ⊗ id) = cp ◦
(r∗ ◦ r∗ ⊗ id). Hence r∗ = r∗ ◦ r∗, by the mono-requirement for cp, and thus
r∗ = r∗ ◦ r∗. The converse is obvious. �
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4. Examples of categories of tame relations

All the illustrations of comparison clusters in this section will be symmetric—
resulting in dagger categories of tame relations. In many of the examples
below we have closed structure—with an exponent ⊸ for ⊗. Thus we can
equivalently describe such relations F (X) ⊗ F (Y ) → Ω as maps F (Y ) →(
F (X) ⊸ Ω

)
. This is often more convenient, since it avoids tensors.

4.1. Orthomodular lattices and Galois connections

In Subsection 2.1 we have seen that the order on a poset X forms a non-

symmetric comparison relation ≤ : X × X → 2 in PoSets, where (−) is
order-reversal. Now assume that X is an orthomodular lattice (see [15] for
details), with orthocomplement (−)⊥ : X → X. It satisfies, among other
things, x⊥⊥ = x and: x⊥ ≤ y iff y⊥ ≤ x. When x ≤ y⊥ one calls x, y or-
thogonal, which is also written as x ⊥ y. We obtain a comparison relation
cp⊥ : X ×X → 2 in PoSets (with identity involution), via cp⊥(x, y) = 1 iff
x⊥ ≤ y. By using orthocomplement in the first coordinate the contravariance
disappears. This relation is the same as (x, y) 7→ x⊥ ⊥ y⊥, that is, as or-
thogonality of orthocomplements. It forms a symmetric comparison relation,
since orthogonality is symmetric. The resulting category of tame relations is
known from [5, 13].

Proposition 4.1. The category of tame relations TRel(PoSets, cp⊥) for the

symmetric comparison cluster
(
X × X

cp⊥−−→ 2
)
X∈OrthMod

given by orthog-

onality of orthocomplements, is the category OMLatGal of orthomodular
lattices and (antitone) Galois connections between them.

Proof A tame relations r : X → Y , for X,Y orthomodular lattices is deter-
mined by monotone functions r∗ : X → Y and r∗ : Y → X satisfying:

r∗(x)⊥ ≤ y ⇐⇒ cp⊥(r∗(x), y) = 1 ⇐⇒ r(x, y) = 1

⇐⇒ cp⊥(x, r
∗(y)) ⇐⇒ x⊥ ≤ r∗(y).

These r∗ and r∗ are completely determined by monotone functions r# = r∗ ◦
(−)⊥ : X → Y and r# = r∗ ◦ (−)⊥ : Y → X satisfying:

x = x⊥⊥ ≤ r#(y) = r∗(y⊥) ⇐⇒ r∗(x⊥)⊥ ≤ y⊥ ⇐⇒ y ≤ r∗(x⊥) = r#(x).

This precisely says that r#, r
# form an antitone Galois connection—or an

adjunction r# ⊣ r#. �

In [13] it is shown that OMLatGal is a dagger kernel category with
(dagger) biproducts, and that every dagger kernel category maps into it.

4.2. Locally bifinite relations and partial injections

We have already seen the finite powerset Pfin(X) = {U ⊆ X | U is finite} as
free functor Pfin : Sets→ JSL, left adjoint to the forgetful functor from the
category of join semi-lattices (finite joins only). This category JSL is in fact
the category of (Eilenberg-Moore) algebras of the commutative (symmetric
monoidal) monad Pfin . Hence JSL is symmetric monoidal closed, following
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the constructions in [19, 18], where Pfin preserves the monoidal structure:
Pfin(1) = 2 is tensor unit and Pfin(X × Y ) ∼= Pfin(X) ⊗ Pfin(Y ). We first
review the comparison structure on free semilattices Pfin(X), with respect to
the trivial (identity) involution on JSL.

As Ω ∈ JSL we take the two-element lattice 2 = Pfin(1). Then we have
correspondences between ‘abstract’ relations and ordinary relations, in:

X × Y −→ 2 in Sets
===============
Pfin(X × Y ) −→ 2 in JSL

===================
Pfin(X)⊗ Pfin(Y ) −→ 2 in JSL

======================
Pfin(Y ) −→

(
Pfin(X) ⊸ 2

)
in JSL

(5)

Starting from the equality relation =: X×X → 2 in Sets this correspondence
yields a comparison relation cpP : Pfin(X)→ (Pfin (X) ⊸ 2) given by:

cpP(U)(U ′) =
∨

(x,x′)∈U×U ′

(x = x′) =

{
1 if U ∩ U ′ 6= ∅

0 otherwise.
(6)

Clearly, this relation cpP is symmetric; it is also monic: if cpP(U) = cpP(V ),
then:

x ∈ U ⇐⇒ cpP(U)({x}) = 1⇐⇒ cpP(V )({x}) = 1⇐⇒ x ∈ V.

Hence U = V .

Proposition 4.2. The dagger category TRel(JSL, cpP) of tame relations for
the symmetric comparison cluster cpP : Pfin(X) ⊗ Pfin(X) → 2 determined
by (6) is the category of sets with bifinite relations between them, i.e. with
those relations r ⊆ X × Y where for each x ∈ X and y ∈ Y both the sets

{z ∈ Y | r(x, z)} and {w ∈ X | r(w, y)}

are finite. Such a relation factors in two directions as X → Pfin(Y ) and as
Y → Pfin(X). Thus we also write BifRel = TRel(JSL, cpP) for this category
of sets and bifinite relations.

Proof Assume r ⊆ X×Y , which corresponds to r̂ : Pfin(Y )→ (Pfin(X) ⊸ 2)
in JSL like in (5), given by r̂(V )(U) = 1 iff r(x, y) holds for some x ∈ U and
y ∈ V . We shall prove the equivalence of:

(a) for each y ∈ Y , the set {x | R(x, y)} ⊆ X is finite;
(b) there is a necessarily unique map r∗ : Pfin(Y )→ Pfin(X) in JSL in the

diagram:

Pfin(Y )
r̂ //

r∗ $$J
J

J
J

Pfin(X) ⊸ 2

Pfin(X)
88 cp

P

88ppppppp
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This diagram corresponds to the triangle on the right in (4). The analogous
statement for r∗ is left to the reader.

So assume (a) holds. Then we can define r∗(V ) ∈ Pfin(X), for V ∈
Pfin(Y ), as finite union of finite sets, namely as r∗(V ) =

⋃
y∈V {x | r(x, y)}.

It makes the triangle in (b) commute:
(
cpP ◦ r

∗)(V )(U) = 1 ⇐⇒ cpP(r
∗(V ))(U) = 1

⇐⇒ U ∩ r∗(V ) 6= ∅

⇐⇒ ∃x ∈ U. ∃y ∈ V . r(x, y)

⇐⇒ r̂(V )(U) = 1.

