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Abstract 

Transglutaminase-2 (TG2) is a Ca2+-dependent crosslinking enzyme involved in the post-translational 

modification of proteins via the formation of Nε(γ-glutamyl)lysine isodipeptides. TG2 is externalised 

in the extracellular matrix (ECM) through an unconventional and not fully understood pathway. Under 

normal conditions, TG2 modulates cell adhesion, proliferation and tissue repair. Under continuous cell 

insult higher expression and elevated extracellular trafficking of TG2 contribute to the pathogenesis of 

tissue scarring. TG2 is known to have affinity for heparin, and in a previous study cell-surface heparan 

sulphate (HS) has been implicated in extracellular TG2 mediated RGD-independent cell adhesion, a 

non-enzymatic process independent from the α5β1 integrin-binding to the RGD domain on FN 

(Verderio et al., 2003). Hence HS proteoglycan (HSPG) could act as cell surface co-receptor for FN-

bound TG2 or contribute to the regulation of extracellular TG2 activity in cell adhesion and tissue 

repair. 

The aims of this study were: 1) to study the role of externalised TG2 in cell adhesion in primary 

fibroblasts. 2) to investigate the role of HSPG syndecan-4 (Sdc-4), a crucial component of focal 

adhesions in TG2-mediated cell-adhesion. 3) to characterise the interaction between TG2 and HSPG, in 

particular Sdc-4, and to investigate how this interaction can influence TG2 biological functions in 

vitro. 4) to examine the role of Sdc-4 as a regulator of pro-fibrotic TG2 activity in experimental model 

of kidney fibrosis (UUO).  

The results obtained have shown that: 1) externalised TG2 plays an important role in 

mediating early events of cell adhesion in primary fibroblasts. 2) FN-bound TG2 relies on the 

presence of Sdc-4 for its role in RGD-independent cell adhesion. 3) TG2 has a high affinity 

for HS (Kd ~ 20 nM) and it is associated with Sdc-4 at the cell surface in primary fibroblasts. 

4) TG2 crosslinking activity at the cell surface relies on the presence of the HS chains of Sdc-

4 and other HS proteoglycans. HS-binding does not have a direct role in TG2 activity 

regulation, but the presence of intact Sdc-4 is essential for TG2 localisation at the cell surface. 

5) Sdc-4 is protective against the development of UUO and it regulates the release and activity 

of the pro-fibrotic factor TG2 in UUO, suggesting a possible co-operative role of TG2 and 

Sdc-4 in the development of kidney fibrosis.   

 In conclusion, HSPG, and in particular Sdc-4 emerged to have a crucial role in the cell-

surface trafficking and regulation of TG2 biological activities both in vitro and in vivo. 
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Chapter 1: Introduction 

1.1 The Transglutaminase family 

The term transglutaminase (TG) was introduced in 1957 by Sarkar and colleagues  (Sarkar 

et al., 1957) to describe the transamidating activity detected in brain and liver extracts from 

guinea pig. After this first discovery, transglutaminase activity has been described in 

microrganisms (Kanaji et al., 1993), plants (Del Duca et al., 1995), invertebrates (Mehta et 

al., 1992; Singh and Mehta, 1994) and  higher animals, including fish (Oppen-Berntsen et 

al., 1990; Yasueda et al., 1994), amphibians (Zhang and Masui, 1997) and birds (Puszkin 

and Raghuraman, 1985).  

1.1.1 Post-translational modification of proteins 

The main role of transglutaminases is the post-translational modification of proteins 

(Figure  1-1), which mainly occurs through transamidation. The most studied reaction is 

protein crosslinking, consisting in the formation of a Nε(γ-glutamyl)lysine isodipeptide 

bond between a deprotonated Lys residue (donor) of one protein and a Gln residue 

(acceptor) of a second protein or of the same polypeptide chain (Lorand and Graham, 

2003). The transamidation reaction is Ca2+-dependent and it occurs in two separate steps; 

firstly the acceptor binds to the enzyme forming a γ-glutamythiolester with the Cys residue 

of the active site. The complex formed is defined as an acylenzyme intermediate; ammonia 

(NH3) is released during this process and it is immediately protonated to the NH4
+ form 

under physiological conditions. In the second step the donor binds to the acylenzyme 

intermediate and attacks the γ-glutamythiolester bond, re-establishing the original form of 

the Cys in the TG active centre. The covalent isodipeptide bond formed by TG is stable 

and resistant to proteolysis, thus increasing the resistance of crosslinked proteins (and 

therefore tissues where they are localised) to chemical, enzymatic and physical degradation 

(Folk and Finlayson, 1977).  

Even though the crosslinking is considered as the main protein-modification, other TG-

catalysed reactions (Figure  1-1) have important roles in cell/tissue homeostasis. For 

example, protein esterification, catalysed by TG1 has an essential role in the final 

differentiation of keratinocytes (Nemes et al., 1999). Deamidation, which replaces a 
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Figure  1-1 Biochemical activities of transglutaminases. Image taken from Lorand and 

Graham (2003).  
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Figure  1-2 Structure of TG2. Adapted from (Griffin et al., 2002). The backbone structure 

of TG2 is represented; domains I-V are represented in magenta, orange, blue and green 

respectively. The regulatory loop between domain II and III is shown in red. Amino acids 

involved in the active site (Cys277, His335, Asp358), Ca2+-binding (Ser449, Pro446, 

Glu451, Glu452) and GTP interaction (Ser171, Lys173, Arg478, Val479, Arg580) are 

coloured in yellow, dark blue and grey, in order. 

1.1.2 Regulation of TG activity 

Tissue transglutaminase (tTG or TG2) is used as a model to study the catalytic mechanism 

of all the TG family. In this process, the Cys of the active plays a central role, forming an 

acyl-enzyme thioester intermediate with a peptide-bound Gln; this intermediate can then 

react with a nucleofile (primary amine, peptide-bound Lys or water), resulting in amine 

incorporation, protein crosslinking or deamidation (Folk and Finlayson, 1977). Even 

though there is a certain level of substrate specificity in TG2-mediated transamidation, 

many proteins can be potential targets, given their abundance of exposed Gln and Lys 

residues (Esposito and Caputo, 2005); for this reason, cofactors and spatial localisation of 
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TG2 play important roles in preventing excessive protein crosslinking and potential 

autoimmune activation following protein deamidation.        

The charge-relay catalytic triad of TG2 (Cys277, His335, Asp358) is analogous to the one 

of thiol proteinases like papain; Cys277 localisation makes it highly reactive in the 

presence of the activator Ca2+, and determines the formation of thioesters with 

peptidylglutamine partners in the protein substrate. The activity is largely decreased in the 

absence of Ca2+, when the enzyme assumes the basic latent conformation and the active 

site, located within domain 2 is “buried” by domains 3 and 4, thus preventing the contact 

with substrates. In these conditions, also, Cys277 reactivity is diminished by the formation 

of hydrogen bonds with either Cys336 or the phenolic hydroxyl group of Tyr525. The 

structure of TG2 is shown in Figure  1-2. 

The first insight into TG2 GTPase activity came from the discovery that its transamidating 

activity was inhibited by GTP in an allosteric fashion (Achyuthan and Greenberg, 1987; 

Greenberg et al., 1991). Later on, a novel G protein (Gh) isolated from rat liver plasma 

membrane came out to be TG2, thus indicating the binding/hydrolysis potential of TG2 

(Nakaoka et al., 1994). TG2 has a high affinity for GTP/GDP and can hydrolyse GTP in a 

rate comparable to small Ras-type G-proteins and α subunits of large heterotrimetric G 

proteins; the GTP/GDP-bound form does not have transamidating activity, that can 

however be restored in the presence of Ca2+ (Achyuthan and Greenberg, 1987). This 

represents an efficient mechanism of regulating the different functions of TG2 in separate 

cell compartments: in the cytosol, where the concentration of free Ca2+ is low (0.1 μM) and 

GTP is present at a concentration of 100-150 μM, TG2 is mainly in GTP/GDP-bound 

form. If cells are treated wit a calcium ionophore (i.e. calcimycin), which transport free 

calcium across membranes by diffusion, the intracellular level of Ca2+ becomes high 

enough to activate TG2 (Siefring, Jr. et al., 1978; Zhang et al., 1998). An analogous 

situation is present when the cell loses calcium homeostasis following tissue damage, 

apoptosis or necrosis (Afford and Randhawa, 2000; Nicholas et al., 2003); in this case, 

TG2-mediated crosslinking can prevent the release of intracellular proteins and the 

consequent inflammatory response (Fesus et al., 1987).  TG2 is also secreted to the cell 

surface and extracellular matrix, where the higher Ca2+-concentration (0.5-1.5 mM) 

switches the enzyme into the catalytically active form, which is responsible for protein 

crosslinking (Achyuthan and Greenberg, 1987; Lansdown, 2002).  
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1.1.3 Substrates of transglutaminases 

TG substrates have been identified in the extracellular space and in the intracellular 

compartment, and their expression is a key regulator of the specific functions of TG family 

members. Many extracellular proteins are known substrates of the cross-linking reactions, 

for example fibronectin (Barsigian et al., 1991), collagen (Kleman et al., 1995), vitronectin 

(Sane et al., 1988) and osteonectin (Prince et al., 1991); these substrates point to a role for 

TG in the stabilisatin of the extracellular matrix (Kleman et al., 1995). Several cytoskeletal 

proteins have also been characterised as TG substrates, such as actin, tubulin and 

cytokeratin (Robinson et al., 2007), thus suggesting a role for TG in the covalent 

stabilisation of the cytoskeleton in a similar way to its action in the ECM. Another class of 

TG substrates is represented by histones, which can be modified by TG2 in vitro, affecting 

chromatin condensation which occurs during apoptosis (Ballestar et al., 1996).  

The study of specific crosslinking substrates of TG activity is not easy, since the products 

of transamidation are highly cross-linked insoluble polymers with a complicated structure, 

thus difficult to analyse. Furthermore, when the products of TG activity are investigated in 

vitro, the concentration of Ca2+ used to activate the enzymes can activate a variety of other 

enzymes, including proteases (i.e. calpain), introducing another source of protein 

modification independent from TG (Velasco et al., 1990). Moreover, the state of 

phosphorylation  (Owen et al., 1988), the proteolytic cleavage or the loss of native compact 

structure of a protein can influence their transamidation (Griffin et al., 2002). Studies based 

on incorporation of labelled primary amines or Gln-rich peptides have shown that different 

TG are selective in the Gln residues used for the transamidation, even within the same 

substrate protein (Fesus et al., 1986); also, in different tissues, distinct proteins can act as 

either acyl donors or acceptors or both. A list of TG substrates is presented in Appendix 1. 

 

 

1.2 Transglutaminases in mammalian tissues 

Nine distinct genes for transglutaminases have been isolated in mammalian tissues, and 

they include factor XIII (zymogen that is activated into transglutaminase factor XIIIa), 

keratinocytes TG, ubiquitous type 2 TG, epidermal TG, prostatic TG, type 5-7 TG and the 

TG-like erythrocyte-band 4.2 (Table  1-1).  
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Protein Gene Gene locus Gene 
size (kb) 

Number 
of exons 

Amino acid 
residues 

Molecular 
weight (kDa) 

TG1 TGM1 14q11.2-13 14 15 814 90 

TG2 TGM2 20q11-12 37 13 686 78 

TG3 TGM3 20q11-12 43 13 692 77 

TG4 TGM4 3p21-p22 35 13 684 77 

TG5 TGM5 15q15.2 35 13 720 81 

TG6 TGM6 20q11 45 13 625 70 

TG7 TGM7 15q15.2 26 12 710 80 

F XIIIa F13A1 6p24-25 160 15 732 83 

Band 4.2 EPB4.2 15q15.2 20 13 690 72 

Table  1-1 Human transglutaminases: genes and proteins. Adapted from Mehta (2005).  

 

 

The mammalian TG isoforms have a high level of structural homology, belong to the 

superfamily of papain-like proteins and are codified by genes that arose from 

duplication/rearrangement of an ancestral gene. All the members of the TG family contain 

a catalytic triad of Cys-His-Asp or Cys-His-Asn, with the exception of erythrocyte band 

4.2 which presents an Ala residue instead of the Cys of the active site, resulting in a loss of 

activity (Figure  1-3).  
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Figure  1-3 Alignment of the catalytic site region of the human TG proteins. Allignment 

redrawn from Mehta (2005).  The amino acids of the core fold containing the catalytic 

cysteine residue (C) are shown in bold red text. 

 

1.2.1 Factor XIII 

Factor XIII (FXIII), or fibrin stabilising factor, is a well characterised plasma 

transglutaminase with a Mr of 83 kDa involved in blood coagulation. It circulates in the 

blood in form of a heterotetramer (A2B2) (Lorand et al., 1980) composed by two catalytic 

A subunits (XIIIa), consisting of 731 amino acids (Ichinose et al., 1986a), and two non-

catalytic B subunits (XIIIb), consisting of 641 amino acids (Ichinose et al., 1986b). 

Sequence analysis showed that the B subunit is related to the family of proteins containing 

the small consensus repeats, or Sushi domains (involved in protein–protein and protein–

ligand interactions) (Ichinose et al., 1990); B subunits are also highly sialylated, resulting 

in an elevated heterogeneity (Lorand et al., 1981). Analysis of the A subunit showed 

instead homology with Ca2+-dependent transglutaminases, with the papain-like catalytic 

domain made of Cys-His-Asp (Pedersen et al., 1994). In particular, the catalytic subunit 

presents four distinct domains: an N-terminal β-sandwich, the papain-like active site, a 

barrel 1 and a barrel 2 domain (Yee et al., 1994). FXIII is a zymogen and it is activated in 

the final stages of the coagulation process by the subsequent action of thrombin and Ca2+, 

as illustrated in Figure  1-4. In the first step, thrombin catalyses the cleavage of a 37 residue 

peptide (activation peptide) from the N-terminus of the two A subunits by hydrolysing the 

peptide bond between Arg37 and Gly38 (Schwartz et al., 1973; Takagi and Doolittle, 

1975); the cleavage of activation peptides also weakens the interactions between A and B 
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Figure  1-4 Activation of Factor XIII. In the first step the zymogen FXIII is converted by 

thrombin to FXIII’ allozymogen, that does not have catalytic activity; in the second step 

the calcium-dependent dissociation of the B subunits determines the conformational 

changes necessary for the presentation of the catalytic site in the catalytic subunit.  

 

Thrombin plays a central role in the homeostatic process by synchronising the conversion 

of fibrinogen into fibrin and the activation of FXIII; moreover, fibrin itself can accelerate 

the thrombin-mediated activation of FXIII (Janus et al., 1983; Lewis et al., 1985) and 

facilitate the dissociation of the inert modified zymogen FXIII’ generating the active 

enzyme at a physiological plasma concentration of Ca2+. The dissociation step can also 

take place in the absence of Ca2+, but the presence of fibrin is essential, this is a regulatory 

mechanism that allows crosslinking activity of FXIIIa to take place only when the specific 

substrate is present (Curtis et al., 1974). 

 

 

Figure  1-5 Crosslinking reaction catalysed by factor XIIIa.  
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The crosslinking reaction catalysed by the active FXIIIa (Figure  1-5) is a transamidation 

that occurs between specific Gln and Lys residues on adjacent proteins (fibrin fibres or 

molecules incorporated in the fibrin matrix). There are two different kinds of crosslinking 

taking place: the first one determines the end-to-end linear association of fibrin units, the 

second one involves α chains of fibrin molecules located in separated filaments; together, 

the two processes contribute to the formation of strong urea-insoluble clots (Chen and 

Doolittle, 1971; McKee et al., 1970). The crosslinking action of FXIIIa has little effect on 

the morphology of the single fibrin fibres, but it changes dramatically the properties of the 

clot, providing it with stiffness that allows wound closure and with resistance against 

thrombolytic enzymes (Lorand, 2001). In particular, the resistance to thrombolytic agents 

is determined by FXIIIa-mediated covalent attachment of the α2 plasmin inhibitor present 

in plasma to the α chains of some fibrin fibres (Ichinose et al., 1983; Sakata and Aoki, 

1982). 

There are several pathological conditions related to the deficiency of FXIII, which is an 

autosomal recessive disorder often diagnosed after birth from bleeding of the umbilical 

cord (Seitz et al., 1989). Common symptoms are superficial bruises and hematomas in 

subcutaneous tissue and muscle, sometimes accompanied by bleeding, moreover, affected 

individuals can present abnormal wound healing and repetitive spontaneous miscarriage 

due to impaired haemostasis and angiogenesis; these symptoms can be reversed by FXIII 

supplementation (Muszbek et al., 2008). In 25% of the patients FXIII deficiency causes 

intracranial haemorrhage, which is the main cause of death (Ichinose, 2005). 

1.2.2 Keratinocyte TG (Type 1 or TGK) 

TG1 is expressed in the granular, suprabasal and spinous layers of the epidermis (Iizuka et 

al., 2003; Thacher and Rice, 1985), where is involved in the formation of the cornified 

envelope (CE), the outermost protective layer of the epidermis. TG1 is present as a 

zymogen of approximately 106 kDa, with a low specific activity, in differentiating 

keratinocytes. When the cells reach the final stages of the differentiation, TG1 is converted 

by proteolysis into a 10, 33 and 67 kDa complex, where the different subunits are held 

together via non-covalent binding (Kim et al., 1995). This complex is characterised by high 

transamidating activity and is responsible for the enzymatic action of TG1. Calpain 

(intracellular, Ca2+-dependent) and cathepsin D (lysosomal) are the candidate proteases 



Chapter 1: Introduction 

 10

involved in the formation of the 10/33/67 kDa complex by cleavage of the cleavage sites 

exposed at the N-terminus of each fragment (Egberts et al., 2004; Kim and Bae, 1998). 

Even though TG3 and TG5 are involved in CE formation together with TG1, it appears 

that the different enzymes are involved in separate processes, since mice lacking TG1 have 

an aberrant CE formation that can not be compensated by TG3 or TG5 (Hitomi, 2005; 

Matsuki et al., 1998). Mutations in TG1 are also the most common cause of autosomal 

recessive congenital ichthyosis (ARCI), presenting a structurally defective or attenuated 

cornified cell envelope (Mehta, 2005). Several of these mutations have been characterised 

and mostly consist of missense or nonsense mutations leading to changes in the binding 

site for transcription factors in the promoter region (Herman et al., 2009).  

1.2.3 Epidermal TG (Type 3 or TGE) 

Type 3 transglutaminase is expressed in several tissues, but the main role is in the 

epidermis, where, together with TG1 (paragraph  1.2.2) it participates in the formation of 

the CE through the crosslinking of different components (Candi et al., 1999). The most 

abundant substrates of TG3 are loricrin, small Pro-rich proteins (SPRs) and involucrin; 

these proteins are rich in Gln and lys and their main function is the composition of the CE. 

