528 research outputs found

    Chromogranin A fragments modulate cell adhesion. Identification and characterization of a pro-adhesive domain.

    Get PDF
    Although several functions have been suggested for chromogranin A, a glycoprotein secreted by many neuroendocrine cells, the physiological role of this protein and of its proteolytic fragments has not been established. We have found that mixtures of chromogranin A fragments can inhibit fibroblast adhesion. The anti-adhesive activity was converted into pro-adhesive activity by limited trypsin treatment. Pro-adhesive effects were observed also with recombinant N-terminal fragments corresponding to residues 1–78 and 1–115 and with a synthetic peptide encompassing the residues 7–57. These fragments induced adhesion and spreading of fibroblasts on plates coated with collagen I or IV, laminin, fetal calf serum (FCS) but not on bovine serum albumin. The long incubation time required for adhesion assays (4 h) and the FCS requirements for optimal adhesion suggest that the adhesive activity is likely indirect and requires other proteins present in the FCS or made by the cells. These findings suggest that chromogranin A and its fragments could play a role in the regulation of cell adhesion. Since chromogranin A is concentrated and stored within granules and rapidly released by neuroendocrine cells and neurons after an appropriate stimulus, this protein could be important for the local control of cell adhesion by stimulated cells

    A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    Get PDF
    Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN) or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions

    Overexpression of the urokinase receptor splice variant uPAR-del4/5 in breast cancer cells affects cell adhesion and invasion in a dose-dependent manner and modulates transcription of tumor-associated genes

    Get PDF
    mRNA levels of the urokinase receptor splice variant uPAR-del4/5 are associated with prognosis in breast cancer. Its overexpression in cancer cells affects tumor biologically relevant processes. In the present study, individual breast cancer cell clones displaying low vs. high uPAR-del4/5 expression were analyzed demonstrating that uPAR-del4/5 leads to reduced cell adhesion and invasion in a dose-dependent manner. Additionally, matrix metalloproteinase-9 (MMP-9) was found to be strongly upregulated in uPAR-del4/5 overexpressing compared to vector control cells. uPAR-del4/5 may thus play an important role in the regulation of the extracellular proteolytic network and, by this, influence the metastatic potential of breast cancer cells

    The role of FGF signaling in guiding coordinate movement of cell groups: Guidance cue and cell adhesion regulator?

    Get PDF
    Cell migration influences cell-cell interactions to drive cell differentiation and organogenesis. To support proper development, cell migration must be regulated both temporally and spatially. Mesoderm cell migration in the Drosophila embryo serves as an excellent model system to study how cell migration is controlled and influences organogenesis. First, mesoderm spreading transforms the embryo into a multilayered form during gastrulation and, subsequently, cells originating from the caudal visceral mesoderm (CVM) migrate along the entire length of the gut. Here we review our studies, which have focused on the role of fibroblast growth factor (FGF) signaling, and compare and contrast these two different cell migration processes: mesoderm spreading and CVM migration. In both cases, FGF acts as a chemoattractant to guide cells’ directional movement but is likely not the only signal that serves this role. Furthermore, FGF likely modulates cell adhesion properties since FGF mutant phenotypes share similarities with those of cell adhesion molecules. Our working hypothesis is that levels of FGF signaling differentially influence cells’ response to result in either directional movement or changes in adhesive properties

    Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice

    Get PDF
    Clinical and epidemiologic data suggest that obesity is associated with more aggressive forms of prostate cancer, poor prognosis, and increased mortality. C-terminal-binding protein 1 (CtBP1) is a transcription repressor of tumor suppressor genes and is activated by NADH binding. High calorie intake decreases intracellular NAD(+)/NADH ratio. The aim of this work was to assess the effect of high-fat diet (HFD) and CtBP1 expression modulation over prostate xenograft growth. We developed a metabolic syndrome-like disease in vivo model by feeding male nude mice with HFD during 16 weeks. Control diet (CD)-fed animals were maintained at the same conditions. Mice were inoculated with PC3 cells stable transfected with shCtBP1 or control plasmids. Genome-wide expression profiles and Gene Set Enrichment Analysis (GSEA) were performed from PC3.shCtBP1 versus PC3.pGIPZ HFD-fed mice tumors.Fil: Moiola, Cristian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: de Luca, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; ArgentinaFil: Zalazar, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rodríguez Seguí, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Gardner, Kevin. National Institutes of Health; Estados UnidosFil: Meissl, Roberto Jose. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Vallecorsa, Pablo Daniel. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Pignataro, Omar Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mazza, Osvaldo. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: de Siervi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    The Epstein-Barr virus encoded LMP1 oncoprotein modulates cell adhesion via regulation of activin A/TGFβ and β1 integrin signalling

    Get PDF
    Approximately 20% of global cancer incidence is causally linked to an infectious agent. EpsteinBarr virus (EBV) accounts for around 1% of all virus-associated cancers and is associated with nasopharyngeal carcinoma (NPC). Latent membrane protein 1 (LMP1), the major oncoprotein encoded by EBV, behaves as a constitutively active tumour necrosis factor (TNF) receptor activating a variety of signalling pathways, including the three classic MAPKs (ERK-MAPK, p38 MAPK and JNK/SAPK). The present study identifes novel signalling properties for this integral membrane protein via the induction and secretion of activin A and TGFβ1, which are both required for LMP1’s ability to induce the expression of the extracellular matrix protein, fbronectin. However, it is evident that LMP1 is unable to activate the classic Smad-dependent TGFβ signalling pathway, but rather elicits its efects through the non-Smad arm of TGFβ signalling. In addition, there is a requirement for JNK/SAPK signalling in LMP1-mediated fbronectin induction. LMP1 also induces the expression and activation of the major fbronectin receptor, α5β1 integrin, an efect that is accompanied by increased focal adhesion formation and turnover. Taken together, these fndings support the putative role for LMP1 in the pathogenesis of NPC by contributing to the metastatic potential of epithelial cells

    Career: hybrid surfaces to control cell adhesion and function

    Get PDF
    Issued as final reportNational Science Foundation (U.S.
    corecore