Conversely, assume (b) holds, so that we have a map r∗ : Pfin(Y ) →
Pfin(X) in JSL in the above triangle. Then:

r(x, y) ⇐⇒ r̂({y})({x}) = 1

⇐⇒ cpP(r
∗({y}))({x}) = 1

⇐⇒ {x} ∩ r∗({y}) 6= ∅

⇐⇒ x ∈ r∗({y}).

Since r∗({y}) ∈ Pfin(X) there are at most finitely many x that satisfy R(x, y).
Finally, it is easy to see that composition in the category BifRel =

TRel(JSL, cpP) is just relational composition, and that the dagger is rela-
tional converse. �

For a map r : X × Y → 2, as morphism in BifRel = TRel(JSL, cpP),
the ‘adjointness’ correspondence (4) takes the form:

r∗(U) ∩ V 6= ∅ ⇐⇒ ∃x ∈ U. ∃y ∈ V . r(x, y) ⇐⇒ U ∩ r∗(V ) 6= ∅,

for U ∈ Pfin(X) and V ∈ Pfin(Y ). Moreover, such a map r : X → Y is
unitary if and only it is given by an isomorphism of sets X ∼= Y .

Our next example is fairly similar to the previous one. Below in Sub-
section 4.3 we shall capture this similarity in terms of certain monads. But
we prefer to describe this second example concretely, because it leads to a
well-known category, namely the category PInj of sets and partial injections
between them (see e.g. [9, 10]). We start with the category Sets• of pointed
sets. Objects are sets X containing a distinguished base point • ∈ X . Mor-
phisms are ordinary functions that preserve this base point. This category
Sets• is equivalent to the category Pfn of sets and partial functions between
them.

There is a “lift” functor L = 1 + (−) : Sets → Sets• that adds such a
base point to set; it is left adjoint to the fogetful functor Sets• → Sets. An
element z ∈ L(X) = 1+X is either of the form z = • ∈ 1 or z = x ∈ X , for a
unique x ∈ X . Thus one can see z ∈ L(X) as a subset of X with at most one
element (a ‘subsingleton’). This category Sets• is the category of algebras of
L, as monad on Sets; thus, Sets• is symmetric monoidal closed, following
the constructions in [19, 18]. If we take Ω = 2 = L(1) ∈ Sets•, then we have
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a bijective correspondence between abstract relations L(X)⊗L(Y )→ 2 and
ordinary relations X × Y → 2 in Sets, like in (5).

The comparison relation cpL we use here for L is the same as before—
for Pfin in (6), when considered as relation =: X × X → 2. But when we
translate it into a map cpL : L(X)→ (L(X) ⊸ 2) it becomes:

cpL(z)(z
′) =

{
1 if z = x = z′ for some (necessarily unique) x ∈ X

0 otherwise.
(7)

Again this relation is symmetric, and satisfies the mono requirement from
Definition 2.2: if cpL(z) = cpL(w), then for each x ∈ X ,

z = x⇐⇒ cpL(z)(x) = 1⇐⇒ cpL(w)(x) = 1⇐⇒ w = x.

Hence z = w.

Proposition 4.3. The dagger category TRel(Sets•, cpL) of tame relations for
the comparison relations (7) is the category PInj of sets with partial injec-
tions between them: relations r ⊆ X × Y satisfying both:

r(x, y) and r(x, y′) =⇒ y = y′ r(x, y) and r(x′, y) =⇒ x = x′.

That is: r factors both as X → L(Y ) and as Y → L(Y ).

Proof We prove the equivalence of:

(a) r(x, y) and r(x′, y) =⇒ x = x′;
(b) there is a necessarily unique map r∗ : L(Y ) → L(X) in Sets• in the

diagram:

L(Y )
r̂ //

r∗ ""E

E
E

L(X) ⊸ 2

L(X)

99 cpL

99tttttt

where r̂(z)(w) = 1 iff w = x ∈ X and z = y ∈ Y and r(x, y).

Assuming (a) we define:

r∗(z) =

{
x if z = y ∈ Y and there is a (necessarily unique) x with r(x, y)

• otherwise.

Then:
(
cpL ◦ r

∗)(z)(w) = 1 ⇐⇒ cpL(r
∗(z))(w) = 1

⇐⇒ r∗(z) = x = w ∈ X

⇐⇒ z = y ∈ Y and w = x ∈ X and r(x, y)

⇐⇒ r̂(z)(w).

Conversely, assume r∗ : L(Y )→ L(X) as in (b). Then:

r(x, y) ⇐⇒ r̂(y)(x) = 1

⇐⇒ cpL(r
∗(y))(x) = 1

⇐⇒ r∗(y) = x.
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There is thus at most one such x. �

In the end we note that there is an obvious inclusion of categories:

PInj = TRel(Sets•, cpL) // TRel(JSL, cpP) = BifRel

since a relation X × Y → 2 that is ‘bi-singlevalued’ is also ‘bifinite’.

4.3. Monad-based examples

The previous two examples of functors with equality arise from certain mon-
ads, namely finite powerset Pfin and lift L. The constructions involved will be
generalised next. Subsequently, in the next subsection, the multiset monad
M and the distribution monad D will be used as additional examples.

So let B be an involutive symmetric monoidal category (SMC) carry-
ing an involutive monad T = (T, η, µ, σ) which is symmetric monoidal (or
‘commutative’), via maps I → T (I) and T (X) ⊗ T (Y ) → T (X ⊗ Y ), and

with its involution described via a distributive law νX : T (X)⇒ T (X), com-
muting appropriately with these two maps and with η and µ, and satisfying
ν ◦ ν ◦ T (ι) = ι. These requirements imply that ν is an isomorphism, see [12]
for further details.

In case the category Alg(T ) of (Eilenberg-Moore) algebras has enough
coequalisers, it is also involutive symmetric monoidal, and the free functor
F : B → Alg(T ) is strong monoidal. The monoidal construction is described
in [19, 18] and the involution structure in [12]. Additionally, exponents ⊸

in Alg(T ) can be obtained from exponents in the underlying category B, via
equalisers.

This situation applies to (involutive) commutative monads T on Sets.
The resulting category of algebras Alg(T ) is always monoidal closed. The
finite powerset Pfin and the lift monad L are instances, with identity invo-
lutions; the multiset and distribution monad form other examples below. In
the rest of this subsection we restrict to Sets as base category.

The candidate comparison relations are defined on free objects, given
by the free functor F : Sets → Alg(T ). We assume an object Θ ∈ Sets for
which the free algebra Ω = T (Θ) ∈ Alg(T ) contains two different objects
0, 1 ∈ Ω. In our examples it is usually obvious what these elements 0, 1 are,
for instance, for Ω = 2 = {0, 1}, or for Ω = [0, 1], or for Ω a semiring S, with
0 as additive unit, and 1 as multiplicative unit.