TG3 has also a role in the hair follicle, where the crosslinking of trichohyalin and keratin 

intermediate filaments determines the morphogenesis of the hair fibre by hardening the 

inner root cover (Lee et al., 1996). Preliminary studies performed on TG3 -/- mice 

demonstrated the role of the enzyme in the ultrastructure of hair and whiskers related to 

altered crosslinking (Thiebach et al., 2007). The enzyme is expressed as a soluble pro-

enzyme of 77 kDa, which is converted by cathepsin L-mediated proteolysis into two 

globular domains that remain held together, an N-terminal of 50 kDa, bearing the active 

site, and a C-terminal of 27 kDa (Cheng et al., 2006; Kim et al., 1990). The site for 

proteolytic digestion is located in a flexible loop which connects the two domains; this 

loop is specific for transglutaminase 3 in terms of length and sequence, and the cleavage of 

analogous sites in TG2 or FXIII determines loss of activity of the enzymes (Kim et al., 

2001). There is biochemical and crystallographic evidence of TG3 active site binding to 

GTP/GDP with a structural motif conserved between TG3 and TG2; as shown for TG2, 

TG3 is also able to hydrolyse GTP (Ahvazi et al., 2004; Candi et al., 2004). 
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To date, there are not TG3 mutations linked to specific diseases, but the expression of TG3 

has been shown to be down-regulated in certain cancers such as oesophageal, head and 

neck squamous cell carcinoma and in laryngeal carcinoma (Mehta, 2005) 

1.2.4 Prostate TG (Type 4 or TGP) 

Many of the information regarding prostate transglutaminase, or TG4, came from the rat 

isoforms of the enzyme, dorsal protein 1 (DP1) (Ho et al., 1992). In rat the enzyme is 

highly expressed in the dorsal prostate, coagulatory gland and lateral type 1 prostate 

(Hayashi et al., 1991), and the expression is regulated by androgens (Ho et al., 1992). The 

main function of DP1 is considered to be the cross-linking of proteins involved in the 

formation of the copulatory plug after mating (Wilson and French, 1980).  

The human isoform of TG4 has a lower level of expression compared to DP1 and its 

function has not been fully determined yet. The enzyme may be involved in semen 

coagulation or in the process of semen transfer to the female by crosslinking seminal 

plasma components to the surface of the male gametes (Dubbink et al., 1998; Porta et al., 

1986). Interestingly, there is only one transcript produced by the gene codifying for human 

TG4, that can then mature in two splicing isoforms, one of which is  characterised by in 

frame insertions of an antisense Alu sequence of 135 bp. The Alu sequence does not 

interfere with the functionality of the enzyme, but may play a role in the localisation of the 

protein within the cell and possibly in the excretion of prostate transglutaminase 

(Makalowski et al., 1994).  

1.2.5 TG X (Type 5) 

TG5 cDNA was firstly isolated from human foreskin keratinocytes; further studies showed 

that TG5 is mainly expressed in the granular layer of the epidermis where it is involved in 

keratinocytes differentiation and, together with TG1 and TG3 it contributes to the 

formation of the CE (Candi et al., 2002). Recent studies have shown TG5 expression in 

other tissues, such as mammary and salivary glands, prostate and placenta, thus suggesting 

the involvement of the enzyme in other physiological functions (Candi et al., 2004). In an 

analogous way to TG1 and TG3, TG5 is synthesised as an 81 kDa protein that does require 

proteolytic degradation to become active (Pietroni et al., 2008).  As shown for TG2 and 

TG3, TG5 is also able to bind and hydrolyse GTP (Candi et al., 2004); GTP/GDP binding 
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is a regulator of the Ca2+-dependent crosslinking activity of the enzyme, even though the 

ability of GTP/GDP to inhibit TG5 activity is lower compared to the inhibition potential on 

TG2; TG5 also responds less to Ca2+-mediated activation compared to TG2 (Candi et al., 

2004). 

Mutations which cause loss of function of TG5 are linked to acral peeling skin syndrome, 

an autosomal recessive genodermatosis characterized by the shedding of the outer 

epidermis (Cassidy et al., 2005). 

1.2.6 TG Y (Type 6) 

TG6 is part of the TG expressed and active in the basal epidermal layers and it is the 

closest homologue of TG3 (Grenard et al., 2001); as TG3, TG6 appears to be involved in 

the formation of CE and in hair morphogenesis (Thiebach et al., 2007).   

1.2.7 TG Z (Type 7) 

TG7 is codified by a gene localised on chromosome 15 in a cluster including the gene for 

TG5 and for the erythrocyte band 4.2 and it was initially identified in human prostate 

carcinoma tissue by Greenard and colleagues (Grenard et al., 2001). Studies on the 

expression of the enzyme have shown a widespread low expression level, with peaks in the 

female reproductive system (uterus, placenta, ovaries and mammary gland), fetal tissues, 

testis and lungs (Grenard et al., 2001). No specific functions have been ascribed to TG7 so 

far, but the putative protein is known to possess transamidating activity and it contains a 

conserved Ca2+-binding site.  

1.2.8 Erythrocyte membrane protein band 4.2 

Human erythrocyte band 4.2 is a highly expressed membrane-associated protein of 77 kDa 

(Korsgren and Cohen, 1986; Korsgren and Cohen, 1988) with an essential but still not fully 

defined function in erythrocytes (Ideguchi et al., 1990; Rybicki et al., 1988). Protein band 

4.2 has high sequence homology with guinea pig liver transglutaminase and subunit A of 

factor XIII, including the region containing the active site for transamidation activity (Folk, 

1980; Lorand and Conrad, 1984). Interestingly, however, the protein does not have 

demonstrable crosslinking activity when tested in vitro (Korsgren et al., 1990), therefore its 

http://www.humpath.com/spip.php?article735
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role in erythrocyte functionality could be purely structural. Studies on the expression 

pattern of protein band 4.2 have revealed high expression level in bone marrow, fetal 

spleen and fetal liver, in accordance with its role in hematopietic cells; no expression was 

detected in the other tissues (Grenard et al., 2001). 

1.2.9 Tissue TG (Type 2 or TGT) 

TG2 is a widespread member of the TG family, with distinct functions in different cellular 

locations. TG2 is a peculiar member of the TG family since it can act as a GTPase 

(Nakaoka et al., 1994), protein disulfide isomerase (Hasegawa et al., 2003) and protein 

kinase (Mishra et al., 2007) together with having transamidating activity.  

1.2.9.1 Organisation and regulation of TG2 gene 

The gene for TG2 measures 32.5 kb and is located in chromosome 20 of the human 

genome (in mouse the gene is localised in chromosome 2, in a region syntenic to human 

chromosome 20) (Nanda et al., 1999). The gene contains 13 exons and 12 introns, with 

intron size ranging from 921 bp to >5kb and a total codifying region of 4 kb, of which 50% 

is constituted by exon XIII, containing the coding region of the protein C-terminus (Gentile 

et al., 1994; Lu et al., 1995). There are several responsive elements and binding sites for 

regulating factors in a functional TG2 promoter, as indicated in Figure  1-6. In particular, 

CAAT and TATA boxes, together with 4 SP sites upstream to the ATG starting codon are 

sufficient to guarantee a high constitutive transcription level (Lu et al., 1995). SP1 and SP2 

sites can be methylated, and this has an influence on the level of expression of TG2 in 

different cell types/tissues (Aeschlimann and Thomazy, 2000). Methylation has a function 

in negative regulation of TG2 expression, thus balancing the high basal level of 

transcription (Lu et al., 1995). On the other side, treatment of cell with DNA demethylating 

drug 5-azacytidine determines an increase in TG2 level (Lu and Davies, 1997).  Retinoids 

have a strong effect in promoting TG2 transcription in several cell types and they are 

considered as the most generalised inducers of TG2 expression (Aeschlimann and 

Thomazy, 2000). It has been shown that treatment of rats with retinoic acid determines an 

augmented TG2 expression and activity (Driscoll et al., 1997), whereas lack of vitamin A 

can determine a decreased level of TG2 expression in some body tissues (Aeschlimann and 

Paulsson, 1994; Verma et al., 1992). There are experimental evidence of the action of 

different retinoids in TG2 activation; the specificity of expression of these molecules and 
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Figure  1-6 Representation of TG2 core promoter and regulatory factors. Redrawn 

from (Aeschlimann and Thomazy, 2000). RAR, retinoic acid receptor; RXR, retinoid X 

receptor; cisHR, cis regulatory element for retinoid activation; RE IL6, interleukin-6 

responsive element; TRE, TGF-β response element; SP1 and SP2, SP1 and SP2 binding 

sites; NF-kB, nuclear factor kB; TNF-α, tumour necrosis factor-α; IL-6, interleukin-6; 

TGFβ1 and TGFβ2, transforming growth factor β1 and β2; BMP2 and BMP4, bone 

morphogenetic protein 2 and 4. 

 

TG2 promoter also contains a responsive element (TRE) for members of the transforming 

growth factor-β (TGF-β) family, in particular TGF-β1 and TGF-β2, which can induce or 

inhibit TG2 expression in a tissue-specific manner. In particular, there is a regulatory loop 

involving TG2 and TGF-β1, since the expression of the growth factor is positively 

regulated by TG2 (Kojima et al., 1993). TRE element also is involved in the transcriptional 

repression mediated by bone morphogenetic proteins (BMP) 2 and 4 (Ritter and Davies, 

1998). Another class of molecules involved in the regulation of TG2 expression is pro-

inflammatory cytokines, in particular interleuchin-6 (IL-6) can positively affect TG2 

transcription by binding its responsive element localised in TG2 promoter (RE IL-6) (Ikura 

et al., 1994; Lu et al., 1995). Tumour necrosis factor-α (TNF-α) also induces TG2 
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expression through its binding to nuclear factor kB (NF-kB) site on the TG2 promoter 

(Kuncio et al., 1998; Lu et al., 1995).  

 

1.2.9.2 Structure of TG2 

All the information available on TG2 structure comes from the enzyme crystallised in the 

GDP-bound form; so far the Ca2+-bound form has not been resolved so the information 

about Ca2+-binding are only derived from studies of homology with factor XIII. TG2 has 

four separate domains: an N-terminal β-sandwich, a catalytic core, and two β-barrel 

domains at the C-terminal (Noguchi et al., 2001) (Figure  1-2 and Figure  1-7). The β-

sandwich domain contains binding sites for FN and integrins, represented respectively by 

residues 2AEELVLE7 and by the 28 kDa N-terminal region of the protein (Fesus and 

Piacentini, 2002; Gaudry et al., 1999). The catalytic core contains the catalytic triad 

represented by Cys277, His335 and Asp358 together with residues involved in the 

stabilisation of the active site, in particular Trp241, essential for catalytic activity (Murthy 

et al., 2002). When the enzyme is bound to a guanine nucleotide, two loops block the 

access to the catalytic site and the Cys277 is hydrogen-bond to a Tyr residue (Liu et al., 

2002). The first β-barrel domain includes a GTP/GDP binding site that is unique for TG2 

and is codified by exon X, which presents low sequence homology with the same exon 

from other members of the TG family (Liu et al., 2002). As shown in Figure  1-7, some of 

the residues essential for GTP hydrolysis are situated in the catalytic core (Iismaa et al., 

2000). The second of the two β-barrel domains contains a binding site for phospholipase C, 

important in the function of TG2 as signal transduction factor (Hwang et al., 1995). TG2 

also presents two regions corresponding to nuclear localisation signals (NLS1 and NLS2), 

predicted by comparison with non-structural proteins of influenza virus (Peng et al., 1999). 

Two different conformations have been proposed for TG2, an open and a closed one, with 

distinct features (Begg et al., 2006; Pinkas et al., 2007); the close conformation is 

analogous to the GTP/GDP form of TG2 and it is characterised by a compact structure. 
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Figure  1-7 Structural and functional elements of human TG2. (A) Structural domains 

are shown, with first and last codifying residue. In blue the last amino acid codifying for 

each codon is shown. (B)  Functional domains are pointed by the arrows; catalytic triad is 

indicated in blue, active residues for transamidating activity in red; residues involved in 

GTP/GDP binding are shown in green, putative residues involved in Ca2+-binding in pink. 

FN, fibronectin; BH3, BH3 motif of the Bcl-2 protein family; NLS1 and 2, nuclear 

localization signals predicted on the basis of homology to the NLS of the NS1 non-

structural protein of influenza virus; PLCγ, interaction site for phospholipase Cγ  (Fesus 

and Piacentini, 2002). 

 

1.2.9.3 TG2 and cell adhesion  

The localisation of TG2 at the cell surface and in the ECM has been demonstrated in 

several cell types, such as fibroblasts, macrophages, hepatocytes and endothelial cells 

(Fesus and Piacentini, 2002; Gaudry et al., 1999; Kojima et al., 1997; Lorand and Graham, 

2003; Verderio et al., 1998). Several experimental findings suggest a role for extracellular 

TG2 in cell adhesion and migration through its interaction and enzymatic action with the 

cell surface and ECM components. Initial in vitro cell-adhesion assays showed that NIH 

3T3 fibroblasts induced to over-express TG2 are more resistant to trypsin-induced 

detachment (Gentile et al., 1992). On the other side, reduced expression of TG2 or 

inactivation of the enzyme determines a reduced level of cell adhesion and spreading 
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(Jones et al., 1997). There are some controversies regarding the mechanism correlating 

TG2 to cell adhesion, since some studies demonstrate the importance of TG2-mediated 

cross-links of ECM components (Aeschlimann and Thomazy, 2000; Jones et al., 1997) and 

some others suggest that the involvement of TG2 is independent from its transamidation 

activity (Akimov et al., 2000; Balklava et al., 2002; Takahashi et al., 2000). The latter 

studies suggest a role for TG2 as co-receptor for β1 and β3 integrins in the cell-adhesion to 

the 42 kDa gelatin-binding domain of FN (Akimov et al., 2000) or, conversely, an 

independent adhesive role for TG2 correlated to the specific binding of integrins α4β1 and 

α9β1 (Takahashi et al., 2000). More recently, a novel role for TG2 in cell adhesion, 

independent from interactions of integrins α5β1 with the Arg-Gly-Asp (RGD) domain of 

FN has been discovered (Verderio et al., 2003). In this mechanism, TG2 action is 

independent from its cross linking potential and it is related to the formation of an 

extracellular complex of TG2 and FN. This system could have a critical importance in 

situations of cell stress, when the ordinary cell-adhesion, related to the interaction of 

integrins to FN can be compromised by FN fragmentation. 

TG2 has been ascribed different roles in regulating cell-matrix interactions, based on its 

crosslinking activity or independent from the enzymatic reaction (Akimov et al., 2000; 

Balklava et al., 2002). It has been demonstrated that TG2 over-expression in fibroblasts has 

a marginal effect in enhancing cell attachment, but can significantly alter cell spreading 

modulating the interactions of the cells with the adhesion substrate (Stephens et al., 2004). 

Focal adhesions (FA) are the contact points between adhering cells and the substrate and 

they have a function in both cellular support and signal transmission between the 

cytoskeleton and the extracellular environment. FA are molecular complexes constituted 

by structural molecules (vinculin, talin, actin), transmembrane receptors, such as Sdc-4, 

and signalling molecules, in particular focal adhesion kinase (FAK). For the assembly of 

FA it is necessary for both α5β1 integrin clusters and Sdc-4 to bind the ECM component 

FN (RGD domain and heparin-binding domain) (Jeong et al., 2001). FAK is the main FA 

component involved in cell-spreading and migration and its action is mediated by the small 

GTPase RhoA, which influences actin reorganisation. Loss of FAK is correlated with 

decreased cell migration and an increased FA size (Ren et al., 2000), on the other side, 

FAK over-expression determines increased cell motility (Owen et al., 1999). The role of 

FAK in initial cell adhesion depends on its activation, which occurs by Sdc-4 mediated 

auto-phosphorylation of Tyr397 (Y397) (Wilcox-Adelman et al., 2002); this explains the 
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increased level of FAK phosphorylation at Y397 when, during initial cell adhesion events, 

Sdc-4 on the cell surface binds FN. It has been demonstrated that the role of Sdc-4 in cell 

spreading can be encompassed by stimulating directly RhoA with lysophosphatidic acid 

(LPA) (Wilcox-Adelman et al., 2002).  

1.2.9.4  TG2-related diseases 

TG2 is known to participate in the pathogenesis of several diseases, including celiac 

disease (Molberg et al., 2000), cancer (Mangala and Mehta, 2005) and neurodegenerative 

diseases (Hoffner and Djian, 2005). The role of TG2 in these diseases is mainly related to 

its enzymatic activity; therefore several inhibitors directed to the active site of TG2 are 

being studied as a therapeutic strategy to inhibit the establishment of the diseases (Huang 

et al., 2009; Siegel and Khosla, 2007). 

1.2.9.4.1 Celiac disease 

Celiac disease is a T-cell mediated disorder of the small intestine which affects 1-2 % of 

the general population and 0.5 % of European population. The disease is caused by 

prolamins, a class of proteins present in wheat, barley and rye (Sollid, 2000); these 

proteins, being rich in Pro and Glu, are resistant to natural gastric, pancreatic and intestinal 

proteases, and peptidases. Therefore the digestive process leaves small peptides (longer 

than 9 amino acids) that can penetrate in the intestinal lamina, where they cause 

inflammation and destruction of intestinal architecture by activating a T-cell mediated 

immune response (Piper et al., 2004; Shan et al., 2002; Sollid, 2000). TG2 has a double 

role in the etiology of the disease, firstly it converts Gln of prolamine peptides to Glu 

through deamidation (see Figure  1-1); this increases the affinity of the peptides for HLA-

DQ2/8 proteins, which mediate T-cell response (Quarsten et al., 1999; Xia et al., 2006). 

Secondly, TG2 is the target of an autoimmune response in celiac patients (Dieterich et al., 

1997), that produces anti TG2 antibodies which co-localise with TG2 in the small intestine 

(Korponay-Szabo et al., 2004) and in the blood (Sardy et al., 1999). Anti TG2 antibodies in 

blood are used as a diagnostic tool for celiac disease.  

1.2.9.4.2 Diabetes 

TG2 is the main member of the TG family expressed in pancreatic islets, where it 

modulates glucose-stimulated insulin secretion through its transamidating activity (Bungay 

et al., 1986).  
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Type 1 diabetes (insulin-dependent diabetes) is an autoimmune disease characterised by 

loss of insulin secretion as a consequence of pancreatic islet β-cells destruction mediated 

by T cells (Mallone and Van Endert, 2008). Experimental evidence indicated a role for the 

gut immune system in the development of type-1 diabetes, similarly to what happens in 

celiac disease, and suggested an association between the two pathologies (Maglio et al., 

2009). This idea was confirmed by the finding that anti-TG2 antibodies, characteristic of 

celiac disease, can be found in the small intestine of most type-1 diabetes patients and that 

the production of anti-TG2 antibodies appears to be gluten-sensitive (Maglio et al., 2009).  

TG2 is also involved in the pathogenesis of type-2 diabetes, characterised by high blood 

glucose level due to both insulin-deficiency and insulin-resistance. Several TG2 mutations, 

located in the area of the active site have been linked to type-2 diabetes, in accordance with 

the role of TG2 in the secretion of insulin (Porzio et al., 2007). Mutated TG2 also seems to 

interact with factors which regulate insulin-resistance, thus determining the high blood 

glucose status (Porzio et al., 2007). 