Since we use the identity involution on Sets there is a map

Ω = T (Θ)
ν
−1

Θ

∼=
// T (Θ) = T (Θ) = Ω

that makes this Ω, like any free algebra, into a self-conjugate object in Alg(T ).

In this situation we can define an equality function:

eqX : X ×X −→ Ω by (x, x′) 7−→

{
1 if x = x′

0 otherwise,
(8)
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where X = X is the trivial involution on Sets (written only for formal
reasons). This equality map in Sets gives rise to a comparison relation cp in
the category Alg(T ) on free algebras, via:

cp
def
=

(
F (X)⊗ F (X)

ν−1⊗id

∼=
// F (X)⊗ F (X)

ξ

∼=
// F (X ×X)

F (eq)
// F (Ω)

µ
// Ω

)

where µ is the monad’s multiplication T 2(Θ) → T (Θ) = Ω. It is not hard
to see that this cp is automatically symmetric. The mono-requirements from
Definition 2.2 have to checked explicitly in specific situations.

This general form of comparison, obtained by lifting equality (8) to
a category of algebras, turns out to be appropriate in many situations of
interest. For instance, for the finite powerset monad Pfin , with ν = id, we get
the earlier comparison relation (6), since for U,U ′ ∈ Pfin(X) this description
yields:

cp(U,U ′) =
∨
Pfin(eq)(ξ(U,U

′)) =
∨
Pfin(eq)(U × U ′)

=
∨
{eq(x, x′) | x ∈ U, x′ ∈ U ′}

=

{
1 if ∃x ∈ U. ∃x′ ∈ U ′. x = x′

0 otherwise

=

{
1 if U ∩ U ′ 6= ∅

0 otherwise

The comparison relations (7) for the lift monad L are also of this kind. We
shall see more examples in Subsections 4.4 and 4.6 below.

In our set-theoretic examples we often take Θ = 1—but not always,
see the distribution monad example below. There are now several ways to
describe ‘relations’:

X × Y −→ Ω = T (Θ) in Sets
=================

F (X)⊗ F (Y ) ∼= F (X × Y ) −→ Ω in Alg(T ), by freeness
==================
F (Y ) −→

(
F (X) ⊸ Ω

)
in Alg(T ), with exponents

We often use such correspondences implicitly and freely switch between dif-
ferent (Curry-ied or non-Curry-ied) notations for comparison.

4.4. Multiset and distribution monads

We describe two more applications of the monad-based construction described
above, involving the multiset monad MS and the distribution monad D.
We shall use the multiset monad in full generality, over a (commutative)
involutive semiring S, like the complex numbers C. Such a semiring consists of
a commutative additive monoid (S,+, 0) and a (commutative) multiplicative
monoid (S, ·, 1), where multiplication distributes over addition, together with

an involution (−) : S → S satisfying s = s, and forming a map of semirings.
One can define a “multiset” functorMS : Sets→ Sets by:

MS(X) = {ϕ : X → S | supp(ϕ) is finite},
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where supp(ϕ) = {x ∈ X | ϕ(x) 6= 0} is the support of ϕ. For a function
f : X → Y one definesMS(f) :MS(X)→MS(Y ) by:

MS(f)(ϕ)(y) =
∑

x∈f−1(y) ϕ(x).

Such a multiset ϕ ∈MS(X) may be written as formal sum s1x1 + · · ·+ skxk
where supp(ϕ) = {x1, . . . , xk} and si = ϕ(xi) ∈ S describes the “mul-
tiplicity” of the element xi. This formal sum notation might suggest an
order 1, 2, . . . k among the summands, but this sum is considered, up-to-
permutation of the summands. Also, the same element x ∈ X may be counted
multiple times, but s1x+s2x is considered to be the same as (s1+s2)x within
such expressions. With this formal sum notation one can write the application
ofMS on a map f asMS(f)(

∑
i sixi) =

∑
i sif(xi).

This multiset functor is a monad, whose unit η : X →MS(X) is η(x) =
1x, and multiplication µ :MS(MS(X))→MS(X) is µ(

∑
i siϕi)(x) =

∑
i si·

ϕi(x). There is also an involution ν :MS(X)→MS(X) given by ν(
∑

i sixi) =∑
i sixi.

For the semiring S = N one gets the free commutative monoidMN(X)
on a set X . The monad MN is also known as the ‘bag’ monad, containing
ordinary (N-valued) multisets. If S = Z one obtains the free Abelian group
MZ(X) on X . The Boolean semiring 2 = {0, 1} yields the finite powerset
monad Pfin =M2. By taking the complex numbers C as semiring one obtains
the free vector spaceMC(X) on X over C.

An (Eilenberg-Moore) algebra a :MS(X)→ X for the multiset monad
corresponds to a monoid structure on X—given by x + y = a(1x + 1y)—
together with a scalar multiplication • : S×X → X given by s • x = a(sx). It
preserves the additive structure (of S and of X) in each coordinate separately.
This makes X a module, over the semiring S. Conversely, such an S-module
structure on a commutative monoid M yields an algebraMS(M) → M by∑
i sixi 7→

∑
i si • xi. Thus the category of algebras Alg(MS) is equivalent

to the category ModS of S-modules. When S happens to be a field, this
category ModS is the category of vector spaces VectS over S. It carries an
involution in case S is involutive, see [12].

We show that free modules MS(X) carry a comparison relation. We
take Θ = 1 ∈ Sets, so that Ω =MS(1) = S ∈ ModS . We shall call maps
X × Y → S multirelations, in analogy with multisets; they may be seen as
fuzzy relations, assigning a possibly more general value than 0,1 to a pair
of elements. Such multirelations can thus also be described as module maps
MS(Y ) →

(
MS(X) ⊸ S

)
, like in (5). The comparison relation, as a map

cp :MS(X)→
(
MS(X) ⊸ S

)
is given by (finite) sums:

cpM(ϕ)(ϕ′) =
∑
x ϕ

′(x) · ϕ(x). (9)

This comparison captures the usual inner product (or ‘dot’ product) for vec-

tors wrt. a basis. Symmetry amounts to cpM(ϕ)(ϕ′) = cpM(ϕ′)(ϕ), and thus
clearly holds. In order to see that cpM is injective, assume cpM(ϕ) = cp(ψ).
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Then, for each x ∈ X ,

ϕ(x) = cpM(ϕ)(1x) = cpM(ψ)(1x) = ψ(x).

Hence ϕ = ψ, as functions X → S.

The following result is no surprise anymore. The proof proceeds along
the lines of Propositions 4.2 and 4.3; details are left to the interested reader.

Proposition 4.4. Let S be an involutive commutative semiring. The dagger
category TRel(ModS , cpM) of tame relations for the comparison relation

cpM :MS(X) ⊗MS(X) → S corresponding to (9) contains sets as objects
and morphisms X → Y are ‘multirelations’ r : X × Y → S for which the two
obvious maps obtained by abstraction (or Curry-ing) satisfy:

{
Λ(r) : Y −→ SX factors through Y −→MS(X)

Λ(r†) : X −→ SY factors through X −→MS(Y ).

More concretely, this means that for each x ∈ X there are only finitely many
y ∈ Y with r(x, y) 6= 0, and vice-versa.

We shall also write BifMRelS = TRel(ModS , cpM) for this category
of sets and bifinite multirelations.

A bifinite multirelation r : X×Y → S, as morphismX → Y inBifMRelS =
TRel(ModS , cpM) satisfies the ‘adjointness’ correspondence (from (4)):

cpM
(
r∗(ϕ), ψ

)
=

∑
x,y ϕ(x) · r(x, y) · ψ(y) = cpM

(
ϕ, r∗(ψ)

)
,

for ϕ ∈MS(X) and ψ ∈ MS(Y ). This category of bifinite multirelations will
be investigated more closely in Section 5. Here we only mention that there is
an inclusion of categories:

BifRel = TRel(JSL, cpP) // TRel(Sets•, cpL) = BifMRel

since we can turn a bifinite relation X × Y → 2 into a bifinite multirelation
X × Y → S via the inclusion {0, 1} →֒ S.

Analogously to the multiset monad the distribution monad D : Sets→
Sets is defined as:

D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite and
∑

x∈X ϕ(x) = 1}. (10)

Elements of D(X) are convex combinations s1x1 + · · · + skxk, where the
probabilities si ∈ [0, 1] satisfy

∑
i si = 1. Unit and multiplication making D

a monad can be defined as forMS . The distribution monad D is always sym-
metric monoidal (commutative) and its category of algebras is the category
Conv of convex sets with affine maps between them, see also [16, 7, 11].

The functor D : Sets→ Conv also comes with equality. We now choose
Θ = 2 ∈ Sets, so that Ω = D(2) = [0, 1] ∈ Conv. Comparison cp : D(Y ) →(
D(X) ⊸ [0, 1]

)
can be defined as in (9) (but without conjugation).
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Proposition 4.5. The dagger category of tame relations TRel(Conv, cp) has
morphisms X → Y given by discrete ‘bistochastic’ relations X × Y → [0, 1]
satisfying both:

{
X → [0, 1]Y factors through X → D(Y )

Y → [0, 1]X factors through Y → D(X).

We also write dBisRel = TRel(Conv, cp) for this category of discrete bis-
tochastic relations.

These bistochastic relations are reversible by definition. Reversibility of
arbitrary stochastic relations is studied for instance in [6].

In some applications one may wish to replace the monads MS and
D that we have used in this subsection by non-finite versions that allow
countable support, so that ‘eventual’ behaviour obtained via limits can be
incorporated.

4.5. Hilbert spaces

The so-called ℓ2-construction can be seen as an infinite version of the multiset
monadMC. For a set X one takes the square-summable sequences indexed
by X , as in:

ℓ2(X) = {ϕ : X → C |
∑
x∈X ‖ϕ(x)‖

2 <∞},

where ‖ϕ(x)‖2 = ϕ(x) · ϕ(x). As is well-known, the ℓ2-construction forms a
functor ℓ2 : PInj → Hilb, but not a functor Sets → Hilb, see e.g. [1, 9].
However, in the present setting we do not need functoriality for the indices
of comparison relations. Thus we have the (standard) inner products

ℓ2(X)⊗ ℓ2(X)
〈− |−〉

// C given by 〈ϕ |ϕ′〉 =
∑

x ϕ(x) · ϕ
′(x)

forming a symmetric cluster of comparison relations, much like in (9) for
multisets. As we show below, it does not matter if we consider these inner
products as morphisms in VectC or in Hilb. The resulting category of tame
relations has sets as objects and continuous linear functions ℓ2(X) → ℓ2(Y )
as morphisms X → Y . This follows from the lemma below.

Given an arbitrary Hilbert space H , we can consider its inner product

H ⊗H
〈− |−〉
−−−−→ C as a comparison relation in the category VectC, as already

mentioned in Section 3. It is well-known that a linear map between Hilbert
spaces is continuous if and only if it is bounded. Jorik Mandemaker suggested
the next result (and proof), which shows that boundedness/continuity can
be captured in terms of tameness.

Lemma 4.6. Consider two Hilbert spaces H1, H2, with their inner products

Hi ⊗Hi
〈− |−〉
−−−−→ C as comparisons in VectC. There is a bijective correspon-

dence between:

tame H1 ⊗H2
r // C

====================
bounded H1

f
// H2
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As a result, Hilb = TRel(VectC, 〈− |−〉), where 〈− |−〉 is the comparison

cluster
(
H ⊗H

〈− |−〉H
−−−−−→ C

)
H∈Hilb

indexed by Hilbert spaces.

Thus, morphisms between Hilbert spaces can also be understood as
(tame) relations, like morphisms in many other categories of interest in quan-
tum foundations.

Proof If a linear map f : H1 → H2 is bounded, then it has a dagger f † : H2 →
H1 satisfying 〈f(x) | y〉 = 〈x | f †(y)〉, for all x ∈ H1 and y ∈ H2. Thus,
by construction, the relation r(x, y) = 〈f(x) | y〉 = 〈x | f †(y)〉 is tame, with
r∗ = f and r∗ = f †.

Conversely, given a tame relation r : H1 ⊗ H2 → C we use the Closed
Graph Theorem in order to show that r∗ : H1 → H2 is continuous. Assume
we have a Cauchy sequence (xn)n∈N in H1 with limit x, and let the sequence
(r∗(xn))n∈N in H2 have limit z. It suffices to show r∗(x) = z. We use that
the inner product is continuous (which follows from Cauchy-Schwarz), in:

〈r∗(x) | y〉 = 〈r∗(limn xn) | y〉 = 〈limn xn | r∗(y)〉

= limn〈xn | r
∗(y)〉

= limn〈r∗(xn) | y〉

= 〈limn r∗(xn) | y〉 = 〈z | y〉.

Since this holds for each y, we get r∗(x) = y by the mono-property of com-
parisons (or inner products). �

4.6. Formal distributions

We now use the present framework of comparisons for re-describing the dag-
ger category of formal distributions introduced in [3]. First we show how
to capture polynomials via multiset monads (from Subsection 4.4). Laurent
polynomials, with negative powers x−1, are used in [3], but here we stick to
ordinary polynomials.