1.2.9.4.3 Neurodegenerative diseases 

Several neurodegenerative diseases are characterised by the accumulation of protein 

aggregates in the brain, resulting from TG-mediated cross-linking. TG2 expression and 

activity are upregulated in many neurodegenerative diseases, and TG2 has been shown to 

account for at least two thirds of the total transamidase activity in mouse brain, where it is 

mainly localised in neurons (Krasnikov et al., 2005). TG2 is involved in the pathogenesis 

of Huntington’s disease, an autosomal dominant disorder characterised by neuronal cell 

apoptosis leading to progressive motor dysfunction and dementia. Patients affected by 

Huntington’s disease present insoluble aggregates of the cytosolic protein huntingtin (htt) 

in the striatum and cortex, and there is a positive correlation between the amount of 

aggregates and the severity of the disease, so the aggregates have been considered the 

cause of neurotoxicity (MacDonald et al., 1993). The cause of Huntington’s disease is an 

expansion of CAG repeats (codifying for Gln) in the gene encoding htt protein; this 

modification determines the production of an htt protein with a poly-Gln N-terminus 

(MacDonald et al., 1993). Since Gln is a potential substrate of TG-mediated crosslinking, 

TG2 was initially implicated in the formation of the insoluble htt aggregates (Hoffner and 

Djian, 2005). It was demonstrated that the soluble mutant htt protein determines 

neurotoxicity, not the aggregates (Ruan and Johnson, 2007). It is still unclear whether TG2 
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plays a role in aggregate formation, since crossing R6/1 or R6/2 mice (animal model for 

Huntington’s disease) with TG2 null mice determines an increased number of protein 

aggregates compared to the controls; these mice also show an increased life span, in 

accordance with the non-neurotoxicity of htt aggregates (Mastroberardino et al., 2002). In 

vitro studies have shown that TG2-mediated crosslinks can increase the solubility of htt 

aggregates, so TG2 could have an implication in the pathogenesis of Huntington’s disease 

by promoting the neurotoxic action of soluble htt proteins (Iismaa et al., 2009; Lai et al., 

2004).  

Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a 

progressive neurodegenerative disorder characterised by the presence of extracellular 

senile plaques composed of aggregated amyloid-β protein and intracellular neurofibrillary 

tangles consisting of a highly phosphorylated form of the protein tau (Siegel and Khosla, 

2007). These proteins are good substrates of TG in vitro (Junn et al., 2003), moreover TG 

activity and TG2 expression are higher in diseased regions of PD brains compared to 

normal regions (Ruan and Johnson, 2007). Despite these observations suggesting a role for 

TG2 in the formation of protein aggregates, to date there are no demonstrations of TG2 

involvement in aggregate formation in vivo (Iismaa et al., 2009). Interestingly, a short-

splice variant of TG2, encoding for a protein lacking the GTP-binding site, has been found 

in AD cerebral cortex (Citron et al., 2002); this variant, lacking the inhibition by GTP, 

could be involved in the aggregates formation or stabilisation.  

Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting 

1% of the population over the age of 65 years. PD determines the degeneration of 

dopaminergic neurons accompanied by the formation of α-synuclein protein aggregates 

aggregates (Lewy bodies) localised in cytoplasm of affected neurons (Hoffner and Djian, 

2005). As for AD, TG2 mRNA and protein level is upregulated in PD brains compared to 

normal age-matched controls (Bailey et al., 2005). As for AD, even though α-synuclein is 

a good TG2-substrate in vitro, there is no evidence for a direct role of TG2 in the formation 

of Lewy bodies in vivo and the function of TG2 in PD is not clear (Bailey et al., 2005; 

Iismaa et al., 2009).   

1.2.9.4.4 Cancer 

There are several pieces of experimental evidence indicating TG2 involvement in the 

development of several types of cancer, in fact TG2 is upregulated in cancerous tissues 
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such as glioblastomas (Yuan et al., 2007), malignant melanomas (Fok et al., 2006) and 

pancreatic ductal adenocarcinomas (Verma et al., 2006). Moreover, there is a positive 

correlation between TG2 expresion levels and metastatic potential and chemotherapeutic 

resistance of certain cancers (Mehta et al., 2004). Different mechanisms have been 

proposed for TG2-mediated oncogenesis, firstly TG2 can activate the transcription factor 

NF-κB by crosslinking its inhibitory subunit; this promotes the expression of Bcl-xL and 

BFL1, anti-apoptotic proteins (Lee et al., 2004; Mann et al., 2006). Another mechanism 

involves TG2-mediated activation of FAK, which, in turn, activates anti-apoptotic factors 

promoting uncontrolled cell growth (Verma et al., 2006). TG2 has also been shown to have 

anti-apoptotic effect in some cell types and, on the contrary, TG2 down-regulation via 

siRNA or inhibitors makes the cells more sensitive to apoptosis (Antonyak et al., 2004). In 

certain types of cancer, however, TG2 expression is down-regulated, and it seems to act as 

tumour suppressing protein (Jones et al., 2006; Xu et al., 2006), thus the role of TG2 in 

cancer appears to be correlated to the type, stage and location of the cancer and to the 

cancer cell type. Summarising, the expresson of TG2 appears to be upregulated in primary 

tumours and during tumour progression, while the enzyme is downregulated in secondary 

metastatic tumours (in accordance with the role of TG2 in cell adhesion) and in case of 

resistance to chemotherapy (Hwang et al., 2008; Kotsakis and Griffin, 2007). It has been 

demonstrated that the interaction of externalised TG2 with the ECM is an important 

regulator of tumour growth, metastatic spread and angiogeneis, therefore, factors that 

control TG2 externalisation and localisation at the cell surface and matrix 

metalloproteases, which degrade TG2, could play a role in regulating TG2 involvement in 

cancer development.  

1.2.9.5 TG2 in wound healing and fibrosis 

Wound healing is a complex process occurring in any compartment of the body and it 

consists of three overlapping and inter-related events: inflammation, proliferation and 

remodelling (Singer and Clark, 1999).  The process sees the participation of different cell 

types, cytokines and other factors, including transglutaminases, involved in tissue repair 

and stabilisation (Griffin et al., 2002; Lorand and Graham, 2003).  

TG2 over-expression and increased transamidating activity have been monitored in wound 

healing models both in vivo (Haroon et al., 1999) and in vitro (Nicholas et al., 2003; 

Verderio et al., 2004). The role of TG2 seems to be the stabilisation of the wound area and 
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of the neo-formed tissue. When the repair process is completed, then TG2 level is reduced 

through proteolytic degradation and the enzyme is mainly present in its fragmented forms. 

The importance of TG2 in the repair process is related to the fact that the enzyme can be 

externalised, thus having access to ECM components; in fact, TG2 externalisation is 

significantly increased in situations of cell-stress and tissue damage (Haroon et al., 1999; 

Johnson et al., 1999; Li et al., 2002; Upchurch et al., 1991).  

TG2 is also involved in abnormal wound repair mechanism, characterised by an excessive 

accumulation of ECM components and leading to the development of fibrotic diseases 

(Singer and Clark, 1999). During the normal wound healing process, new ECM is 

deposited and it plays an important role in supporting cell migration in the wounded area. 

After the migration is completed, the matrix is degraded and this contributes to the wound 

closure (Verderio et al., 2004); the degradation process is regulated by metalloproteinases 

(MMPs), plasminogen activators and inhibitors of proteases. TG2, being able to crosslink 

several ECM components, is involved in ECM stabilisation and protection by the action of 

MMP (Verderio et al., 2004). Furthermore, TG2 can influence matrix deposition by 

activating fibrogenic cytokine transforming growth factor β1 (TGF β1), which controls 

proliferation and ECM synthesis of fibroblasts (Nunes et al., 1997; Verderio et al., 1999); 

in turns, TGF β1 can activate TG2 expression through the TGF-β1 responsive element on 

the TG2 promoter (Figure  1-6), thus generating a loop which determines the progression of 

the wound healing process into tissue fibrosis. TG2 has been shown to activate TGF-β1 

through two separate ways, both dependent on its transamidating activity, the first way 

involves direct activation of latent TGF-β1 in the ECM, while the second involves TG2-

mediated NF-κB activation (Telci et al., 2009). 

1.2.9.6 Cellular localisation of TG2 

TG2 is reported to be an ubiquitous enzyme, with considerable levels of the protein  

present in  the cytosol, nucleus, plasma membrane and in the extracellular matrix (Fesus 

and Piacentini, 2002).  

1.2.9.6.1 Cytosolic TG2 

In the cytosol, given the insufficient Ca2+ concentration for TG2 activation and the 

presence of inactivating levels of GTP, TG2 transamidating activity is mainly latent and 

the enzyme mostly acts as a GTPase involved in signal transduction (Monsonego et al., 
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1998). TG2 crosslinking activity seems to be activated intracellularly only during 

apoptosis, even though there is a debate on the pro- or anti-apoptotic role of TG2 

transamidating activity in cell death (Gundemir and Johnson, 2009). In fact, according to 

the cell type analysed and the agent inducing apoptosis, TG2 activity appears to have 

opposite roles in determining cell fate (Fesus and Szondy, 2005), by either protecting cells 

from apoptosis (Yamaguchi and Wang, 2006) or facilitating the cell death process 

(Tucholski and Johnson, 2002). Despite the contradictory role ascribed to crosslinking 

activity, it is known that guanine nucleotide binding of TG2 is protective against apoptosis 

(Datta et al., 2007),  even though it is not clear if this depends on the action of TG2 as a G-

protein or on the inhibition of the crosslinking activity. Another event when cytosolic TG2 

crosslinking is involved is cell differentiation; one example is chondrocyte hypertrophic 

differentiation, promoted by TG2 mediated oligomerisation of activating cytokines (Cecil 

and Terkeltaub, 2008). 

TG2 can also act as Ser/Thr kinase in apoptosis signalling upon PKA-induced 

phosphorylation (Mishra et al., 2007b). In human breast cancer TG2 kinase activity was 

reported to activate insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) thus 

determining an IGF-independent activation of signalling, leading to apoptosis (Mishra and 

Murphy, 2004).  

Another function ascribed to TG2 in the endoplasmic reticulum is the one of protein 

disulfide isomerase (PDI), involved in the regulation of protein conformation (Hasegawa et 

al., 2003); an example of this activity is the TG2-mediated conversion of 

inactive/denaturated RNaseA into the native active form. TG2 PDI function does not 

involve the active site for protein transamidation, nor does it require the presence of Ca2+, 

and is not influenced by the presence of guanine nucleotides (Hasegawa et al., 2003). 

1.2.9.6.2 Nuclear TG2 

TG2 is traslocated from the cytosol to the nucleus through a mechanism involving nuclear 

transport protein importin-α3 (Peng et al., 1999). In this cell compartment TG2 is involved 

in post-translational histone modification by crosslinking of core histone subunits; this 

modification regulates the chromatin structure, thus influencing mitosis, transcription, 

DNA replication and DNA repair (Mishra et al., 2007a; Peng et al., 1999). Recent studies 

have shown that TG2 also modifies histones through its Ser/Thr kinase activity, in 

particular in situations of cell stress and apoptosis (Mishra et al., 2007). TG2 nuclear 
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kinase activity has also an important function in the regulation of retinoblastoma protein 

(Rb) a primarily nuclear protein with a key role in the regulation of apoptosis (Mishra et 

al., 2007).  

1.2.9.6.3 Extracellular TG2 

The mechanism of TG2 externalisation at the cell surface and in the ECM is still unknown, 

since the enzyme is a leaderless protein and does not have post-translational modifications 

linked to the targeting to the endoplasmic reticulum or to the Golgi (Thomazy and Fesus, 

1989).  It has been reported that TG2 needs to have an intact active site to be externalised, 

in fact, Swiss 3T3 fibroblasts induced to over-express a mutant TG2 where Cys 277 of the 

active site was substituted by Ser, showed a significantly lower level of externalised TG2 

compared to the same cells induced to over-express normal TG2 (Balklava et al., 2002). 

Very recently, (Telci et al., 2009), using the same cell system of Swiss 3T3 fibroblasts with 

inducible TG2 expression have demonstrated that TG2 transamidating activity is not 

essential for enzyme externalisation, since the process was not affected by active site 

directed TG inhibitor R283. It is therefore possible that the presence of Cys at the active 

site is required to have a specific conformation necessary for the secretion process, 

independently from the catalytic state of the enzyme. 

Once TG2 is externalised, it is mainly associated to cell surface and ECM FN (Akimov et 

al., 2000; Verderio et al., 1998), which is stabilised by the formation of Ca2+-dependent 

cross-links (Jones et al., 1997). On the other side,  the association with FN protects TG2 

against proteolytic degradation (Belkin et al., 2001) and controls its enzymatic activity in 

order to prevent an excessive crosslinking in the Ca2+-rich extracellular environment 

(LeMosy et al., 1992). Probably, after the externalisation and association with FN, TG2 

gradually loses its activity and becomes a structural element of the ECM; this is supported 

by the finding that under physiological conditions extracellular TG2 is mostly inactive and 

only gets activated following tissue injury (Siegel et al., 2008). It has been shown that a 

matrix constituted by TG2 in complex with FN (TG2-FN matrix) can promote a novel cell 

adhesion pathway independent from the classical adhesion mediated by α5β1 integrins 

(Verderio et al., 2003). TG2-mediated RGD-independent adhesion has been shown to rely 

on the presence of cell surface heparan sulphate (HS), in fact it is inhibited by a treatment 

of the cells with heparitinase, which digests HS chains (Verderio et al., 2003); this suggests 

a possible implication of HS in the regulation of TG2 extracellular activity. 
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1.3 Glycosaminoglycans 

Glycosaminoglycans (GAG) are linear polysaccharides of high molecular weight 

consisting of repeating disaccharide units formed by an amino sugar (N-

acetylglucosamine, glucosamine with various N-substitutions, or N-acetylgalactosamine) 

and an uronic acid (glucuronic acid or iduronic acid) or galactose (Hacker et al., 2005). 

GAG chains are characterised by a high level of heterogeneicity, due to the different 

hexosamine, hexose or hexuronic acid that they contain and to the geometry of the 

glycosidic linkage between these units (α or β) (Sasisekharan and Venkataraman, 2000). 

They are the most abundant heteropolysaccharides in vertebrates, involved in the binding 

and regulation of several proteins including chemokines, growth factors, cytokines 

morphogenic enzymes and adhesion molecules (Jackson et al., 1991). GAG can be 

separated in two main groups: unsulphated proteoglycans, including hyaluronic acid (HA) 

and sulphated ones, including chondroitin sulphate (CS), dermatan sulphate (DS), keratan 

sulphate (KS), heparin and heparan sulphate (HS). CS and DS are localised in the ECM, 

while heparin/HS proteoglycans are usually associated to the cell surface. The majority of 

GAG chains in vertebrates are present in the form of proteoglycans, linked to a core 

protein. 

 

 

Figure  1-8 Structure of GAG chains. The composition and sulphation level of the main 

GAG chains, attached to a core protein is shown; the core protein is represented in dark 

blue and the Ser residues adjacent to the GAG attachment site are indicated. The 

composition of hyaluronic acid, not attached to a core protein, is also represented.  
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1.3.1  Heparan sulphate 

Heparan sulphate is a linear polysaccharide present in all animal tissues in the form of 

proteoglycan; HS chains at the cell surface are mostly attached to syndecans and glypicans 

core proteins (Bernfield et al., 1999). In contrast with other complex carbohydrates, overall 

HS structure is conserved from flies to humans. HS synthesis starts with the formation of 

the region for protein linking, followed by elongation and modification of the chain. The 

length of HS chains can vary over 10-fold with cell type and core protein, but the chain 

termination mechanisms are mostly unknown (Bernfield et al., 1999). Generally HS chains 

consist of 50-150 disaccharides and are modified by enzymatic reactions in which the 

products of one are substrates for the following one. The specific expression of modifying 

enzymes and the availability of substrates/cofactors generate a huge diversity of HS chains. 

HS chains on the same core protein from different cell types can show consistent and 

reproducible structural differences: variations in domain number, spacing or size and O-

sulfation pattern (Kato et al., 1994). In all HS chains it is possible to recognise highly 

sulphated domains (HSD), resembling heparin domains, alternated to unmodified domains 

(UMD) (Maccarana et al., 1996). HSD, often involved in HS interactions with binding 

partners, are rigid and highly anionic and can have access to basic residues on protein 

surfaces thanks to the adjacent, more flexible, UMD. HS chains are responsible for much 

of the biological activity of HS proteoglycans (HSPG); the core proteins, that dictate 

cellular location and metabolism of HS chains, have evolved to maximise the efficiency of 

HS chains in their roles (Bernfield et al., 1999; Varki et al., 2009).  

1.3.2 Heparin binding proteins 

Proteins bind HS chains via basic residues on their surfaces, mostly via distinct protein 

domains (Bernfield et al., 1999). Binding domains of recent evolution show sequence 

resemblance and are easy to identify, but domains that arose during ancient times may only 

be apparent after 3D structural analysis (Doolittle, 1995). Some HS binding proteins 

contain linear clusters of basic residues often in a distinct pattern, but most differ in their 

HS-binding sequences, indicating ancient origin (Hileman et al., 1998). 

Cell surface HS can immobilise the ligand, increase its local concentration, change its 

conformation, present it to signalling receptors or modify the molecular encounters 
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between ligands and receptors. The general effect is generally to enhance receptor 

activation at low ligand concentrations (Carey et al., 1997). 

1.4 Proteoglycans  

Proteoglycans consist of one or more GAG chains covalently bound to a core protein at 

specific sites; these chains are attached to the core protein in the Golgi, before 

proteoglycan externalisation. For most of the proteoglycans, the GAG chains represent the 

predominant part of the molecule, conferring a molecular weight that varies from 100 to 

10,000 kDa; given that, it comes natural that the GAG chains are the main determinant of 

proteoglycans chemical properties and interactions with binding partners (Gandhi and 

Mancera, 2008). These molecules are characterised by a huge structural variability that is 

due to the variety of core proteins and to their level of substitution (number, type and 

composition of GAG chains). The stoichiometry of GAG chains substitution, determining 

which GAG attachment sites are preferably used, is also involved in generating variability. 

Some proteoglycans can be “part time”, presenting or not bound GAG chains or binding 

truncated oligosaccharides. Finally, the same proteoglycans can present essential 

differences if expressed in different cell types, showing a different number, length and 

sulphation pattern of the GAG chains (Bernfield et al., 1999). It is possible to distinguish 

two main classes of proteoglycans: membrane proteoglycans (glypican and syndecans) and 

proteoglycans of the extracellular matrix (Aggrecan, Perlecan, Decorin and Biglycan), as 

illustrated in Figure  1-9 (Varki et al., 2009). The extracellular space, the ECM, consists of 

fibrous proteins (collagens and elastins), providing elasticity and tensile strength and 

adhesive glycoproteins (fibronectin, laminin and tenascin); the various proteoglycans 

interact with these components to form a hydrated gel resistant to compressive force, thus 

stabilising the ECM. In some cells, proteoglycans are stored in secretory granules, where 

they are involved in regulating the availability of positively charged components such as 

proteases and bioactive amines (Varki et al., 2009). 
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Figure  1-9 Proteoglycans classification. Image from (Varki et al., 2009). The structure of 

the main cell-surface and extracellular matrix proteoglycans is represented.  