As described in the previous subsection, a multiset ϕ ∈MN(X) can be
described as a formal sum n1x1+n2x2+ · · ·+nkxk, with ni ∈ N. We might as
well write ϕ multiplicatively, as in xn1

1 xn2

2 · · ·x
nk

k . This is convenient, because
we can now describe a (multivariate) polynomial as a ‘multiset of multisets’
p ∈MS(MN(X)). If we use additive notation for the outer multisetMS we
can write p as formal sum:

p =
∑

i siϕi where ϕi = xni1

i1 · · ·x
niki

iki
∈ MN(X).

The univariate polynomials, with only one variable, appear by taking X = 1,
namely as p ∈ MS(MN(1)) =MS(N). Such a p can be written as

∑
i sini,

or as polynomial
∑

i six
ni for some variable x.

We write S[X ] =MSMN(X) for the set of (multivariate) polynomials
with variables from an arbitrary set X and coefficients from the commutative
semiring S. These polynomials are finite, by construction. Possibly infinite
polynomials—also known as power series or as formal distributions—are ob-
tained via the function space S[[X ]] = SMN(X). Thus q ∈ S[[X ]] can be
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written as (possibly infinite) formal sum
∑

ϕ∈MN(X) q(ϕ)ϕ, where q(ϕ) ∈ S

gives the coefficient. There is an obvious inclusion S[X ] →֒ S[[X ]] that will
play the role of comparison below. But first we need to relate finite and
infinite polynomials more closely.

Lemma 4.7. For a commutative semiring S and set X of ‘variables’, modules
S[X ], S[[X ]] ∈ ModS of finite and infinite multivariate polynomials, with
variables from X, are defined as:

S[X ] =MSMN(X) and S[[X ]] = SMN(X) = HomSets

(
MN(X), S

)
.

Then: S[[X ]] ∼=
(
S[X ] ⊸ S

)
, where ⊸ is exponent in ModS.

Proof We use the following chain of isomorphisms, which exploits that mul-
tisetMS : Sets→ModS is the free functor and that the category ModS of
modules is monoidal closed.

S[[X ]] = SMN(X) = HomSets

(
MN(X), S

)

∼= HomModS

(
MSMN(X), S

)

∼= HomModS

(
S[X ]⊗MS(1), S

)

sinceMS(1) ∼= S is the tensor unit

∼= HomModS

(
MS(1), S[X ] ⊸ S

)

∼= HomSets

(
1, S[X ] ⊸ S

)

∼=
(
S[X ] ⊸ S

)
. �

We shall introduce comparisons cp : S[X ] ⊗ S[X ] → S in the category
ModS of S-modules, following the recipe from Subsection 4.3. We start from
the equality relation eq :MN(X) ×MN(X) → S, following (8), which gives
rise to cp as composite:

S[X ]⊗ S[X ] MS

(
MN(X)

)
⊗MS

(
MN(X)

)

≀

MS

(
MN(X)×MN(X)

) MS(eq)
//MS(S)

µ
// S

(11)

Concretely, cp(p, p′) =
∑
ϕ∈MN(X) p(ϕ) · p

′(ϕ), like in (9).

More generally, relations in this setting will be module maps of the
form S[X ]⊗ S[Y ] → S. Obviously, by Curry-ing they can also be described
as maps S[Y ] →

(
S[X ] ⊸ S

)
∼= S[[X ]]. It is not hard to see that the

map S[X ] → S[[X ]] corresponding to comparison cp in (11) is inclusion.
In particular, this shows that the mono-requirement from Definition 2.2 is
satisfied.

There is one further observation that we need to make.

Lemma 4.8. Each multiset monad MS is an ‘additive’ monad [4]: it maps
finite coproducts to products, in a canonical way: MS(0) ∼= 1 and MS(X +
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Y ) ∼=MS(X)×MS(Y ). The latter isomorphism will be written explicitly as:

MS(X + Y )

χ 7−→ 〈χ(κ1−), χ(κ2−)〉
--∼= MS(X)×MS(Y )

ϕ ⋆ ψ ←− [ (ϕ, ψ)

mm

where the operation ⋆ multiplies ϕ, ψ, after appropriate relabeling has put
them in the same set of multisets:

ϕ ⋆ ψ = MS(κ1)(ϕ) ·MS(κ2)(ψ).

(We use multiplication in this ⋆ because later on we use ⋆ when we read
multisets multiplicatively; the κi are the coprojections associated with the co-
product.) �

Using this additivity of the multiset monad we show that relations can
be described in another way as formal distributions.

Proposition 4.9. In the setting described above, there is an isomorphism of
modules between formal distributions in the coproduct X + Y and relations
on X and Y , as in:

S[[X + Y ]] ∼=
(
S[X ]⊗ S[Y ] ⊸ S

)
.

The formal distribution in S[[X +X ]] corresponding to the comparison rela-
tion cp : S[X ]⊗ S[X ]→ S is the function:

λϕ ∈MN(X +X).

{
1 if ϕ(κ1−) = ϕ(κ2−) inMS(X)

0 otherwise.
.

Proof Because multiset monads are additive and free functors we have:

S[X + Y ] = MS

(
MN(X + Y )

)

∼= MS

(
MN(X)×MN(Y )

)

∼= MS

(
MN(X)

)
⊗MS

(
MN(Y )

)

= S[X ]⊗ S[Y ].

Hence Lemma 4.7 gives:

S[[X + Y ]] ∼=
(
S[X + Y ] ⊸ S

)
∼=

(
S[X ]⊗ S[Y ] ⊸ S

)
.

The formal power series in S[[X +X ]] is obtained by following these isomor-
phisms. �

In [3] a category of formal distributions is defined with (finite) sets
as objects and morphisms X → Y given by “tame” formal distributions
p ∈ S[[X + Y ]]. Here we re-describe them in the current framework, namely
as category TRel(ModS , cp) for the comparison cluster (11). Indeed, for
a morphism r : X → Y in this category, considered as a map of modules
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r : S[Y ]→
(
S[X ] ⊸ S

)
, tameness means the existence of a map r∗ : S[Y ]→

S[X ] in ModS , as indicated:

S[Y ]
r //

r∗ !!B
B

B

(
S[X ] ⊸ S

)
= S[[X ]]

S[X ]
+

� cp

99sssssss

(And similarly for r∗.) We can translate this condition to formal distributions
as morphisms, using Lemma 4.9. Indeed, a formal distribution p ∈ S[[X+Y ]]
gives rise to a map p̂ : S[Y ]→ S[[X ]], namely:

p̂(q) = λϕ ∈MN(X).
∑

ψ∈MN(Y )

p
(
ϕ ⋆ ψ

)

where ⋆ is the operation for additivity from Lemma 4.8. Tameness says that
p̂(q) is a finite polynomial, for each q ∈ S[Y ]; it means that p̂ factors as
S[Y ]→ S[X ] (and vice-versa).