 

 

 

Localisation GAG chain Core protein size (kDa) Principal members 
ECM HA, CS, KS 225-250 Aggrecan, versican 
Collagen-associated CS, DS, KS 40 Decorin, biglycan, 

fibromodulin 
Basement membrane HS 120 Perlecan 
Cell-surface HS, CS 33-60 Syndecans, 

glypicans 
Intracellular granules Heparin, CS 17-19 Serglycin 

Table  1-2 Classification of proteoglycans based on cellular localisatin and 

predominant GAG chain. ECM, extracellular matrix; CS, chondroitin sulfate; DS, 

dermatan sulfate; KS, keratan sulfate; HA, hyaluronic acid; HS, heparan sulfate. 
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1.4.1 Extracellular matrix proteoglycans 

Interstitial proteoglycans are only produced in vertebrates and their composition varies 

according to the tissue analised. Two main classes of molecules can be identified: small 

Leu-rich proteoglycans (SLRP) and the aggrecan family of proteoglycans. The first group, 

characterised by Leu-rich repeats flanked by Cys in the central domain, carries CS, DS or 

KS chains and it is involved in the stabilisation of collagen fibres (Varki et al., 2009). The 

second group consists of aggrecan, versican, brevican and neurocan, characterised by the 

presence of an N-terminal domain which is able to bind hyaluronan, a central domain 

binding CS chains and a C-terminal domain containing a C-type lectin domain (Roughley, 

2006). The larger part of information regarding this family is related to aggrecan, which is 

the major proteoglycan in the cartilage. Aggrecan can contain up to 100 CS or KS chains, 

reaching a molecular weight of 2500 kDa; these chains can be highly hydrated and form a 

filling gel that contributes to the physical strength of cartilaginous tissue and provides 

resistance to compressive loads (Roughley, 2006). Versican, mainly produced by cells of 

the connective tissue seems to be involved in neural crest and axonal migration. Neurocan 

and brevican are expressed in the late phases of development of the central nervous system 

and act inhibiting neurite growth.   

1.4.2 Proteoglycans of secretory granules 

The main proteoglycan contained in cytoplasmic secretory granules is serglycin, which can 

be found in endothelial, endocrine and haematopoietic cells (Kolset and Gallagher, 1990). 

Serglycin can carry a variable number of CS or, most importantly, heparin chains; notably, 

heparin is only made on serglycin contained in secretory granules of secretory tissue type 

mast cells. Given the properties of their GAG chains, serglycin-expressing cells participate 

to a wide range of biological activities, such as regulation of blood coagulation, tumour 

cell killing and bacteria defence during wound repair (Kolset et al., 2004).  

1.4.3 Basement membrane proteoglycans 

Depending on the tissue considered, four different proteoglycans can be isolated in the 

basement membrane (layer of the ECM that lies against epithelial cells): perlecan, agrin, 

collagen type XVIII and leprecan (Iozzo, 2005). The first three carry HS chains, with the 
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exception of perlecan, which can also carry CS chains in cartilage, while leprecan carries 

CS chains. Perlecan and agrin are the best characterised members of this group; the former 

is involved in embryogenesis and tissue morphogenesis, especially in cartilage, the latter 

acts in neuromuscular junctions and renal tubules, where it determines the filtrating 

properties of the glomerulus (Varki et al., 2009).  

1.4.4 Membrane-bound proteoglycans 

The two major families of membrane-bound proteoglycans consist of syndecans (Sdc) and 

glypicans (Bernfield et al., 1999). The Sdc family includes four members, as described in 

paragraph  1.4.5; all of them are characterised by a small cytoplasmic domain, a 

hydrophobic transmembrane domain and a large extracellular domain, carrying HS and, in 

smaller amount, CS chains (Kokenyesi and Bernfield, 1994). HS chains of syndecans can 

bind a large variety of extracellular molecules, concentrating them in specific areas of the 

cell surface and facilitating their binding to specific receptors (Bernfield et al., 1992). 

Given their structure, syndecans are also able to transmit signals from the extracellular 

environment to the cytosol and cytoskeleton, acting in signal transduction (Anderson, 

1998). Sdc ectodomains, carrying the GAG chains, can be shed by action of 

metalloproteases and be released in the ECM, where they can be involved in the regulation 

of important biological functions by competing with membrane-bound Sdc for the binding 

of specific ligands; the shedding process also regulates the availability of proteoglycans at 

the cell surface (Bernfield et al., 1999).  

The glypican family consists of six members, all attached to the cell surface by a C-

terminal glycosylphosphatidylinositol (GPI) anchor. The core protein of glypicans is rich 

in cysteine residues and has a globular structure substantially different from the proline-

rich linear extracellular domain of Sdc (Bernfield et al., 1999). The only GAG chains 

carried by glypicans are HS, involved in the binding of factors essential for the 

development and morphogenesis. The different way in which syndecans and glypicans are 

associated to the membrane determines a different metabolic fate for their ligands; in fact, 

ligands internalised through glypicans can be recycled together with their receptor, while 

ligands internalised with syndecans go through endocytosis and lysosomal degradation 

(Fransson et al., 1995; Rosenberg et al., 1997).  
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1.4.5 The syndecan family 

The Sdc family, representing the major group of transmembrane heparan sulphate 

proteoglycans, includes 4 distinct genes in mammals, originated from gene duplication and 

divergent evolution from a single ancestral gene; syndecan 1 and 3 (Sdc-1 and Sdc-3) and 

syndecan 2 and 4 (Sdc-2 and Sdc-4) represent subfamilies originated from the ancestral 

gene (Bernfield et al., 1992). Each gene product is a single type-1 membrane–spanning 

protein with extracellular domain of varying size containing covalently attached HS chains 

distal from plasma membrane. In vivo experiments have suggested that each Sdc is 

expressed at specific stages of the development and in specific cell types (Bernfield et al., 

1992). All of the Sdc (4 members in mammals and one in Drosophila and Caenorhabditis 

elagans) share homologous regions for GAG chain attachment and a putative protease 

cleavage site in the ectodomain proximal to the membrane (Figure  1-10). Transmembrane 

and cytoplasmic domains are highly conserved, suggesting a potential biological role for 

these domains. In fact, syndecans have important roles as cell surface receptors in cell-cell 

and cell-matrix interactions. Sdc-4 is of particular interest since it is selectively enriched 

and widespread in focal adhesions (Woods and Couchman, 1994). Members of the Sdc 

family can form dimers or oligomers resistant to SDS treatment upon binding of specific 

ligands followed by phosphorylation of the cytoplasmic region (Pierce et al., 1992). In 

particular, recombinant Sdc-3 core protein forms stable non-covalent multimers through 

the transmembrane domain and the ectodomain flanking region (Asundi and Carey, 1995). 

Also, recombinant proteins of Sdc-2 and Sdc-4 form SDS-resistant multimers, even in the 

absence of the cytoplasmic domain (Longley et al., 1999; Oh et al., 1997a ; Oh et al., 

1997b). The formation of multimers can create specialised membrane domains able to 

mediate the interactions between cells and surrounding ECM by binding specific ligands 

and transmitting the signal to the cytosol or the cytoskeleton (Essner et al., 2006).  
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Figure  1-10 Structure of the Sdc family members. (a) Structure of the four vertebrate 

and two invertebrate Sdc; the transmembrane domain is represented by the black boxes 

while the lines represent regions for HS chains attachment. (b) alignment of Sdc amino 

acid sequences; the bars indicate identical residues. (c) structure of HS binding region and 

HS modification reactions, indicated in order of occurrence. Image taken from (Carey, 

1997). 
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1.4.5.1 Syndecan-1 

Sdc-1 is expressed really early during development and it is mainly found on epithelia and 

mesenchymal-cell condensations associated with tissue morphogenesis (Couchman, 2003). 

Defects in Sdc-1 expression lead to a phenomenon called epithelial-mesenchimal 

transition, where the cells of interest assume fibroblastic morphology (Bernfield et al., 

1992). This transition is correlated to tumorigenesis and severity of neck and cervical 

carcinoma (Anttonen et al., 1999; Rintala et al., 1999). It is possible that Sdc-1 acts 

regulating the cell-surface level of the tumour suppressor E-cadherin, since the loss of Sdc-

1 is associated with loss of E-cadherin (Leppa et al., 1996),  but the mechanism relating the 

two molecules is still unknown.  

Sdc-1 is also involved in cell-cell adhesion, in fact it can bind several members of the Ig 

super-family of cell-adhesion molecules (CAM), in particular PECAM-1 and N-CAM. 

Sdc-1 mediated adhesion has heterophilic nature, with a molecule of Sdc-1 on the cell 

surface binding a counter-receptor on an adjacent cell (Stanley et al., 1995). It has been 

shown that human myeloma cells loose the ability to adhere to each other after the loss of 

Sdc-1; normal levels of cell-cell adhesion can be restored by re-introducing Sdc-1 by cell 

transfection (Stanley et al., 1995); interestingly, cell-cell adhesion can also be restored by 

transfection with Sdc-4 cDNA, but not with re-introduction of other members of the Sdc 

family.  

1.4.5.2 Syndecan-2 

Sdc-2 is mainly expressed in mesenchymal tissue, but it is also found in liver and neuronal 

cells (Couchman, 2003); the expression of Sdc-2 is limited to sites of cell-cell and cell-

matrix interactions (David, 1993). Sdc-2 is the member of Sdc family with the highest 

expression in fibroblasts, even though its function is still not fully elucidated (David et al., 

1992). In particular Sdc-2 has been shown to be involved in signalling, cell-adhesion and 

angiogenesis (Beauvais and Rapraeger, 2004; Tkachenko et al., 2005), these abilities also 

link Sdc-2 to tumorigenesis. Sdc-2 has been found to be over-expressed in several cancers, 

such as lung and colon cancer, where it determines the establishment of a less adhesive 

phenotype and loss of contact inhibition, thus enhancing the metastatic potential (Gulyas 

and Hjerpe, 2003; Park et al., 2002). 
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The C1 domain of the cytoplasmic region interacts with proteins of the ER family, 

implicated in the organisation of the cortical actin cytoskeleton and in the activation of 

FAK, thus underlying the role of the receptor in cell adhesion and communication with the 

actin cytoskeleton (Granes et al., 2000). The C2 domain is also linked to communication 

with the cytoskeleton; in fact it binds Type II PDZ domain proteins involved in vesicle 

transport, synaptic transmission, axonal migration and development of cancer metastasis 

(Beauvais and Rapraeger, 2004; Essner et al., 2006). The V domain contains two residues 

(Ser197 and Ser198) which can be phosphorylated by activated protein kinase C γ (PKCγ); 

upon phosphorylation, Sdc-2 is able to mediate the response to vitellogenin 1 (Vg1), a 

member of the transforming growth factor β (TGFβ) family of signalling molecules 

involved in cell-cell communication (Kramer et al., 2002). Vg1-mediated signalling is of 

vital importance in the gastrulation process, where it regulates the formation of the right-

left axis leading to asymmetric heart and viscera development (Couchman, 2003). 

Summarising, there are several functions ascribed to Sdc-2, related to the expression in 

specific cell types and in the composition of the HS chains, which can in turn influence the 

ability to bind specific ligands (Essner et al., 2006). 

1.4.5.3 Syndecan-3 

The expression of Sdc-3 is predominantly related to neural cells, although a certain level of 

expression can also be detected in musculoskeletal tissue (Couchman, 2003). Sdc-3 has a 

really high expression in the early postnatal period, when it is involved in cell-matrix 

adhesion in the developing nervous system (Carey, 1997). In this process, Sdc-3 acts as a 

receptor for the growth factor pleiotrophin, whose expression is also correlated with the 

development of the central nervous system (Raulo et al., 1994); once bound to Sdc-3 

pleiotrophin promotes neurite outgrowth from embryonic or early post-natal cortical 

neurons. It has been demonstrated that the binding of pleiotrophin to Sdc-3 (Kd ≈ 0.4 nM) 

is mediated by the HS chains of the proteoglycan, and, in particular, by 2-O-sulphated 

iduronic acid residues contained in the chains. 

1.4.5.4 Syndecan-4 

Differently from the other members of the Sdc family, Sdc-4 is widely expressed through 

all the stages of the development and it is a constitutive component of focal adhesions (FA) 

of adhering cells, where it contributes to FA formation and cytoskeletal reorganisation 
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linked to cell spreading (Couchman et al., 2001; David et al., 1992). The role in FA 

formation is related to the presence of an intact V region in the cytoplasmic domain; this 

region in fact contains a core sequence (KKPIYKK) which binds phosphatidylinositol (4,5) 

bisphosphate (PIP2) (Couchman et al., 2002). This sequence is not present in other 

members of the family and Sdc-4 is the only Sdc binding phospholipids. After binding, 

PIP2 stabilises the cytoplasmic domain in dimeric form, and may also be involved in 

promoting the formation of higher order oligomers forming specialised microdomains in 

the plasma membrane (Oh et al., 1997a). The complex of Sdc-4 and PIP2 can then bind 

and activate PKCα, essential component of FA involved in the phosphorylation of 

cytoskeletal components (Couchman et al., 2001). C1 domain can also be phosphorylated 

at a specific Tyr residue (Horowitz and Simons, 1998), and this occurs in situations of 

growth inhibition; the kinase responsible for C1 phosphorylation is PKCγ, the same 

involved in the phosphorylation of Sdc-2 V domain; this seems to have an antagonistic 

effect on the activation of PKCα (Couchman, 2003). 

Another cytosolic partner of Sdc-4 is syndesmos, which requires both C1 and V region for 

the interaction; syndesmos acts as an adaptor protein for paxillin, a protein involved in FA 

formation (Baciu et al., 2000). There is also experimental evidence for Sdc-4 interaction 

with cytoskeletal components such as α-actinin, involved in the formation of actin bundles 

(Greene et al., 2003).  The signalling related to Sdc-4 seems to mediate the activation of 

the small GTPase RhoA (Saoncella et al., 1999) even though the mechanism is still not 

fully understood but the two main hypothesis consist in a direct interaction of PKCα with 

RhoA (Slater et al., 2001) or the separate, but equally important action of PKC family 

members and RhoA (Defilippi et al., 1997). Active RhoA can then regulate cytoskeletal 

reorganisation either via activating Rho kinases (ROCK), which lead to microfilament 

contraction promoted by myosin, or modulating actin polymerisation by regulating the 

activity of diaphanous (Bishop and Hall, 2000).  

When plated on fibronectin, primary fibroblasts interact with FN with 2 main cell surface 

receptor families: integrins and cell surface HSPG, in particular Sdc-4; the two signals are 

both necessary to regulate focal adhesions and stress fibres formation (Couchman et al., 

2001; Couchman and Woods, 1999). Integrin interaction with FN leads to the activation of 

several signalling molecules, including FAK; this is only sufficient for attachment and 

spreading. In order to have cytoskeletal and membrane reorganisation, to form stress fibres 
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and focal adhesion, an additional stimulus is needed, which comes from the heparin 

binding (HB) domain of FN interacting with Sdc-4 (Saoncella et al., 1999).  

1.4.6 Syndecan-4 in tissue injury and wound healing  

Tissue repair process following injury is a complex event which includes interaction of 

cells with the surrounding ECM -mainly mediated by β1 integrins and Sdc-4- leading to the 

formation of a new tissue. The importance of Sdc-4 in the wound healing process has been 

investigated in animal models; Sdc-4 -/- or Sdc-4 +/- mice resulted to have a reduced rate 

of wound healing compared to wild type mice (Echtermeyer et al., 2001). Mice with no or 

reduced expression of Sdc-4 in fact showed a reduced formation of granulation tissue, 

which represent the base for the migration of new cells repopulating the wounded area; this 

is linked to the delayed contraction of the wound (Echtermeyer et al., 2001). Moreover, the 

new tissue formed by Sdc-4 -/- and +/+ mice was less vascularised compared to the same 

tissue in wild type mice; the three groups showed a similar amount of blood vessels per 

unit area, but the decreased expression of Sdc-4 determined a reduction of their size 

(Echtermeyer et al., 2001). Elenius and co-workers have also reported that, after skin 

injury, Sdc-4 expression is transiently decreased in keratinocytes migrating into the wound, 

whereas it is increased in the keratinocytes proliferating at the wound margin and in the 

fibroblasts (Sdc-4) within the forming granulation tissue (Elenius et al., 1991). The 

induction seems to be induced by antimicrobial peptides (i.e. PR-39) released into the 

wound by inflammatory cells, in fact there is no increased expression in foetal skin, that 

heals without scarring and without extensive inflammation (Gallo et al., 1996).  
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Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 Cell culture 

2.1.1.1 Reagents 

Dulbecco´s Modified Eagles Medium DMEM (12-614F), DMEM/HAM´s F12 medium 

(D6421) and MEM non-essential amino acids solution (M7145) were from Sigma-Aldrich. 

Penicillin/Streptomycin mix, L-Glutamine, and trypsin solution, were purchased from 

Cambrex bioscience Ltd. 

Heat-inactivated foetal calf serum (FCS) was purchased from BioSera. 

Fungizone, was from Invitrogen Corporation. 

2.1.1.2 Plastic ware 

All sterile plastic were supplied by Sarstedt, except for: 

- Cell scrapers and 8 well glass chamber slides (Lab-Tek II), Thermo Fisher Scientific. 

- Cryotube vials (Nalgene), SLS-Scientific Laboratory Supplies. 

2.1.2 Laboratory reagents 

2.1.2.1 Peptides 

RGD peptide (H-Gly-Arg-Gly-Asp-Thr-Pro-OH) and RAD peptide (H-Gly-Arg-Ala-Asp-

Thr-Pro-OH), purity ≥ 97%, were from Calbiochem. A 10 mg/ml stock solution was 

prepared in DMEM containing 2.5 mg/ml bovine serum albumine (BSA); aliquots were 

stored at -80°C.  

P3 peptide (WTATVVDQQDCTLSLQLTT) (Hang et al., 2005), purity ≥ 95%, was from 

Activotec. A 10 mg/ml stock solution was prepared in sterile distilled water; aliquots were 

stored at -80°C. 
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2.1.2.2 Enzymes 

Chondroitinase ABC (from Proteus vulgaris) and heparitinase (from Flavobacterium 

heparinum) were from Seikagaku Corporation. A 10 U/ml stock solution of chondroitinase 

ABC was prepared in 100mM Tris-HCl, pH 8; aliquots were stored at  -80°C. A 1 U/ml 

stock solution was prepared in 50 mM Tris, pH 7.4 containing 0.1% (w/v) BSA; aliquots 

were kept at -20°C. 

Dispase (from Bacillus polymyxa) was from Invitrogen Corporation. A 10 mg/ml stock 

solution was prepared in sterile PBS, filtered and kept at 4°C. 

Guinea pig liver transglutaminase-2 was from Sigma-Aldrich or Zedira GmbH. A 1 mg/ml 

stock solution was prepared in distilled water; aliquots were stored at -20°C. 

2.1.2.3 Antibodies 

Primary antibody Company 

Monoclonal mouse anti human fibronectin Sigma-Aldrich 

Monoclonal mouse anti human integrin β-1 (mab1965) Chemicon International Inc. 

Monoclonal mouse anti human vinculin (hVin-1) Sigma-Aldrich 

Monoclonal mouse anti transglutaminase 2 (Cub 7402) Abcam 

Monoclonal mouse anti transglutaminase 2 (TG100) Abcam 

Monoclonal mouse anti β-tubulin Sigma-Aldrich 

Polyclonal goat anti transglutaminase 2 (ab 10445) Abcam 

Polyclonal goat anti-type III collagen Southern Biotech. 

Polyclonal rabbit anti cyclophilin A Abcam 

Polyclonal rabbit anti focal adhesion kinase (p125),  Sigma-Aldrich 

Polyclonal rabbit anti focal adhesion kinase (pY397)  Abcam. 

Polyclonal rabbit anti phosphotyrosine BD biosciences 

Polyclonal rabbit anti syndecan-4 Zymed laboratories Inc 

Polyclonal rabbit anti syndecan-4 (H-140) Santa Cruz Biotechnology Inc 

Polyclonal rabbit anti transglutaminase 2 (ab2972) Abcam 
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Secondary antibody Company 
Goat anti-mouse IgG rhodamine RedTM-X-conjugated Invitrogen Corporation 

Polyclonal goat anti mouse Ig Horseradish Peroxidase DakoCytomation 

Goat anti rabbit IgG HRP-conjugated Sigma-Aldrich 

Sheep anti mouse IgG FITC-conjugated Sigma-Aldrich 

Goat anti mouse IgG AlexaFluor® 488 Invitrogen Corporation 

 

2.1.2.4 Molecular biology reagents 

2.1.2.4.1 Antibiotics 

Kanamycin and ampicillin were from Invitrogen Corporation. 

Tetracycline was from Sigma-Aldrich. 

G418 was from PAA laboratories GmbH. 

2.1.2.4.2 Cloning and Expression vectors 

pGEM®-3Zf (+) cloning vector was from Promega Corporation  

pSG5 expression vector was from Agilent Technology UK Limited 

pEGFP-N1 expression vector was from BdBioscience Clontech 

pcDNA™ 3.1(+) expression vector (invitrogen) was kindly donated by Prof. R Rees and 

Dr M. Mathieu, Nottingham Trent University, UK. 

2.1.2.4.3 PCR primers 

All DNA primers were provided by Sigma-Genosys (Sigma-Aldrich). 

Liofilized primers were resuspended in Tris-EDTA (TE) buffer (10 mM Tris-HCl, pH 7.5 

and 1 mM EDTA) at a concentration of 100 μM and stored at -20°C. These stock solutions 

were diluted in TE buffet at 20 μM concentration to generate working solutions used to 

prepare PCR reactions ( 2.2.10.12). 
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Target Primers pair (5’→3’), name and sequence AT (°C) 

Full length human TG2 cDNA pSG5S: atcagaattcatggccgaggagctggtcttagagagg 

pSG5AS: atcagaattccggcggggccaatgatgacattccgg 

56 

Mouse TG2 +/+ TGS1: tactccagcttcctgttctg 

TGA1: tcctgacctgagtcctcgtc 

56 

Mouse TG2 -/- TGN1: atcatctcgctcttgttgctc  

TGA1: tcctgacctgagtcctcgtc 

56 

Mouse Sdc-4 +/+ EX3S: atgacacggaggagcccaggc 

EX4AS: ccttacctgccaagacctcag 

61 

Mouse Sdc-4 -/- NeoS: atgacacggaggagcccaggc 

EX4AS: ccttacctgccaagacctcag 

68 

Mouse GAPDH GAPDHS: actccactcacggcaaattc 

GAPDHAS: ccttccacaatgccaaagtt 

55 

Table  2-1 Primers used for PCR reactions on genomic DNA. The annealing 

temperature (AT) used for PCR amplification is indicated for any primers pair. 
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Target Primers pair (5’→3’), name and sequence AT (°C) 

Mouse Sdc-1 mSdc-1FW: attctttctccccccacagcc 
mSdc-1RV: aataaggtctgctggggctctgaac 

56 

Mouse Sdc-2 mSdc-2FW: ctctccccttgctgtgactgac 
mSdc-2RV: agccccctaccttccctcctac 

56 

Mouse Sdc-4 mSdc-4FW: gggggcattctaagtccagtga 
mSdc-4RV: tatcccgctatccccctacattat 

56 

Human Sdc-4 hSdc-4FW: tgcaggaattcgccatggccc 
hSdc-4RV: gcgtagaactcattggtgggg 

54 

Mouse TG1 mTG1FW: tgagtcctctgatggcattg 
mTG1RV: tcgccaatctgtgcttctgt 

60 

Mouse TG2 mTG2FW: agtatgagcatgggcaacga 
mTG2RV: atacaggggatcggaaagtg 

60 

Mouse TG3 mTG3FW: tggcagtaggcaaagaagtc 
mTG3RV: cacatcaatcttaggctgc 

60 

Mouse TG5 mTG5FW: cttcccttcaacccagtgat 
mTG5RV: gagtgatgctggctttgtga 

60 

Mouse TG6 
 

mTG6FW: atatgtggactcttatggccg 
mTG6RV: tccacacttagcagtttcttca 

60 

Mouse TG7 
 

mTG7FW: catcgctgaggttgaagagac 
mTG7RV: ccttgtagcctttgatctcc 

60 

Mouse GAPDH mGAPDHFW: tggaaagctgtggcgtgat 
mGAPDHRV: ccctgttgctgtagccgtat 

55 

Table  2-2 Primers used for PCR reactions on cDNA. The annealing temperature (AT) 

used for PCR amplification is indicated for any primers pair. 

 

2.1.2.5 Chemicals 

Biotin cadaverine (N-(5-aminopentyl) biotinamide trifluoroacetic acid salt, Invitrogen 

Corporation. A 50 mM stock solution was prepared in DMSO and stored at 4°C. 

DAPI (4',6-diamidino-2-phenylindole), Sigma-Aldrich. A 1 mg/ml solution was prepared 

in H20, aliquots were stored at -80°C. 
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Fluorescein cadaverine, Sigma-Aldrich. A 1 mg/ml stock solution was prepared in 

dimethyl sulfoxide (DMSO); aliquots were kept at -80°C. 

Heparin (sodium salt from porcine intestinal mucosa, average molecular weight ~ 3 kDa), 

Sigma-Aldrich. A 20 mg/ml stock solution was prepared in H2O, aliquots were stored at -

20°C. 

Heparan sulphate (sodium salt from porcine intestinal mucosa, average molecular weight ~ 

12 kDa) MW, Celsus company. A 20 mg/ml stock solution was prepared in H2O, aliquots 

were stored at -20°C. 

TG inhibitor R283 was synthesized by R. Saint and I. Coutts, Nottingham Trent 

University. A 100mM stock solution was prepared in distilled water; aliquots were stored 

at -80°C.  

Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) was kindly donated by Prof. J Esko 

(University of California, USA). A 30 mM stock solution was prepared in DMSO; aliquots 

were stored at -20°C.  

All general chemicals were obtained from Sigma-Aldrich unless otherwise stated.  

 

Chemical Company 

EZ-ECL Chemioluminescence detection kit Geneflow 

Protein G Agarose Insight Biotechnology Ltd 

Protein A Agarose Roche Diagnostics Ltd 

Vectashield mounting medum Vector Laboratories Ltd 

Vectashield mounting medum with propidium iodide Vector Laboratories Ltd 

Full-range Rainbow molecular weight markers Amersham Biosciences. 

Nitrocellulose for Western blotting, 0.22 μm Anachem 

Tissue-Tek O.C.T.™ compound Sakura Finetek Europe 
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2.1.3 Laboratory equipment 

Instrument Company 
3000 Biacore system and CM4 sensor chips,  GE Healthcare 

AE 6450 Atto Vertical Dual Mini Slab Kit,  Genetic research Instr. Ltd 

Biochrom30 Amino Acid Analyser Biochrom Ltd 

Bio-Rad mode 680 microplate reader Bio-Rad Laboratories Ltd. 

Bio-Rad Power Pack 300 Bio-Rad Laboratories Ltd 

Blood Tube rotator SB1 Jencons PLS 

Digital Net Camera DN100 Nikon Corporation 

Electrophoresis tank Multi SUB Mini Geneflow 

Eppendorf refrigerated centrifuge 5417R Eppendorf UK Ltd 

Fujifilm intelligent dark box Fujifilm Life Sciences 

Gene Genius Bioimaging System with UV Syngene 

Harrier 18/80 refrigerated centrifuge Sanyo Gallenkamp PCL 

Heating block QBT4 Grant Instruments Ltd 

Leica CLMS confocal laser microscope Leica 

Leica CM1850 UV cryostat Leica 

Neubauer hemocytometer  Hawksley 

Nucleofector Device (Amaxa) Lonza Cologne AG 

Optical inverted microscope Olympus CK2 Olympus 

Optima TLX-120 Ultracentrifuge Beckman Coulter 

Pellet Pestle Sigma-Aldrich 

Rotor-Gene™ 6000 Corbett Research UK 

Soniprep 150 sonicator MSE UK Ltd 

Termocycler TC-3000 Techne UK Ltd 

Walker class II microbiological safety cabinet Walker safety cabinets Ltd. 

Water bath SUB14 Grant Instruments Ltd 
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2.1.4 Companies 

Company Address 
Abcam Cambridge, UK 

AbD Serotech, Serotech Ltd Oxford, UK 

Activotec Cambrigde, UK 

Agilent Technology UK Limited  Santa Clara, Ca, USA 

Amersham Biosciences Bucks, UK. 

Anachem Luton, UK 

BdBioscience Clontech Oxford, UK 

Beckman Coulter High Wycombe, UK 

Biochrom Ltd Cambridge, UK 

Bio-Rad Laboratories Ltd. Hemel Hempstead, UK 

BioSera Ringmer, UK 

Calbiochem Darmstadt, Germany 

Cambrex bioscience Ltd. Wokingam, Berkshire, UK 

Celsus Inc. Cincinnati, Oh, USA 

Chemicon International Inc. Temecula, Ca, USA 

Corbett Research UK Eaton Socon, UK 

DakoCytomation Glostrup, Denmark 

Eppendorf UK Ltd Cambridge, UK 

Fujifilm Life Sciences Products Sheffield, UK 

GE Healthcare Bucks, UK 

Geneflow Fradley, UK 

Genetic Research Instr. Ltd Rayne Braintree, UK 

Grant Instruments Ltd Cambridge, UK 

Hawksley Lancing, UK 

Insight Biotechnology Ltd Wembley, UK 

Invitrogen Corporation Paisley, UK 

Jencons PLS Redhill, UK 

Leica Solms, Germany 

Lonza Cologne AG  Cologne, Germany 

MSE UK Ltd London, UK 
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Nikon Corporation Tokyo, Japan 

Olympus Watford, UK 

PAA laboratories GmbH Pasching Austria 

Promega Corporation Southampton, UK 

Roche Diagnostics Ltd Burgess Hill, UK 

Sakura Finetek Europe Zoeterwoude, The Netherlands 

Santa Cruz Biotechnology Inc Santa Cruz, Ca, USA 

Sanyo Gallenkamp PCL Leicester, UK 

Sarstedt  Leicester, UK 

Seikagaku Corporation Tokyo, Japan 

Sigma-Aldrich Poole, UK 

SLS-Scientific Laboratory Supplies Nottingham, UK 

Southern Biotech Birmingham, UK 

Syngene Cambrigde, UK 

Techne UK Ltd Newcastle, UK 

Thermo Fisher Scientific Loughborough, UK 

Upstate Lake Placid, NY, USA 

Vector Laboratories Ltd Peterborough, UK 

VWR International Lutterworth, UK 

Walker safety cabinets Ltd. Glossop, UK 

Zedira GmbH  Darmstadt, Germany 

Zymed laboratories Inc San Francisco, Ca, USA 
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2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Cell lines 

Primary mouse dermal fibroblasts (MDF) were isolated from wild type (Sdc-4 +/+) and 

Sdc-4 null (Sdc-4 -/-) mice (Ishiguro et al., 2000) donated by Takashi Muramatsu, Nagoya 

University, Japan as described in paragraph  2.2.1.7.  

Primary mouse embryonic fibroblasts (MEF) from wild type (TG2 +/+) and TG2 null 

(TG2 -/-) mice (De Laurenzi and Melino, 2001) were donated by Gerry Melino, Leicester 

University, UK.  

Primary human osteoblasts (HOB) obtained from femoral heads  (Scotchford et al., 1998) 

were donated by S. Downes, University of Nottingham, UK. Human osteoblasts 

permanently transfected to over express TG2, clone 10 and 14 (HOB-TG2-10 and HOB-

TG2-14) (Verderio et al., 2001) were provided by Dr Elisabetta Verderio, Nottingham 

Trent University, UK. 

3T3 fibroblasts with tetracycline-regulated expression of TG2 (3T3-TG2) (Verderio et al., 

1998) were provided by Dr. Elisabetta Verderio, Nottingham Trent University, UK. 

2.2.1.2 Cell culture conditions 

MDF Sdc-4 +/+, MDF Sdc-4 -/-, MEF TG2 +/+ and MEF TG2 -/- were maintained in 

DMEM nutrient mixture F12 HAM supplemented with 10% (v/v) heat-inactivated FCS, 

2mM L-glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin and non essential 

amino acid mixture.  

HOB, HOB-TG2-10 and HOB-TG2-14 were maintained in Dulbecco's Modified Eagle's 

Medium (DMEM) supplemented as described above with exception for non essential 

aminoacid mixture, not added.  

3T3-TG2 cells were maintained in the same medium used for HOB further supplemented 

with 250 μg/ml xanthine, 10 μg/ml mycophenolic acid, 400 μg/ml G418, HAT supplement 

(Sigma-Aldrich) and 2 μg/ml tetracycline. In these conditions the cells express a low basal 
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level of TG2; to induce exogenous TG2 expression, cells were cultured in the absence of 

tetracycline for 72 hours. 

2.2.1.3 Sub-culture of cells 

Cells were sub-cultured at about 90% confluence; the cells were washed with serum-free 

culture medium and then incubated with 0.25% (w/v) trypsin in 5 mM EDTA in PBS, pH 

7.4 at 37°C. After complete detachment of the cells, trypsin was inactivated with serum 

containing culture medium (10% serum) and cells were collected by centrifugation at 300g 

x 5 minutes. Cell pellet was resuspended in complete culture medium and re-seeded. 

2.2.1.4 Cell counting 

Cell counting was performed using a hemocytometer (1 mm2 depth chamber). Two 

separate counts of 25 fields (0.04 mm2) were performed for every cell suspension using 

light microscopy at x 10 magnification. The final cell concentration, expressed as cell 

number/ml was calculated using the following formula: 

Cell concentration =  average cell number in 25 fields × 104 

2.2.1.5 Cryo-preservation of cells 

Confluent cell monolayers were trypsinised and collected as described in  2.2.1.3; the cell 

pellet was then resuspended in heat inactivated FCS containing 10% (v/v) dimethyl 

sulfoxide (DMSO). The cells were initially frozen at -70°C for 24 hours prior to long-term 

storage in liquid nitrogen. 

2.2.1.6 Resuscitation of cryo-preserved cells 

Vials of frozen cells were removed from liquid nitrogen storage and quickly thawed at 

37°C. The cell suspension was then carefully transferred into 25 cm2 tissue culture flask 

containing 5 ml complete growth medium and incubated for 12 hours before changing the 

medium. 

2.2.1.7 Isolation of primary dermal fibroblasts 

Primary fibroblasts were isolated from three months old C57BL/6J mice and Sdc-4 null 

mice (Ishiguro et al., 2000) following a method optimised by P. Kotsakis (Nottingham 

Trent University) (Kotsakis, 2005). The animals were sacrificed by neck dislocation, 
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2.2.1.8 Cell transfection 

Cell transfection was performed by electroporation using Nucleofector® Kit (Amaxa 

GmbH). Low passage cells were grown until 80-90% confluence level, trypsinized 

( 2.2.1.3) and divided in aliquots containing specific amounts of cells (Table  2-3). After 

centrifugation ( 2.2.1.3), the appropriate nucleofector solution (100 μl) and DNA (5 μg) 

were added to the cell pellet and the cells were transferred to the electroporation cuvette, 

that was then inserted in the Nucleofector.  

 

Cell type Cells Nucleofector solution Program 

MEF TG2 -/- 1 × 106 VPI-1006 (MEF starter kit) U23 

MDF Sdc-4 +/+ and Sdc-4 -/- 5 × 105 VPI-1002 (Basic kit for fibroblasts) A24 

Table  2-3 Parameters for cell transfection using Nucleofector Kit, Amaxa. 
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After performing the cell-specific electroporation, the cuvette was removed from the 

machine and the content was gently resuspended in 500 μl complete medium with serum 

before transferring to a 6 well plate well containing 3 ml complete medium with serum. 

Unless differently stated, the cells were incubated at 37 °C, 5% (v/v) CO2 for 48 hours 

before checking gene expression. 

The efficiency of transfection was estimated examining by fluorescence microscopy cells 

transfected with the control plasmid pmaxGFP® (Amaxa). Average efficiency was 80% for 

MEF and 60% for MDF.  

2.2.2 Preparation of matrices for cell adhesion  

Matrices of fibronectin (FN) and TG2-FN were prepared as described by Verderio et al. 

(2003).  

2.2.2.1 Fibronectin coating 

Tissue culture plastic surfaces or chamber slides were incubated for 16 hours at 4°C with 

the appropriate amount of 5 μg/ml human fibronectin (Sigma Aldrich) in 50 mM Tris-HCl, 

pH 7.4 (Tris buffer). 50 μl/well of the solution were used for 96 well plates, 110 μl/well for 

8 well chamber slides and 3 ml/dish for 5 cm diameter Petri dishes. The surfaces were then 

washed once with Tris buffer and blocked with 3% (w/v) BSA in 50 mM Tris-HCl for 1 

hour at room temperature. The surfaces were washed with Tris buffer and serum-free cell 

culture medium prior to cell seeding.  