For completeness we include formulations of composition and dagger for
formal distributions. Given p1 ∈ S[[X + Y ]] and q ∈ S[[Y + Z]] we have:

p2 • p1 = λχ ∈MN(X + Z).
∑

ψ∈MN(Y )

p1

(
χ(κ1−) ⋆ ψ

)
· p2

(
ψ ⋆ χ(κ2−)

)

(
p1
)†

= λχ ∈MN(Y +X). p1

(
χ(κ2−) ⋆ χ(κ1−)

)
.

The tameness requirement ensures that these sums
∑

exist. It is not hard
to see that the formal distribution described at the end of Proposition 4.9 is
the identity map.

In the end we see that this formal distribution example fits in the gen-
eral recipe for monads T from Subsection 4.3, except that we start with an
(additional) additive monad R. Equality is used on R, in the form of maps
eq : R(X) × R(X) → T (Θ) = Ω, and is lifted to comparisons cp : TR(X)⊗
TR(X)→ Ω. Additivity of R allows us to translate between coproducts and
products to make the machinery work (via the ⋆’s above). Hence one may
construct other examples of dagger categories of this kind.

5. The category of bifinite multirelations

Subsection 4.4 introduced the category BifMRelS = TRel(ModS , cpM) of
sets and bifinite multirelations, with values in an involutive semiring S (such
as C). Here we shall investigate its categorical structure in more detail.

(Describing the categorical structure of categories TRel(A, cp) in full
generality turns out to be rather involved. In contrast, for several examples,
this structure is rather straightforward. That is why we prefer this more
concrete approach.)

There is a special reason why we concentrate on BifMRelS—and not
on other categories of tame relatons. The category BifMRelS may be seen a
universe for ‘discrete’ quantum computation, just like the category of Hilbert
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spaces may be used for ‘continuous’ computation. We shall illustrate this in a
moment, but first we describe the category BifMRelS concretely, and state
an elementary result.

Objects in the categoryBifMRelS are sets; it is important that infinite
sets are allowed as objects, so that computations with infinitely many (orthog-
onal) states can be covered—unlike in finite-dimensional vector (or Hilbert)
spaces. A morphism r : X → Y inBifMRelS is a multirelation r : X×Y → S

such that for each x ∈ X the subset {y | r(x, y) 6= 0} = supp(r(x,−)) is fi-
nite, and similarly, for each y ∈ Y the set {x | r(x, y) 6= 0} = supp(r(−, y)) is
finite. Composition of r : X → Y with s : Y → Z can be described as matrix
compositon: (s • r)(x, z) =

∑
y r(x, y) · s(y, z). The dagger r† : Y → X is

given by the adjoint matrix: r†(y, x) = r(x, y), obtained by mirroring and
conjugation in S. Notice that the special case S = 2 = {0, 1} covers the
category BifRel = BifMRel2 of bifinite relations.

We show how unitary maps give rise to bistochastic relations (for the
standard semiring examples in this context).

Lemma 5.1. Assume an involutive semiring S like 2,R,R≥0 or C, for which
the mapping a 7→ a · a yields a function S → R≥0, which we write as squared
norm ‖ − ‖2. A unitary map r : X → Y in BifMRelS then yields a discrete
bistochastic relation, ‖r‖2 : X → Y , i.e. a morphism in the category dBisRel

from Proposition 4.5, given by ‖r‖2(x, y) = ‖r(x, y)‖2.

Proof Suppose r : X → Y in BifMRel is unitary, i.e. r† is r’s inverse. Then,
for each x ∈ X ,

1 = idX(x, x) = (r† • r)(x, x) =
∑

y r(x, y) · r(y, x) =
∑

y ‖r(x, y)‖
2.

And similarly for y ∈ Y . Hence, post-composition with the squared norm
‖ − ‖2 : S → R≥0 turns the unitary bifinite multirelation r : X × Y → S into
a bistochastic relation X × Y → [0, 1]. �

Notice that an arbitrary morphism q : 1 → 2 corresponds to a map
q : 1 × 2 → S, and thus to two scalars a = q(∗, 0) ∈ S and b = q(∗, 1) ∈ S,
where we use 1 = {∗} and 2 = {0, 1}. One can call such a q a unit if ‖q‖2 = 1,
i.e. if (q† • q)(∗, ∗) = ‖a‖2 + ‖b‖2 = 1 in R≥0. Such a unit is a quantum bit
for S = C and a classical bit for S = 2.

We briefly illustrate the use of the categoryBifMRelC to model discrete
quantum computations (on an infinite state space). In [14] quantum walks
(see also [17, 22]) are investigated in relation to possibilistic and probabilistic
walks. Such walks involves discrete steps on an infinite line, given by the
integers Z. In a single move, left or right steps can be made, described as −1
decrements or +1 increments. The walks are steered by Hadamard’s matrix
acting on a qubit. They can be described via a function C

2 ⊗ MC(Z) →
C2⊗MC(Z), where C

2 represents the qubit, see [14]. Alternatively, they can
be described via a bifinite multirelation on Z+Z. We write κ1 and κ2 as left
and right coprojection for this coproduct, corresponding to the up and down
orientations of the qubit that steers the movement. This kind of quantum
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walk can now be given as an endomap q : Z + Z → Z + Z in BifMRelC,
which we describe by listing only the non-zero values of q, as multirelation:

(
Z+ Z

)
×
(
Z+ Z

) q
−→ C where





q(κ1n, κ1(n− 1)) = 1√
2

q(κ1n, κ2(n+ 1)) = 1√
2

q(κ2n, κ1(n− 1)) = 1√
2

q(κ2n, κ2(n+ 1)) = − 1√
2

The n ∈ Z in the first argument of q represents the current position; the
second argument describes the successor position, which is either a step left
or right. The labels κi capture orientations.

It is not hard to see that this map q is unitary. By iterating the map in
BifMRel, like in q2 = q • q, q3 = q • q • q, . . ., and subsequently taking the
resulting bistochastic relation (see Lemma 5.1), one can compute the iterated
distributions of the original quantum walk (and the stationary distribution
as suitable limit).

In the remainder of this section we investigate some of the categorical
structure of the category of bifinite multirelations. It will clarify, for instance,
that the above “walks” map q is an endomap Z ⊕ Z → Z ⊕ Z, where ⊕ is a
biproduct.

Proposition 5.2. For an involutive commutative semiring S, the category
BifMRelS of sets and bifinite S-valued multirelations has (symmetric) dag-
ger tensors (×, 1) and dagger biproducts (+, 0), where tensors distribute over
biproducts.

The set of scalars in BifMRelS (endomaps of the tensor unit 1) is S.
The induced additive structure on homsets is obtained pointwise from S.

The objects X in BifMRelS that are finite (as a set) are S-modules of
the form Sn that carry a compact structure.