2.2.2.2 Preparation of TG2-FN matrices 

Fibronectin coated surfaces were blocked as indicated in  2.2.2.1, then washed twice with 

50 mM Tris-HCl, pH 7.4 and incubated for 1 hour at 37°C with purified guinea pig liver 

TG2 (gpTG2, Sigma Aldrich) (20 μg/ml) in PBS, pH 7.4, containing 2 mM EDTA. 100 μl 

of the solution were used for 96 well plates, 220 μl for 8 well chamber slides and 6 ml for 

5 cm diameter Petri dishes. The gpTG2 solution was then removed and surfaces were 

washed twice with Tris buffer and once with serum-free medium before cell seeding. 
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2.2.3 Immunocytochemistry  

Cells were harvested and resuspended in complete medium with or without serum as 

indicated for every single experiment. The cells were then seeded on 8-well chamber slides 

(1.5 ×104 cells/ well) and incubated at 37°C, 5% CO2 for 3 hours, unless otherwise stated; 

the medium was removed and adherent cells were gently washed with PBS. Cells were 

fixed in 3.7% (w/v) paraformaldehide in PBS, pH 7.4 for 15 minutes at room temperature 

and washed three times with PBS. Permeabilization was performed by incubating the cells 

for 15 minutes at room temperature with 0.1% (v/v) Triton-X100 in PBS; after that, cells 

were washed again with PBS for 3 times. 

Non specific binding of antibodies was prevented by blocking with 3% (w/v) bovine serum 

albumin (BSA) in TBS for 1h at room temperature with gentle shaking; after blocking, 

cells were incubated overnight at 4oC in humidified chamber with the primary antibody 

diluted in blocking buffer. After washing 3 times for 5 minutes with TBS, the cells were 

incubated for 2 hours at 37oC in humidified chamber with the secondary antibody 

conjugated with a fluorescent dye (FITC or TRITC) diluted in blocking buffer. A second 

series of washes was performed, as after the incubation with primary antibody, and the 

slide was air dried and mounted with Vectashield fluorescence mounting media 

(containing or not propidium iodide for nuclei visualization).  

In selected experiments, nuclear staining was performed with 4',6-diamidino-2-

phenylindole (DAPI); after incubation with secondary antibody, cells were incubated for 3 

minutes with 1μg/ml DAPI in PBS. Cells were then washed as described above and 

coverslips were mounted with Vectashield fluorescent mounting media.   

2.2.4 Detection of actin stress fibres  

8-well chamber slides were coated with FN or TG2-FN as indicated in  2.2.2.1 and  2.2.2.2. 

Cells were serum-starved for 16 hours before the experiment, then harvested and 

resuspended in serum-free medium. In selected experiments, aliquots of 1.5 × 104 cells 

were pre-incubated for 10 minutes at 37°C with RGD or RAD peptide (100 μg/ml) or, in 

control samples, with serum-free medium only. The cells were seeded on the coated wells 

and incubated for 1 hour at 37°C, 5% CO2. The medium was removed and the cells were 
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2.2.5 Preparation of protein extracts for Western blotting 

2.2.5.1 Total protein extract 

Cell monolayers 90% confluent were washed twice with PBS and scraped in ice cold lysis 

buffer [20 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% (v/v) IGEPAL CA-630, 

0.5% (w/v) deoxycholic acid, 0.1% (w/v) SDS and protease inhibitor cocktail]. The 

homogenate was then sonicated on ice, 3 × 5 seconds, at amplitude 5, and then denatured 

as indicated in section  2.2.6.2.   

2.2.5.2 Cell fractionation 

Crude membrane fractions were prepared following the method described by Germack et 

al. (2006). Briefly, confluent cell monolayers were detached with 2mM EDTA in PBS in 

order to preserve cell surface proteins, collected by centrifugation and resuspended in lysis 

buffer (as described in  2.2.5.1). The homogenate was centrifuged for 2 minutes at  900g to 

eliminate whole cells and nuclei, and then ultracentrifuged for 30 minutes at 170,000g at a 

temperature of 4°C to separate the cytosolic cell fraction from the membrane fraction 

(pellet). The pellet was resuspended in lysis buffer and used as a crude membrane extract. 

2.2.5.3 Determination of protein concentration 

Protein estimation was performed using DC assay (Biorad) based on the Lowry method 

(Lowry et al., 1951). Standard solution of BSA (purity ≥ 96%) with a concentration of 0-1 

mg/ml were used to produce the calibration curve. 5 μl of sample or BSA standard, 25 μl 

of reagent A and 200 μl of reagent B were incubated in 96 well plate, in triplicate. If the 

protein extracts were prepared using a lysis buffer containing IGEPAL CA-630, reagent S 

was added to reagent A before the incubation (20 μl reagent S per 1 ml reagent A). After 

15 minutes incubation at room temperature, the absorbance of the plate was measured at 



Chapter 2. Materials and Methods 

 

 

52

750 nm using a SpectraFluor 96 well plate reader. The calibration curve made with the 

BSA standards was used to derive concentration values for unknown samples.  

2.2.6 Denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) 

2.2.6.1 Preparation of polyacrylamide gels 

SDS PAGE was performed under reducing conditions using modification of the method 

described by Laemmli (1970) for use in vertical slabs gels. Polyacrylamide resolving gels 

(80×60×1.5 mm) were prepared as described in Table  2-4 and cast in the Atto minigel 

system, covered by a layer of distilled water to provide them with a flat upper surface and 

prevent contact with the air. 

The gels were let to polymerise for 30 min at room temperature, then the upper surface was 

washed with distilled water and the stacking gel was poured on top, together with the 10 

wells comb that forms the sample wells; the stacking gel was let to polymerize for 20 

minutes at room temperature. Composition of stacking gels is described in Table  2-5. 

Final % (w/v) acrylamide Stock solution 

8% 10% 12% 

Distilled H2O 6.99 ml 6.00 ml 5.01 ml 

30% (w/v) Acrylamide/Bis-acrylamide (29:1) 3.96 ml 4.95 ml 5.94 ml 

1.5 mM Tris HCl pH 8.8 3.75 ml 3.75 ml 3.75 ml 

10 % (w/v) SDS 0.15 ml 0.15 ml 0.15 ml 

10 % (w/v) Ammonium persulfate 0.05 ml 0.05 ml 0.05 ml 

TEMED 0.10 ml 0.10 ml 0.10 ml 

Table  2-4 Composition of SDS-PAGE resolving gels containing different acrylamide 

amounts. The amounts shown are enough to prepare two 6×8×0.15 cm gels for the Atto 

minigel system. 
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Final % (w/v) acrylamide Stock solution 

4% 5% 

Distilled H2O 3.56 ml 3.40 ml 

30% (w/v) Acrylamide/Bis-acrylamide (29:1) 0.67 ml 0.83 ml 

1 mM Tris HCl pH 6.8 0.63 ml 0.63 ml 

10 % (w/v) SDS 0.05 ml 0.05 ml 

10 % (w/v) Ammonium persulfate 0.05 ml 0.05 ml 

TEMED 0.01 ml 0.01 ml 

Table  2-5 Composition of SDS-PAGE stacking gels containing different acrylamide 

amounts. The amounts shown are enough to prepare two gels for the Atto minigel system.  

 

2.2.6.2 Separation of samples via SDS-PAGE 

Protein samples were diluted in 5× concentrated reducing electrophoresis buffer [300 mM 

Tris-HCl, pH 6.8; 50% (v/v) glycerol; 10% (w/v) SDS; 3.2% (v/v) β-mercaptoethanol; 

0.5% (w/v) bromophenol blue]. Samples were denaturated at 95°C for 5 minutes in heating 

block, cooled on ice and centrifuged for 10 seconds in a bench centrifuge to collect all the 

proteins. The samples were then loaded into the gel and separated at constant voltage of 

160 V in electrophoresis buffer at pH 8.3 [25 mM Tris, 192 mM glycine and 0.1 % (w/v) 

SDS]. Typically, 30-50 μg of proteins were loaded in each well. The current was stopped 

when the dye at the front ran out of the bottom of the gel. 

2.2.7 Western blotting and immunoprobing of proteins 

2.2.7.1 Western blotting 

Proteins separated by SDS-PAGE were transferred electrophoretically onto a nitrocellulose 

membrane by Western blotting using Atto Vertical Dual Mini Slab Kit wet system method. 

Four pieces of filter paper and one piece of nitrocellulose were cut to the same size as the 

gel and pre-saturated with electroblotting buffer [48.8 mM Tris, 39 mM glycine, 20 % 

(v/v) methanol, 0.0375 % (w/v) SDS] together with two fibre pads. The “sandwich” was 

assembled in the following order starting from the negative electrode: fibre pad, filter 

paper, polyacrylamide gel, nitrocellulose, filter paper, fibre pad. The sandwich was then 
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submerged in a tank containing electroblotting buffer and an ice pack for the refrigeration 

and a constant current of 180 mA intensity was applied for 60 minutes. 

2.2.7.2 Membrane staining with red ponceau 

After the protein transfer, nitrocellulose membranes were immersed in 0.1 % (w/v) 

Ponceau S in 5 % (v/v) glacial acetic acid in dH2O for 30 seconds to reveal the total protein 

bands. The staining was washed away by rinsing the membranes in Tris buffered saline 

(TBS) (25 mM Tris-HCl, 150 mM NaCl and 2 mM KCl, pH 7.4). 

2.2.7.3 Immunoprobing  

After protein transfer, the membranes were incubated in blocking buffer [5 % (w/v) fat-

free powder milk in TBS buffer + 0.1% (v/v) Tween-20] for 1 hour at room temperature to 

avoid non-specific binding of antibodies. Blocked membranes were incubated overnight at 

4°C with the opportune dilution of primary antibodies (see Table  2-6) in blocking buffer.  

 

Primary antibody Dilution factor

Monoclonal mouse anti human fibronectin 1:1000 

Monoclonal mouse anti RhoGAP (p190) (clone D2D6), 1:500 

Monoclonal mouse anti β-tubulin 1:2000 

Polyclonal goat anti transglutaminase 2 (ab 10445) 1:1000 

Polyclonal rabbit anti focal adhesion kinase (p125) 1:2000 

Polyclonal rabbit anti phosphotyrosine    1:250 

Polyclonal rabbit anti syndecan-4 (Zymed Inc) 1:150 

Polyclonal rabbit anti Transglutaminase 2 (ab2972) 1:200 

Rabbit polyclonal anti cyclophilin A 1:1000 

Table  2-6 Dilution factors for primary antibodies used for protein immunodetection 

via Western blotting. 
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Following three washes of 10 minutes with TBS buffer + 0.1% (v/v) Tween-20 (TBST), 

the membranes were incubated for 2 hours at room temperature with the HRP-conjugated 

secondary antibody diluted in blocking buffer (see Table  2-7 for antibody dilutions), then 

they were washed with TBST. 

 

Secondary antibody HRP-conjugated Dilution factor

Polyclonal goat anti mouse Ig 1:5000

Goat anti rabbit IgG 1:5000

Rabbit anti goat IgG 1:5000

Table  2-7 Dilution factors for secondary antibodies used for protein immunodetection 

in Western blotting. 

 

2.2.7.4 Enhanced Chemiluminescence (ECL) development system 

ECL was performed using EZ-ECL kit (Geneflow) according to manufacturer’s 

instructions. Briefly, equal volumes of solution A and solution B were mixed to a final 

volume of 1 ml (for 8×6 cm2 nitrocellulose membrane), incubated in the dark for 5 minutes 

and then placed in contact with the membrane for 1 minute. ECL substrate was drained, the 

nitrocellulose was placed protein-side facing upwards onto a tray in the Fujifilm Intelligent 

dark box (Fujifilm Life Sciences Products) and exposed for a time varying from 10 

seconds to 30 minutes, depending on the protein analysed.  

2.2.7.5 Stripping and reprobing membranes 

Stripping procedure eliminates antibodies bound to nitrocellulose and permits monitoring 

the expression of different proteins from the same extracts. Membrane were submerged in 

stripping buffer [100 mM β-mercaptoethanol; 2% (w/v) SDS; 6.25 mM Tris-HCl, pH 6.7] 

and incubated at 50°C for 30 minutes. The membranes were then washed two times, for 10 

minutes, in a large amount of TBST, than blocked and re-probed as detailed in section 

 2.2.7.3. 
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2.2.7.6 Quantification of immunodetected proteins 

To allow for quantitative comparison of protein band intensity following Western blotting 

and immunoprobing, a process of manual band quantification was performed using the 

Aida Image Analyser v.4.03, according to the manufacturer’s guidelines. Equal sized 

boxes were drawn around bands to be quantified, and figures which represent the number 

of pixels in each box multiplied by the grey shade value of each pixel were generated for 

each band; a specific background signal level was subtracted from each band. 

2.2.8 Protein immunoprecipitation  

Confluent cell monolayers (typical cell number 3 × 106) were detached using 2 mM EDTA 

in PBS, collected by centrifugation and homogenized in ice cold hypotonic buffer (30 mM 

Tris HCl pH7.4, 5 mM MgCl2, 100 mM NaCl and 1 mM EDTA) supplemented with 

protease inhibitor cocktail (Sigma Aldrich). In selected experiments, cells were incubated 

for 1 hour at 37 °C with heparitinase (Seikagaku) (30 mU/ml) in serum free medium or, as 

a control, in serum free medium without heparitinase before homogenization. Cells were 

then lysed in ice-cold hypotonic 30 mM Tris-HCl buffer, pH 7.4, with protease inhibitors 

cocktail (Sigma-Aldrich), and after low speed centrifugation (800g, 10 minutes, to remove 

remaining whole cells and nuclei), crude plasma membranes were prepared as indicated in 

 2.2.5.2. Proteins were estimated using DC protein estimation kit (Biorad) as described in 

 2.2.5.3. Equal amounts of membrane proteins (500 μg) were then solubilised in 500 μl 

lysis buffer containing 1% (v/v) IGEPAL CA 630, 1% (v/v) Triton-X100, 0.5% (v/v) 

deoxycholic acid (DOC), protease inhibitors. The samples were pre-cleared through 1 hour 

incubation in rocking platform (Blood Tube rotator Sb1, with a constant speed of 33 rpm), 

at 4°C in the presence of 50 μl protein-G agarose suspension (Insight Biotechnology Ltd); 

after that, the samples were centrifuged at 10,000g for 1 minute to precipitate the protein-G 

agarose, and the cleared lysates were transferred to new tubes. The crude membrane 

lysates were then subjected to immunoprecipitation by incubation with 2 μg of rabbit anti-

Sdc-4 (Zymed) (against a Sdc-4-endopeptide) or anti-TG2 antibody TG100 (Abcam); in 

negative controls, the membrane preparations were incubated with 2 μg of rabbit anti-

gliadin antibody (Sigma-Aldrich) or without antibody. After 1 hour incubation in rocking 

platform at 4°C, 50 μl of protein-G agarose suspension were added to the samples and the 
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After the precipitation of the agarose beads by centrifuging the samples at 10,000g for 1 

minute, the denatured and reduced immunocomplexes were analysed by Western blotting. 

15 μl of the supernatant were separated by reducing SDS-PAGE on 10% polyacrylamide 

gel, transferred onto nitrocellulose membrane and immunoprobed with antibodies against 

either TG2, Sdc-4 or FN (as described in  2.2.7) Following incubation with the appropriate 

HRP-conjugated secondary antibody, bands were revealed by enhanced EZ-ECL 

chemiluminescence; densitometry of the bands was conducted by Aida ID/evaluation 3.44. 

2.2.9 Detection of TG activity 

2.2.9.1 Preparation of cell extracts for TG activity assay 

Cell homogenates and fractions for measurement of TG2 activity were prepared according 

to Balklava et al. (2002). Cells were washed with PBS and scraped in ice cold lysis buffer 

(0.25 M sucrose and 2 mM EDTA in Tris buffer containing protease inhibitor cocktail 

from Sigma Aldrich); the total cell homogenate was sonicated on ice, 3 × 5 seconds, at 

amplitude 5.  

Cell fractions were prepared by ultracentrifugation of the total homogenate (30 minutes at 

70,000g, 4°C); the supernatant was used as cytosolic fraction, whereas the pellet was 

resuspended in 50 μl of lysis buffer and used as crude membrane preparation.  

2.2.9.2 TG activity measurement 

Transglutaminase activity was assessed using a modification of the enzyme-linked sorbent 

assay (ELSA) based on incorporation of biotinylated cadaverine (BTC) into fibronectin 

described by (Jones et al., 1997). 
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Microtitre plates were coated with 100 μl/well 5mg/ml FN in 50 mM Tris-HCl (Tris 

buffer), pH 7.4 for 15 hours at 4°C. The plates were then washed with Tris buffer and 

blocked in 3% (w/v) BSA in Tris buffer for 1 hour at room temperature. 60 μg of total cell 

extracts or cell fractions were then incubated for 2 hours at 37°C in reaction buffer (5 mM 

CaCl2 [or 5 mM EDTA], 10 mM DTT and 0.1 mM BTC in Tris buffer) in a final volume 

of 100 μl; every sample was tested in triplicates. Together with the samples, standard 

quantities of gpTG2 (0-200 nM) were incubated in reaction buffer and used to produce a 

standard curve relating absorbance and transamidating activity.  

The reaction was terminated by two washes of the plate with PBS containing 10 mM 

EDTA, prior to other two washes with TBST and one with TBS. 100 μl/well of 1:5000 

dilution of extravidine peroxidise in blocking buffer were then added, and the plate was 

incubated at 37°C for 1 hour to reveal the covalently bound BTC. After removing the 

solution, the plate was washed with TBST/TBS as indicated above, and equilibrated with 

100 μl/well of sodium acetate buffer, pH 6, for 10 minutes. The plate was then incubated 

with developing solution (7.5% [w/v] 3,3′,5,5′-tetramethylbenzidine [TMB] in 0.05 M 

phosphate-citrate buffer, containing 0.014% [v/v] H2O2, pH 5.0), 100 μl/well. The 

development was stopped by adding 50 μl/well of 2.5N H2SO4 and the plate was then read 

using a microplate reader at 450 nm. Absorbance values obtained in presence of EDTA 

were subtracted to the ones recorded in presence of CaCl2 to eliminate background.  

If cell surface TG2 activity was measured, 2×104 cells/well (detached with 2 mM EDTA in 

PBS) were incubated in complete culture medium without serum (DMEM and DMEM 

F12-HAM contain 1.8 mM CaCl2) on FN-coated plates in presence of 0.1 mM BTC as 

indicated for cell homogenates. After blocking the reaction by washing with 10 mM EDTA 

in PBS, the cells were detached by incubating the plate with 100 μl/well of 0.1 % (w/v) 

deoxycholate in PBS for 20 minutes at room temperature, with gentle shaking. The plate 

was washed with TBST/TBS as indicated above and covalently incorporated BTC was 

detected as described for cell extracts.  

2.2.9.3 In situ TG activity assay 

The incorporation of FITC-cadaverine in fibronectin by living cells was previously 

developed to visualise TG2 activity in situ (Verderio et al., 1998). 
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Wild type and syndecan-4 null MDF were enzymatically detached, collected by 

centrifugation and resuspended in complete growth medium with serum (as described in 

 2.2.1.3). Cells were seeded in 8-well chamber slides (15,000 cells/well) in the presence of 

0.5 mM fluorescein isothiocyanate conjugated cadaverine (FITC-cadaverine) and 

incubated for 15 hours at 37°C, 5% CO2. In selected experiments, cells were additionally 

incubated with the active-site directed TG inhibitor R283 (200 μM) (Balklava et al., 2002) 

to confirm the specificity of the assay. At the end of the incubation, the medium was 

removed, the cells were washed gently with PBS and fixed in ice-cold methanol for 10 

minutes at -20°C; this fixation method is essential to remove the unspecifically bound 

fluorescent compound. After washing 4 times with PBS the samples were mounted with 

Vectashield mounting medium containing propidium iodide (for visualization of the 

nuclei) and the incorporation of FITC-cadaverine was visualised using a Leica CLMS 

confocal laser microscope equipped with an Argon/Krypton laser. Differences in 

fluorescence were evaluated measuring the intensity of the emission in 5 non overlapping 

images using Leica TC-SNT software (Leica). 

2.2.10 Molecular biology techniques 

Standard molecular biology methods were performed according to Sambrock and colleagues 

(Sambrook et al., 1989). When kits were used, the instructions of the manufacturers were 

followed. 

2.2.10.1 Transformation of bacteria with plasmid DNA 

Frozen Subcloning Efficiency DH5α E. coli competent cells (Invitrogen life technologies) 

were thawed on ice; 100 ng of plasmid DNA were mixed with 100 μl aliquots of cells and 

incubated for 30 minutes on ice. Uptake of DNA from the cells was induced by 20 seconds 

heat-shock in water bath at 37°C followed by 2 minutes incubation on ice. The cells were 

allowed to recover by the addition of 900 μl Luria Bertani (LB) medium [1% (w/v) 

bactotryptone, 0.5% (w/v) yeast extract and 1% (w/v) NaCl in H2O] and 1 hour incubation 

at 37°C, 225 rpm. The suspensions were then centrifuged at 1000 g for 1 minute and, after 

that, the cell pellet was gently resuspended in 200 μl of LB and plated in LB agar plates 

[LB medium containing 1.5 % (w/v) agar, that determines the solidification] containing the 

specific selective antibiotic (ampicillin was used at 75 μg/ml, kanamycin at 50 μg/ml). The 
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plates were incubated overnight (15 hours) at 37°C and they were examined on the 

following day for the formation of antibiotic-resistant colonies.  

2.2.10.2 Storage of bacteria colonies 

A single bacteria colony isolated from a fresh LB plate was used to inoculate 10 ml of 

selective LB medium; the cells were then incubated at 37°C in a shaking incubator (225 

rpm) for 12-16 hours. Glycerol stocks were prepared by mixing 810 μl of the bacterial 

culture and 190 μl of sterile 80% (v/v) glycerol in cryovials, that were then stored at  -

80°C.  

To retrieve a bacterial clone, the specific glycerol stock was taken out of the -80°C storage 

and a portion of it was scraped off using a sterile inoculating loop used to inoculate 3 ml 

LB medium containing the specific selective agent. This procedure was performed quickly, 

avoiding the thawing of the glycerol stock, which was then immediately transferred to -

80°C.  

2.2.10.3 Amplification and extraction of plasmid DNA 

Plasmid Mini preparations (minipreps) were prepared using Wizard® Plus SV Minipreps 

DNA purification system (Promega). A single bacterial colony isolated from a fresh LB 

plate (see  2.2.10.1) was used to inoculate 10 ml of LB medium containing the same 

antibiotic used for the selection. The cells were then incubated overnight (12-16 hours) at 

37°C in a shaking incubator (225 rpm). After that the bacteria were collected by 

centrifugation (10 minutes at 10,000 g) and lysed, and the plasmid DNA was extracted 

following the centrifugation protocol indicated by the manufacturer (yield was 

approximately 10 μg DNA). 

When higher amounts of plasmid DNA were required, MIDI kit (Qiagen) was used; in this 

case 5 ml of LB medium (containing selective antibiotic) were initially inoculated with the 

bacterial colony and incubated at 37°C in a shaking incubator (225 rpm) for 8 hours. The 

bacteria culture was then diluted 1:500 into 100 ml selective LB medium and incubated 

overnight 37°C in a shaking incubator (300 rpm). The bacteria were then harvested and 

plasmid DNA was purified following manufacturer’s instructions (yield was approximately 

100 μg DNA). 
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The plasmid DNA extracted was highly purified (ratio 260/280 ≥ 1.8), therefore it was 

directly used for cell transfection. 

2.2.10.4  Agarose gel electrophoresis of DNA 

Gels for electrophoresis were prepared dissolving agarose (typically 1% w/v) in Tris-

acetate-EDTA (TAE) buffer [40 mM Tris, pH 7.4; 0.114% (v/v) glacial acetic acid; 1 mM 

EDTA] and heating the solution in a microwave oven until the agarose was completely 

dissolved. After cooling, ethidium bromide (0.5 μg/ml) was added to the solution, which 

was poured into a casting plate with the appropriate comb. 50 ml of agarose gel were used 

for small casting plate (8 wells) and 120 ml were used for large plates (15 wells).  

2.2.10.5 Restriction enzyme digestion of plasmid DNA 

Restriction enzyme digestions were performed in 100 μl final volume containing: 15 μg 

DNA, 10 μl specific 10× digestion buffer, 5 μl of each 10 U/μl restriction enzyme 

(Promega), 1 μl 100× BSA solution, distilled water up to 100 μl. Digestion reaction was 

incubated for 1 hour in water bath at 37°C; 1 μl of the product was used for DNA 

electrophoresis (Paragraph  2.2.10.4) to check the efficiency of the reaction.  

2.2.10.6 Dephosphorylation of plasmid DNA 

Dephosphorylation prevents the re-circularization of vectors digested with a single 

restriction enzyme or with two enzymes that generate compatible ends, enhancing the 

efficiency of the ligation process. The reaction was performed by adding 11 μl of 10× 

dephosphorylation buffer and 1 μl of alkaline phosphatase (ALP) (Promega) to the 100 μl 

restriction product ( 2.2.10.5). Dephosphorylation was carried in water bath at 37°C for 30 

minutes, then another 1 μl of ALP was added and other 30 minutes of incubation were 

performed as above. 

2.2.10.7 Isolation of DNA from agarose gel 

After restriction enzymes digestion, vector and insert DNA was loaded into 0.7% agarose 

gel and the band of interest was excised using a scalpel keeping the gel on a UV 

transilluminator for no more than a minute, since UV light causes DNA damages. DNA 

was then purified from the band using Costar® SpinX® columns: the agarose band was 

placed in the columns and centrifuged for 10 minutes at 10,000g to separate the agarose 
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from the solution containing DNA. In order to concentrate it, DNA was then precipitated 

by adding 0.25 volumes of 10 M ammonium acetate and 2 volumes of 100 % ethanol and 

incubating 15 hours at -20°C (or 1 hour on dry ice). A DNA pellet was obtained by 

centrifugation at 10,000g for 20 minutes; the DNA was washed in 500 μl 70% (v/v) 

ethanol to eliminate residual salt, centrifuged at 10,000g for 10 minutes and the ethanol 

solution was removed. The pellet was allowed to air dry and it was then resuspended in 20 

μl sterile water. When the DNA was used for ligation, 1 μl of DNA was loaded on 0.7 % 

agarose gel together with quantitative DNA ladder (Invitrogen), which, by comparison, 

permits to quantify DNA fragments.  

2.2.10.8 Ligation  

Ligation was performed overnight at 16°C in a reaction volume of 10 μl; molar ratios 

insert/vector of 1:1, 1:3 and 3:1 were used, keeping constant the amount of vector (250 ng). 

The amount of insert to be used was calculated with the formula: 

ng insert = 
ng vector × size insert (base pairs) 

size vector (base pairs) 
× molar ratio insert/vector 

 

Specific amounts of insert and vector were mixed with 1 μl 10× ligation buffer, 0.8 μl (2.5 

U) T4 ligase (Promega) and distilled water up to the final volume. 

The total ligation product was used to transform an aliquot of E.coli competent cells as 

described in paragraph  2.2.10.1.  

2.2.10.9 RNA extraction 

RNA was extracted from primary cells using RNeasy kit (Quiagen) following 

manufacturer’s instructions. The RNeasy procedure represents a well-established 

technology for RNA purification. Briefly, after cell lysis, RNA was allowed to bind a silica 

membrane in presence of a high salt buffer containing RNases inhibitors; after eliminating 

cell-contaminants and salts through a series of washes, RNA was eluted from the silica 

membrane in RNase-free water. 

Aliquots of 1 × 106 cells were used for the extraction. To avoid RNA degradation, all the 

instruments and working surfaces were cleaned with RNaseZap® RNase decontamination 
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solution (Ambion) and rinsed with 0.1% diethylpyrocarbonate (DEPC)-treated water 

before use; the samples were digested with RNase-free DNase before reverse transcription 

to minimize the risk of DNA contamination. 

2.2.10.10 Quantification of nucleic acids 

Concentration of DNA and RNA samples was determined by using spectrophotometry. 

The samples were diluted (typically 1:50) in 10 mM Tris-HCl, pH 8.0 and placed in a 

quartz micro-cuvette; absorbance was measured at 260 and 280 nm to determine nucleotide 

concentration and grade of purity. When RNA was measured, the cuvette was washed with 

DEPC-treated water before use to prevent RNA degradation. Considering that at 260 nm 

an optical density of 1 corresponds to 50 μg/ml for DNA and 44 μg/ml for RNA, 

nucleotide concentrations were calculated following the formulas indicated below: 

Concentration of DNA sample = 50 μg/ml x A260 x dilution factor 

Concentration of RNA sample = 44 μg/ml x A260 x dilution factor 

2.2.10.11  Reverse transcriptase polymerase chain reaction (RT-PCR) 

RT-PCR was performed using SuperScript™ II Reverse Transcriptase (Invitrogen), enzyme 

that synthesizes first-strand cDNA starting from RNA template. A reaction containing 1 μl 

Oligo R15, 2 μg RNA, 4 μl dNTP mix and sterile water up to 12 μl was prepared in a 

nuclease-free microtube, heated at 65°C for 5 minutes and chilled on ice. 4 μl of 5× First-

Strand buffer and 2 μl of 0.1 mM DTT were added, the content of the tube was gently 

mixed and incubated at 42°C for 2 minutes before adding 1 μl (200 units) of SuperScript™ 

II RT and incubating at 42°C for 50 minutes. The reaction was inactivated by incubating it 

at 75°C for 15 minutes; 2 μl of the RT-PCR product were used for conventional PCR 

reactions  2.2.10.12) in a final 50 μl volume.  

2.2.10.12 Polymerase chain reaction (PCR) 

PCR was performed using GoTaq® Flexi DNA polymerase kit (Promega) following 

manufacturer’s instructions; reactions were performed in a final volume of 50 μl, using 1 

μg DNA.  When cDNA was used as template, 2 μl of RT reaction were used (see 

 2.2.10.11). PCR reactions were prepared in nuclease-free 200 μl tubes kept on ice. 
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5× Green GoTaq® Flexi buffer 10 μl 
25 mM MgCl2 3 μl 
5 mM dNTP mix  8 μl 

20 μM Forward primer 1.5 μl 

20 μM Reverse primer 1.5 μl 

GoTaq® Flexi DNA polymerase (5U/μl) 1 μl 
DNA (or cDNA) 1 μg (or 2 μl) 
Nuclease-free water up to 50 μl 

 

All the PCR programs used included a initial denaturation step of 5 minutes at 94°C 

followed by 30 cycles of denaturation (1 minute, 94°C), primer annealing (45 seconds, see 

Table  2-1 and Table  2-2 for specific annealing temperatures), elongation (72°C, 45 

seconds); a final elongation step (5 minutes, 72°C) was performed to complete the 

synthesis of all the DNA strands, then the samples were kept at 10°C. 

2.2.11 Subcloning of TG2 and Sdc-4 cDNA into mammalian expression vectors 

Full length TG2 cDNA was amplified by PCR from pSG5TG (Appendix 2) (Gentile et al., 

1992) using proof-reading Pwo-DNA polymerase (Roche) and the EcoRI-modified primers 

(5’→3’) pSG5S: atcagaattcatggccgaggagctggtcttagagagg (forward) and pSG5AS: 

atcagaattccggcggggccaatgatgacattccgg (reverse) listed in Table  2-1. The underlined bases 

represent EcoRI restriction sites; 4 additional bases were added after EcoRI sequence to 

ease the endonuclease digestion. The primers were designed with the purpose of keeping 

TG2 cDNA sequence in frame with EGFP coding region after insertion of TG2 cDNA into 

the mammalian expression vector pEGFP-N1. The PCR product and the vector were then 

digested with EcoRI, to generate compatible ends and ligated as indicated in  2.2.10.8. 

Plasmid DNA from transformed kanamycin-resistant E. coli was analysed for the presence 

and the correct orientation of TG2 cDNA by double restriction with EcoRV and XhoI 

(Figure  2-1). Plasmid DNA from clones containing circularised pEGFP-N1 only would 

generate a single fragment of 4733 bp, while purified plasmid DNA with correct TG2 

orientation (pEGFP-TG) was used for transfection of mammalian cells via electroporation 

as described in  2.2.1.8.  
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Figure  2-1 Screening of pEGFP-TG2 construct by double restriction with 

EcoRV/XhoI. The map of pEGFP-TG2 with correct and inverse orientation of TG2 cDNA 

is shown in (A) and (B), respectively. Position of restriction site is indicated next to each 

restriction enzyme. CMV, cytomegalovirus promoter; Kan/Neo, resistance to 

kanamycin/neomycin. (C) Electrophoretic separation of restriction products: 1 and 4, 1 kb 

DNA ladder (Promega); 2, uncut pEGFP-TG2; 3, pEGFP-TG2 digested with EcoRV and 

XhoI. 

 

Syndecan-4 cDNA was provided by Dr M. Bass (Manchester University, UK) at the 

EcoRI/SalI sites of the cloning vector pBluescript. The plasmid DNA was digested with 

EcoRI and SalI (as described in  2.2.10.5) to generate extremes compatible with the ones of 

the mammalian expression vector pcDNA 3.1 (+). Insert and vector were ligated as 

described in  2.2.10.8 to generate the construct pcDNAhS4 (Figure  2-2).  
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Figure  2-2 Screening of pcDNAhS4 construct by double restriction with EcoRI/XhoI. 

(A) Map of the construct, with indicated the restriction sites for EcoRI and XhoI. CMV, 

cytomegalovirus promoter; Amp, ampicillin resistance. (B) Electrophoretic separation of 

restriction products: 1, 1 kb DNA ladder (Promega); 2, uncut pcDNAhS4; 3-4-5, 

pcDNAhS4 digested with EcoRI, XhoI and EcoRI plus XhoI, respectively. 

 

2.2.11.1 Real time PCR 

In order to have a precise quantification of gene expression, cDNA samples ( 2.2.10.11) 

were analysed by real time PCR using iQ™ SYBR Green Supermix for qPCR (Biorad). 

All the reactions were prepared in triplicates in micro nuclease-free tubes.  

2× iQ™ SYBR Green Supermix 6.25 μl 

20 μM Forward primer 0.375 μl 

20 μM Reverse primer 0.375 μl 
cDNA template 1 μl 
Nuclease-free water up to 12.5 μl 

 

GAPDH was used as housekeeping gene in order to determine the relative expression of 

the genes of interest. The sequences of the primers used for real time PCR are listed in 

Table 2.1-2.                                                                                                                      
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An initial denaturation step of 3 minutes at 95°C was followed by 40 cycles of  

denaturation (94°C, 1 minute), annealing (60°, 1 minute) and elongation (72°C, 1 minute). 

For the preparation of melting curves, a ramp temperature from 58°C to 95°C was used.  

A mean cycle threshold (Ct) value was calculated for every gene of interest from the 

fluorescence data and the relative gene expression was calculated using the 2-ΔΔCT (delta-

delta Ct) method (Livak and Schmittgen, 2001); the threshold was arbitrarily determined 

for every reaction, in order to differentiate the fluorescence from the background. Ct is 

inversely proportional to the logarithmic scale of the initial quantity of template, hence a 

higher number of cycles (high Ct value) will be required to reach the threshold if the 

quantity of template is low. 

For each gene of interest, a normalized delta Ct (ΔCt) value, indicating the level of 

expression of the gene compared to the expression of GAPDH, was calculated as: 

ΔCt (normalised to GAPDH) =Ct (target gene) – Ct (GAPDH) 

From this value, delta-delta Ct (ΔΔCt) value, representing the difference of expression 

between the gene of interest and a calibrator, was calculated as: 

ΔΔCt= ΔCt- ΔCt (calibrator) 

The calibrator can be any of the target genes, and it is used as a reference to calculate the 

expression of the other genes of interest.  

For every gene of interest, the relative expression was calculated as 2-ΔΔCT.  

 

2.2.11.2 Mice genotyping 

Genomic DNA was extracted from mice for genotyping purposes before isolation of 

primary dermal fibroblasts ( 2.2.1.7). Ear biopsies were obtained from 1 month old mice 

and placed in 500 μl DNA extracting buffer (10 mM Tris HCl pH 8, 400 mM NaCl, 100 

mM EDTA, 0.6% [w/v] SDS and 0.4 mg/ml proteinase K). The samples were incubated in 

water bath at 55°C for 2 hours and then mixed by vortex to complete the solubilisation. To 

precipitate DNA, after adding 500 μl of isopropanol the samples were centrifuged at 

13,000 g for 10 minutes and the supernatant was discarded. The DNA pellet was 

resuspended in 30 μl Tris-EDTA (TE buffer), pH 8.0 and incubated at 65 °C for 15 
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2.2.12 Transglutaminase-2 binding studies to heparin/HS 

2.2.12.1 ELISA-based assay to measure TG2 binding to heparin and heparan sulfates 

2.2.12.1.1 Immobilisation of heparin and fibronectin for solid binding assay 

The ELISA-based assay was developed using BD™ heparin binding plates (BD 

Biosciences), specially treated with plasma polymerisation to immobilize a wide range of 

active and unmodified heparin and heparan sulfate (Mahoney et al., 2004). 

Low molecular weight heparin (4-6 kDa) or heparan sulfate (12 kDa) were dissolved in 

PBS at 1.2, 2.3 or 4.6 μM concentration and immobilized on heparin binding plate by 15 

hours incubation at room temperature. Fibronectin was dissolved in 50 mM Tris, pH 7.4 at 

a concentration of 5 μg/ml and immobilised on conventional microtiter plate by 15 hours 

incubation at 4°C. Plates were washed three times with PBS and incubated for 1 hour at 37 

°C with blocking solution (3% w/v BSA in PBS); after washing three times with PBS, the 

plates were ready to be used for solid binding assay. 