In case S is a field like R or C, the latter category of modules Sn is of
course the category of finite-dimensional vector (or Hilbert) spaces.

Proof The tensor is given on objects by Cartesian product: X1⊗X2 = X1×
X2. And if we have ri : Xi → Yi, then r1 ⊗ r2 : X1 ⊗X2 → Y1 ⊗ Y2 is given
by the function:

(X1 × Y1)× (X2 × Y2)
r1⊗r2 // S

〈(x1, y1), (x2, y2)〉
� // r1(x1, y1) · r2(x2, y2).

The singleton set 1, say 1 = {∗}, is tensor unit. The monoidal (dagger)
isomorphisms are given by equalities, such as:

(1×X)×X
λ // S (X × Y )× (Y ×X)

γ
// S

〈(∗, x), x′〉 � //

{
1 if x = x′

0 otherwise
〈(x, y), (y′, x′)〉 � //

{
1 if x = x′, y = y′

0 otherwise.
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The endomaps on the tensor unit 1 are maps 1 × 1 → S, corresponding to
elements of the semiring S.

The category BifMRelS also has biproducts, given on objects by finite
coproducts on sets (whose coprojections we write as κi, like above). The
empty set 0 is zero object in BifMRelS , with empty multirelations X → 0
and 0→ Y . The resulting zero map 0: X → Y is the relation 0: X × Y → S

that is always 0. The coprojections and projections Xi
κi−→ X1 ⊕X2

πi−→ Xi

in BifMRelS are given by:

Xi × (X1 +X2)
κi // S (X1 +X2)×Xi

πi // S

〈x, u〉 � //

{
1 if u = κix

0 otherwise
〈u, x〉 � //

{
1 if u = κix

0 otherwise.

(Notice that two different coprojections κ occur: in BifMRelS and in Sets.)
We have πi = (κi)

† in BifMRelS . Tuples and cotuples, for ri : Z → Xi

and ti : Xi → Z are given by:

Z × (X1 +X2)
〈r1,r2〉

// S (X1 +X2)× Y
[t1,t2]

// S

〈z, u〉 � // ri(z, x), for u = κix 〈u, z〉 � // ti(x, z), for u = κix

It is not hard to see that 〈r1, r2〉† = [(r1)
†, (r2)†].

There are distributivity (dagger) isomorphisms X ⊗ (Y1 ⊕ Y2)
∼=
−→ (X ⊗

Yi)⊕ (X ⊗ Y2) given by:
(
X × (Y1 + Y2)

)
×
(
(X × Y1) + (X × Y2)

)
// S

〈(x, u), v〉 � //

{
1 if u = κiy and v = κi(x, y)

0 otherwise.

Finally we note that if X is a finite set, say with n = |X | elements, then
MS(X) ∼= Sn. Further, each multirelation r : X × Y → S is automatically
bifinite, if X,Y are finite. Such a morphism is thus determined by the as-
sociated map X → MS(Y ) ∼= S|Y |. The latter corresponds to a linear map
S|X| → S|Y |. The compact structure on a finite set X has X∗ = X with unit
η : 1→ X∗ ⊗X and counit ε : X ⊗X∗ → 1 given by:

1× (X ×X)
η

// S (X ×X)× 1
ε // S

〈∗, (x, x′)〉 � //

{
1 if x = x′

0 otherwise
〈(x, x′), ∗〉 � //

{
1 if x = x′

0 otherwise.

These multirelations are bifinite because X is finite. �

Interestingly, if one adapts the multiset monad to allow countable support—
as also mentioned at the end of Subsection 4.4—countable sets/objects in
BifMRel carry a compact structure.
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The logical structure of the category BifMRelS will be described in
terms of its dagger kernels, following [10]. We first borrow some more ter-
minology from linear algebra. Two multisets ϕ, ψ ∈ MS(X) will be called
orthogonal, written as ϕ ⊥ ψ, if cpM(ϕ, ψ) = 0. Recall that this corresponds

to the usual condition
∑

x ϕ(x) · ψ(x) = 0, for the “dot” inner product. A
subset V ⊆ MS(X) will be called orthogonal if all its pairs of (different)
elements are orthogonal; it will be called orthonormal if additionally each
ϕ ∈ V satisfies ‖ϕ‖2

def

= cpM(ϕ, ϕ) = 1.
Since dagger kernels are both kernels and dagger monos, the following

characterisation sheds light on the situation.

Lemma 5.3. A morphism r : X → Y in BifMRelS is a dagger mono iff the
set of multisets {r(x,−) | x ∈ X} ⊆MS(Y ) is orthonormal.

Proof The crucial point is:

(r† • r)(x, x′) =
∑

y r(x, y) · r(x
′, y) = cpM

(
r(x′,−), r(x,−)

)
.

Thus:

r is dagger mono ⇐⇒ r† • r = id

⇐⇒ ∀x, x′. (r† • r)(x, x′) =

{
1 if x = x′

0 otherwise

⇐⇒ ∀x, x′. cpM
(
r(x′,−), r(x,−)

)
=

{
1 if x = x′

0 otherwise

⇐⇒ {r(x,−) | x ∈ X} is orthonormal. �

Before giving the general construction of dagger kernels, it may be help-
ful to see an illustration first.

Example 5.4. We use S = R as semiring (actually as field) and start from a
morphism r : N → N in BifMRelS , described as the following multirelation
r : N× N→ S.

r(x, y) =





1 if x = 2y

−1 if x = 2y + 1

0 otherwise.

This r involves an infinite number of multisets:

r(−, 0) = 1 · 0 + (−1) · 1, r(−, 1) = 1 · 2 + (−1) · 3, r(−, 2) = . . . etc.

We illustrate how to interpret them as infinitely many linear equations:

v0 = v1 v2 = v3 v4 = v5 etc.

Assume we have a map f : 1→ N with r • f = 0. Then, for each y ∈ N,

0 = (r • f)(∗, y) =
∑

x f(x) · r(x, y) = f(2y)− f(2y + 1).

Thus, this f , as function f : N → S with finite support, satisfies f(2y) =
f(2y + 1). It thus provides a “solution” f(0) = f(1), f(2) = f(3), . . . to the
“equations” r(−, y) = 0.
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We wish to describe the dagger kernel of r as the solution space for
these equations r(−, y) = 0. Lemma 5.3 tells that we have to look for an
orthonormal basis for this space. An obvious choice for such a basis is the
infinite set of multisets:

B = {ϕi | i ∈ N} where ϕi =
1√
2
· (2i) + 1√

2
· (2i+ 1).

We take as kernel the map ker(r) : B → N, given as function ker(r) : B×N→
S simply by:

k(ϕi, x) = ϕi(x).

Clearly, this is well-defined, in the sense that ker(r) is bifinite, as multirela-
tion. Further, ker(r) satisfies the appropriate properties:

(r • ker(r))(ϕi, y) =
∑
x ker(r)(ϕi, x) · r(x, y)

= ϕi(2y) · 1 + ϕi(2y + 1) · −1

=

{
1√
2
+− 1√

2
if i = y

0 otherwise

= 0

(ker(r)† ◦ ker(r))(ϕi, ϕj) =
∑
x ker(r)(ϕi, x) · ker(r)(ϕj , x)

=

{
( 1√

2
)2 + ( 1√

2
)2 if i = j

0 otherwise

=

{
1 if ϕi = ϕj

0 otherwise

= id(ϕi, ϕj).

Next assume we have a map t : Z → N inBifMRelS satisfying r • t = 0.
We have to show that t factors through the kernel ker(r). For each z ∈ Z

and y ∈ N we have 0 = (r • t)(z, y) =
∑
x t(z, x) · r(x, y) = t(z, 2y) · 1 +

t(z, 2y + 1) · −1. Hence t(z, 2y) = t(z, 2y + 1), so that t solves the equations
r(−, y) = 0. Since t is bifinite, there are for a fixed z ∈ Z, only finitely many
y with t(z, y) 6= 0. Hence we can express t(z,−) in terms of the base vectors
in B, say as:

t(z,−) = a1 · ϕy1 + · · ·+ an · ϕyn , where ai = t(z, yi) ∈ S,

for certain y1, . . . , yn ∈ N (depending on z). We thus define the required map
t′ : Z → B by t′(z, ϕyi) = ai, for these y1, . . . , yn (and 0 elsewhere). Then:

(ker(r) • t′)(z, x) =
∑

i t
′(z, ϕi) · ker(r)(ϕi, x)

=
∑

i ai · ϕyi(x)

= t(z, x).

Proposition 5.5 (AC). The category BifMRelS has dagger kernels, assuming
S = R or S = C.
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Proof For an arbitrary map r : X → Y we consider, like in Example 5.4,
the multisets r(−, y) as equations, whose solutions give rise to kernels. The
support supp(r(−, y)) = {x | r(x, y) 6= 0} of such an equation captures the
variables that occur. We first collect all such variables in a subset Xr ⊆
X , and then describe the set of solutions in terms of multisets over these
variables.

Xr =
⋃
y∈Y supp

(
r(−, y)

)

Solr = {ϕ ∈MS(Xr) | ∀y ∈ Y .
∑

x ϕ(x) · r(x, y) = 0}.

Clearly, Solr ⊆ MS(X) is a linear subspace. Hence, using the Axiom of
Choice, we can choose a basis Br ⊆ Solr, of pairwise orthogonal multisets,
with norm 1.

We claim: for each x ∈ X , the set {ϕ ∈ Br | ϕ(x) 6= 0} is finite.
Suppose not, i.e. suppose there are infinitely many ϕi ∈ Br with ϕi(x) 6= 0.
Since ϕi ∈ MS(Xr) and x ∈ supp(ϕi) ⊆ Xr, there must be an yi ∈ Y with
r(x, yi) 6= 0. Because r is bifinite there can only be finitely many such yi, say
y1, . . . , yn. Since the ϕi are in Br ⊆ Solr, we have

∑
x ϕi(x) · r(x, yj) = 0 for

each i and j ≤ n. The solution space of these n equations r(−, yj) has finite
dimension. Hence it cannot contain infinitely many pairwise orthogonal ϕi.

We now define a kernel object Ker(r) =
(
X−Xr

)
∪Br , with kernel map

ker(r) : Ker(r)→ X given by:

ker(r)(x, x′) =

{
1 if x ∈ X −Xr and x = x′

0 if x ∈ X −Xr and x 6= x′
ker(ϕ, x) = ϕ(x).

This gives a bifinite multirelation by the claim above. Because Br is an or-
thonormal basis, ker(r) is a dagger mono, see Lemma 5.3. It satisfies, for
x ∈ X −Xr and ϕ ∈ Br,

(
r • ker(r)

)
(x, y) =

∑
x′∈X ker(r)(x, x′) · r(x′, y)

= r(x, y)

= 0 since x 6∈ Xr(
r • ker(r)

)
(ϕ, y) =

∑
x′∈X ker(r)(ϕ, x′) · r(x′, y)

=
∑

x′∈X ϕ(x
′) · r(x′, y)

= 0, since ϕ ∈ Br ⊆ Solr.

We also check the universal property of ker(r). Let t : Z → X satisfy
r • t = 0. We split each multiset t(z,−) ∈ MS(X) in two parts:

t(z,−) = t1(z,−) + t2(z,−) where

{
supp(t1(z,−)) ⊆ Xr

supp(t2(z,−)) ∩Xr = ∅.
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Then t1(z,−) ∈ Solr, since for each y ∈ Y ,

0 = (r • t)(z, y) =
∑

x t(z, x) · r(x, y)

=
∑

x t1(z, x) · r(x, y) + t2(z, x) · r(x, y)

=
∑

x t1(z, x) · r(x, y).

Since t is bifinite there are only finitely many y with t1(z, y) 6= 0. Hence each
t1(z,−) can be expressed in terms of finitely many base vectors from Br, say
as:

t1(z,−) = az1 · ϕ
z
1 + · · ·+ aznz

· ϕznz
.

We then define the required mediating map t′ : Z → Ker(r) as function t′ : Z×(
(X −Xr) ∪Br

)
→ S, given on x ∈ X −Xr and ϕ ∈ Br by:

t′(z, x) = t(z, x) = t2(z, x) and t′(z, ϕ) =

{
azi if ϕ = ϕzi

0 otherwise

This t′ is bifinite, and is the right map, since:
(
ker(r) • t′

)
(z, x)

=
∑
k∈Ker(r) t

′(z, k) · ker(r)(k, x)

=
(∑

x′∈X−Xr
t′(z, x) · ker(r)(x′, x)

)
+

(∑
ϕ∈Br

t′(z, ϕ) · ker(r)(ϕ, x)
)

=

{
t′(z, x) if x 6∈ Xr∑

i a
z
i · ϕ

z
i (x) if x ∈ Xr

=

{
t2(z, x) if x 6∈ Xr

t1(z, x) if x ∈ Xr

= t(z, x).
�

The category BifMRelS is thus a dagger kernel category. The kernel
subobjects of an object then form an orthomodular lattice, see [10]. Further
investigation is needed to see if BifMRelS can really be seen als a “light”
version of the category of Hilbert spaces, suitable for discrete quantum com-
putations. Especially, it should be clarified what spectral decomposition (and
thus measurement) yields in this category. This section shows that at least
the basic ingredients are there.

Acknowledgments. Thanks to Jorik Mandemaker and Chris Heunen for help-
ful discussions.
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