2.2.12.1.2 Solid binding assay 

Guinea pig liver TG2 (0-600 ng/well) was incubated on heparin/HS or FN coated-plate in 

blocking buffer containing either 2 mM EDTA or 2 mM CaCl2 for 2 hours at 37°C, in 

order to reach binding equilibrium. The plate was then washed with PBS as described 

above and incubated overnight with anti-TG2 antibody (Cub4701, Abcam; 0.2 μg/ml) of in 

blocking buffer at 4 °C. After washing with PBS, the plate was incubated with 1:5000 

dilution of goat anti mouse immunoglobulins-HRP (Sigma-Aldrich) in blocking buffer for 

2 hours at room temperature. The plate was developed by using 3,3’,5,5’ TMB liquid 

substrate system (Sigma-Aldrich; 200 μl/well) according to manufacturer’s instructions. 
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The color reaction was stopped by adding 0.5 M H2SO4 (50 μl/well) and read at 450 nm 

using a SpectraFluor 96 well plate reader. The strength of the binding was determined via 

GraphPrism software, which provided an approximate dissociation constant (Kd). The data 

were fitted to “one site specific binding model”, described by the equation Y=Bmax * X/ 

[Kd+X], where X is the concentration of the ligand, Y is the binding, Bmax is the 

maximum binding (in the same unit as Y) and Kd is expressed in the same unit as X. The 

equation is based on the consideration that at equilibrium only a small fraction of the 

ligand is bound to the substrate, so the free ligand concentration is very close to the ligand 

concentration added at the beginning. 

 

2.2.12.2 Surface Plasmon Resonance (SPR) 

SPR was performed at the “Institut de Biologie Structurale” CEA-CNRS-UJF, Grenoble, 

France, in a collaborative project with Dr. H. Lortat-Jacob, using a 3000 Biacore system. 

Size defined heparin (6 kDa), was biotinylated at its reducing end with Biotin-LC-

Hydrazide and immobilized on a Biacore sensorchip. For this purpose, two flow cells of a 

CM4 sensorchip were activated with 50 µL of 0.2 M N-ethyl-N'-(diethylaminopropyl)-

carbodiimide and 0.05 M N-hydroxysuccinimide, before injection of 50 µl of streptavidin 

(0.2 mg/ml in 10 mM acetate buffer pH 4.5). The remaining activated groups were blocked 

with 50 µl ethanolamine 1M, pH 8.5. Typically, this procedure permitted coupling of 

approximately 3500 resonance units (RU) of streptavidin. Biotinylated heparin (5 µg/ml) 

in HBS containing 0.3 M NaCl was then injected across one flow cell to obtain an 

immobilization level of 50 RU. The other one was left untreated and served as a negative 

control. For binding assays, 80 µl of purified TG2 (0-586 nM) diluted in HBS-EP buffer 

[0.01 M Hepes, pH 7.4; 0.15 M NaCl; 3 mM EDTA, 0.005 % (v/v) Surfactant P20] at 

25°C were simultaneously injected at a flow rate of 10 µl/min (kinetic mode) across the 

control and heparin surfaces, after which the formed complexes were washed with running 

buffer for 5 min. The sensorchip surface was regenerated with a 1 minute pulse of 0.025% 

(w/v) SDS followed by 5 minutes of 2 M NaCl in HBS-P buffer. Control sensorgrams were 

substracted on line from the heparin sensorgrams, and results analyzed using the Biaeval 

3.1 software. 
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2.2.12.3 Cell adhesion to heparin/HS-coated plates 

Heparin binding plates (BD Biosciences) were coated with 2.3 or 4.6 μM heparin or 1.2, 

2.3, 4.6 μM HS following manufacturer’s instructions, as described in section  2.2.12.1.1, 

then washed and blocked with 3 % (w/v) BSA in PBS for 1 hour at room temperature. 

Wild type and TG2 null mouse embryonic fibroblasts, serum-starved for 15 hours and 

allowed to adhere in serum-free medium for 1 hour at 37°C, 5% CO2 (1 × 104 cells/well). 

The medium was removed and the attached cells were washed with PBS and fixed in 3.7% 

(w/v) parafolmaldehyde in PBS for 15 minutes at room temperature. The excess fixative 

was washed away with 3 PBS washes, after that the fixed cells were permeabilized in 0.1% 

(v/v) Triton X-100 in PBS for 15 minutes at room temperature. After further washing with 

PBS, the fixed and permeabilised cells were stained with crystal violet solution (0.5% w/v 

crystal violet in 70% v/v ethanol), extensively washed with distilled water and allowed to 

air dry before microscope observation. For a precise quantification of cell adhesion, crystal 

violet stained cells were solubilised in 30% (v/v) acetic acid and the absorbance of the 

specimens was measured at 540 nm using a microplate reader (Biorad) as previously 

described (Balklava et al., 2002). 

2.2.13 Statistical analysis 

All experiments were undertaken at least three times unless specified. Data are expressed 

as means ± standard deviation (SD). Differences between data sets were determined by the 

Student’s t-test (two-tailed distribution, two-sample equal variance). When several data 

sets had to be compared to each other, One-way Anova was used to determine statistically 

significant differences. 
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Chapter 3: Outside-in role of TG2 in cell adhesion: implication of 

Sdc-4 

3.1 Introduction 

The process of cell adhesion and subsequent spreading requires specific interactions of 

cell-surface molecules with the adhesion substrate, followed by a signalling cascade which 

determines a re-organization of the cytoskeleton leading to the formation of focal 

adhesions (FA) and actin stress fibres (SF). Two main complementary signalling pathways 

originate from integrins and Sdc-4, as explained in Chapter 1, section 1.2.9.3 (Figure  3-1) 

(Bass et al., 2007; Morgan et al., 2007; Stephens et al., 2004). Cell attachment, mediated 

by integrins, involves FAK auto-phosphorylation at Tyr397, but complete activation of the 

kinase and phosphorylation of other FA components such as paxillin and vinculin is 

required for the subsequent spreading  (Wilcox-Adelman et al., 2002).  

Central to cell adhesion is the activation of FAK, occurring via phosphorylation of the 

enzyme. FAK is initially auto-phosphorylated (Tyr397) upon integrin clustering induced 

by cell-matrix contact; this process leads to the complete activation of FAK through further 

phosphorylation (Tyr 576 and Tyr 577) involving Src kinases. Activated FAK, together 

with driving the formation of FA, determines the regulation of the small GTPase RhoA, 

which, in turn, is involved in the formation of SF. FAK phosphorylation at Tyr 397 has 

been shown to be critical for the initial downregulation of RhoA at the beginning of the 

adhesion process (Ren et al., 1999), leading to efficient cell spreading. According to this, 

FAK null cell are characterised by RhoA hyper-activity (Ren et al., 2000). In the second 

phase of cell adhesion FAK contributes to RhoA activation determining full SF formation. 

Sdc-4 appears to have an important role in the full activation of FAK and cells defective in 

Sdc-4 have been shown to have impaired FAK activation and retarded cell migration 

(Gentile et al., 1992; Saoncella et al., 1999). Sdc-4-mediated activation of FAK occurs 

through the activation of PKCα which, in turn, activates Src kinases responsible for FAK 

phosphorylation (Simons and Horowitz, 2001). 

TG2 has been shown to have different roles in cell adhesion. Firstly, it can modify ECM 

components via its crosslinking activity thus enhancing the adhesive potential of the 

matrix; secondly, thanks to the GTP-binding potential, it can contribute to the signalling 

events involved in cytoskeleton re-organisation (Gentile et al., 1992; Stephens et al., 2004). 
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In particular, intracellular GTP-bound TG2 is suggested to be involved in the regulation of 

signal transduction pathway leading to the activation of PLP-Cδ1, which, in turn, regulates 

the activity of PKC, involved in FAK activation cascade (Nakaoka et al., 1994). 

Extracellular TG2, in complex with FN, is involved in a RGD-independent adhesion 

process which does not depend on its enzymatic activity and which complements integrin-

mediated adhesion (Stephens et al., 2004). This process relies on the presence of cell 

surface HS, and is impaired if the cells are treated with heparitinase (Verderio et al., 2003). 

Lack of TG2 determines impairment in the spreading process, in fact cells with defects in 

TG2 expression (via transfection of antisense RNA for TG2) were shown to form focal 

complexes at the base of actin filaments, but these complexes failed to mature into 

complete FA; moreover, TG2-deficient cells were shown to have an impairment in SF 

formation (Jones et al., 1997; Stephens et al., 2004). These TG2-related defects seem to be 

related to an impairment of FAK phosphorylation/activation. Indeed, even though TG2-

deficient cells had values of FAK-P (Y397) similar to control cells, they had significantly 

lower levels of FAK-P(Y576), implicated in FA and SF formation (Stephens et al., 2004). 

 

 

Figure  3-1 Signalling events leading to FA and SF formation upon cell adhesion to 

FN.  
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Given the signalling role of cytosolic TG2 and the role of TG2 associated to FN in RGD-

independent cell adhesion, which relies on cell surface HSPG (Verderio et al., 2003), it is 

possible that TG2 may be involved in FAK activation in the initial stages of cell adhesion 

in a co-operative way with the HSPG receptor Sdc-4.  

The aims of this chapter were (1) to investigate the specific role of extracellular TG2 in the 

cell adhesion process ad FAK activation and (2) to test the hypothesis that Sdc-4 may be 

involved in TG2-mediated RGD-independent cell adhesion. Primary embryonic fibroblasts 

with and without deletion of the gene codifying for TG2 were the chosen model for the 

investigation of the role of matrix TG2 in cell adhesion. Primary dermal fibroblasts with 

and without targeted deletion of Sdc-4 gene were utilised to test the involvement of Sdc-4 

in TG2-mediated RGD-independent cell adhesion. 
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3.2 Results 

3.2.1 TG2 localisation in primary fibroblasts 

Transglutaminase-2 localization was investigated in the early stages of cell adhesion on 

FN, in order to understand whether TG2 externalisation is an early event and hence it can 

contribute to initial cell adhesion/spreading on FN. Indirect immunofluorescent staining 

was performed in embryonic fibroblasts (MEF) from wild type mice, using MEF 

originated from TG2 null mice (De Laurenzi and Melino, 2001) as a negative control.  

 

 

Figure  3-2 Localization of TG2 in primary fibroblasts adhering on FN. Wild type 

(TG2+/+) and TG2 null (TG2-/-) MEF were allowed to adhere on FN-coated slides in 

medium containing serum for 20, 40 and 60 minutes (min). After fixing and permeabilising 

the cells, TG2 was detected by monoclonal anti-TG2 antibody Cub7402 (1:100) followed 

by FITC-labelled secondary antibody (1:100); nuclei were stained with propidium iodide. 

Images were acquired by confocal microscopy. The arrows point at dense areas of TG2 

localisation at the basal cell surface. The bar indicates 20 μm.  

 

 74



Chapter 3: TG2 and Sdc-4 in cell adhesion 

Cells were allowed to adhere on FN-coated slides in complete medium containing serum 

for 20, 40 and 60 minutes, then fixed, permeabilised and stained for TG2 (Figure  3-2). As 

shown in Figure  3-2, an increasing level of TG2 was detected at the periphery of wild type 

cells starting from the early stage of 20 minutes adhesion (arrows). At 40 minutes after 

seeding, TG2 appeared to be concentrated in punctuate structures at the cell periphery of 

TG2 +/+ fibroblasts, resembling cell-matrix adhesion points; this distribution was 

maintained at 60 minutes adhesion, with an intensification of the signal (pointed by 

arrows). TG2 also appeared to be localised intracellularly in wild type MEF, with a marked 

staining in the perinuclear area. A perinuclear staining was detected in TG2 -/- cells at 20, 

40 and 60 minutes adhesion; this staining could be non specific and/or due to another 

member of the TG family expressed in TG2 -/- MEF. 
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Figure  3-3 Extracellular TG activity in primary fibroblasts. Wild type (TG2 +/+) and 

TG2 null (TG2 -/-) MEF were allowed to adhere to FN for 20, 60 and 120 minutes in 

serum-free medium supplemented with biotinylated cadaverine. 2mM CaCl2 and 5 mM 

DTT were added to the culture medium to activate the TG-mediated incorporation of the 

amine substrate into DOC-insoluble FN matrix. n=3; ** indicates p<0.01.  
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The externalisation of TG2 at early stages of cell adhesion was also monitored by 

measuring its transamidation activity in fibroblasts adhering on FN-coated microplates 

(biotin-cadaverine incorporation into DOC insoluble FN matrix), an ELISA-type assay 

developed by (Jones et al., 1997). This assay, which is performed on whole cells in culture, 

measures the activity of externalised transglutaminases only; in addition, it is thought to be 

specific for the activity of TG2 (Verderio et al., 1998). However, TG2 null cells were used 

as a negative control to confirm the specificity of the assay for TG2. In agreement with the 

TG2 staining (Figure  3-2), in TG2 +/+ cells it was possible to detect extracellular TG 

activity starting from 20 minutes cell adhesion (Figure  3-3); the measured activity reached 

a maximum level at 60 minutes adhesion and then remained constant, as shown by the 

measurement at 120 minutes. The residual activity found in TG2 -/- cells, was significantly 

lower compared to that of TG2 +/+ cells at all the time points (p<0.01). By examining the 

expression of all the members of the TG family in wild type and TG2 -/- cells by RT-PCR, 

it was found that TG2 is the only member of the family expressed in wild type MEF. 

However, TG -/- MEF express TG1 (Figure  3-4); this is likely to be a compensatory event 

which may be responsible for the residual TG activity and was observed before by De 

Laurenzi and Melino (2001). 

 

 

 

Figure  3-4 RT-PCR-based study of TG family members in MEF.  cDNA preparation 

from wild type (TG2 +/+) and TG2 null (TG2 -/-) MEF were analysed for the presence of 

various member of the TG family. GAPDH amplification was used as a control for the 

cDNA quality. The primers used are listed in Table 2-2. Mk, 100 bp DNA ladder. 
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The distribution of TG2 in primary fibroblasts was also monitored by Western blotting. 

Crude membrane extracts and cytosolic fractions were prepared from TG2 +/+ and TG2 -/- 

MEF and analysed for the presence of TG2. The membrane fraction of wild type cells 

showed a 77 kDa immunoreactive band corresponding to the molecular weight of TG2 

(Figure  3-5, arrowheads) and, as expected, no immunoreactivity was detected in the crude 

membrane extracts of TG2 -/- cells (Figure  3-5). The cytosolic fraction of wild type cells 

showed the 77 kDa TG2 band (Figure  3-5, arrowhead) but, in addition to that, two lower 

molecular weight bands (approximately 67 kDa and 55 kDa) (Figure  3-5, arrows). The 

lower bands were also present in the cytosolic fraction of TG2 -/- cells, suggesting lack of 

specificity. Densitometric analysis showed that approximately 47% of the detected TG2 

was located in the membrane fraction and 53% in the cytosolic fraction of TG2 +/+ cells. 

 

 

 

Figure  3-5 TG2 distribution in MEF. TG2 was detected by Western blotting in 

membrane and cytosolic fractions from wild type (TG2 +/+) and TG2 null (TG2 -/-) MEF; 

25 μg proteins were loaded. TG2 was detected by polyclonal anti TG2 antibody ab10445 

followed by secondary antibody HRP-conjugated. MR indicates gpTG2 standard, 100 ng. 

Arrowhead, 77 kDa TG2; arrows, additional immunoreactive bands at 67 and 55 kDa.  
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3.2.2 Role of TG2 in the early stages of cell adhesion 

The early externalisation of TG2 during fibroblasts adhesion supports the idea of a specific 

role for matrix TG2 in FA and actin SF formation, opening events in the cell 

adhesion/spreading process. To investigate the role of externalised TG2, the formation of 

FA and actin SF was monitored in TG2 +/+ and TG2 -/- cells adhering on FN, and rescue 

experiments with either TG2 cDNA or extracellular TG2 were carried out. 

 

 

Figure  3-6 Lack of TG2 impairs vinculin FA formation. Staining of vinculin-containing 

FA in fixed and permeabilised wild type (TG2 +/+) and TG2 null (-/-) MEF after 45 

minutes adhesion on FN coated slides in serum-free medium. The cells were serum starved 

(0.1 % serum) for 16 hours before the experiment. Vinculin was detected with monoclonal 

anti human-vinculin antibody followed by incubation with secondary antibody conjugated 

with Red X Rhodamine. Images were acquired by fluorescent confocal microscopy. Three 

random fields per cell type are shown. The bar indicates 20 μm.  
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As shown in Figure  3-6, after 45 minutes of adhesion on FN wild type cells formed sharp 

vinculin-containing FA, distributed in defined sites at the cell surface; on the contrary, 

TG2 -/- cells showed diffused vinculin staining. The staining of actin SF via FITC-labelled 

phalloidin, which binds filamentous actin, revealed a dense network of mature actin fibres 

crossing the cell body of TG2 +/+ cells (Figure  3-7). Cells lacking TG2 failed to form a 

complete actin cytoskeleton, but they formed thin actin fibres which did not appear to end 

at FA as in wild type cells (Figure  3-7). These findings indicate that lack of TG2 leads to a 

disruption in SF formation. 

 

 

Figure  3-7 Lack of TG2 impairs actin SF formation. Staining of actin SF in wild type 

(TG2 +/+) and TG2 -/- MEF after 45 minutes adhesion on FN coated slides in serum-free 

medium. The cells were serum starved (0.1 % serum) for 16 hours before the experiment. 

Actin stress fibres were detected by incubating fixed and permeabilised cells with FITC-

labelled phalloidin. Images were acquired and presented as described in Figure  3-6. The 

bar indicates 20 μm.  
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Add-back experiments were carried out to confirm the role of TG2. TG2 cDNA was 

amplified by PCR from pSG5TG (Gentile et al. 463-74) using proof-reading DNA 

polymerase and EcoRI modified primers. The cDNA was cloned into the mammalian 

expression vector pEGFP-N1 in frame with the sequence codifying for the fluorescent 

protein EGFP (construct pEGFP-TG2, Figure 2-1). To verify the expression of EGFP-

tagged TG2 (where EGFP is localised at the C-terminal of TG2) and to make sure that the 

TG2 codified by pEGFP-TG2 plasmid was not altered by the conjugated EGFP, TG2 -/- 

fibroblasts were transfected with pEGFP-TG2 and the cell extracts were analysed by 

Western blotting with anti-TG2 antibody. The transfection was performed by 

electroporation using Nucleofector System (Amaxa), which in the system analysed gives a 

typical efficiency of ~80%. As shown in Figure  3-8.A, transfected cells expressed a level 

of TG2 comparable to cells transfected with the control plasmid pSG5-TG2 (shown in 

Appendix 2), which encodes for untagged TG2.  The molecular weight of the EGFP-TG2 

band (~ 100 kDa) was, as expected, higher than the one of TG2 (77 kDa), given the 

additional mass of EGFP (28 kDa). The negative control homogenate prepared from non 

transfected (NT) TG2 -/- cells, did not show a band (Figure  3-8. A). The same cell extracts 

were also analysed for TG2-dependent transamidation using a plate assay based on Jones 

et al. (1997). TG2 -/- cells transfected with pEGFP-TG2 showed an activity level 

comparable to the one of pSG5-TG2 transfected cells. Both extracts exhibited a 

significantly higher (p<0.001) transamidation level compared to non transfected cells 

Figure  3-8 B). These data indicate that the biochemical properties of TG2 were not 

changed by the conjugated protein EGFP. Therefore TG2 -/- MEF were transfected with 

the pEGFP-TG2 construct and the successfully transfected cells were identified by the 

EGFP fluorescence concomitant with TG2 expression. Re-introduction of TG2 via 

electroporation rescued to a large extent the formation of vinculin-containing FA in TG2 -

/- cells adhering on FN (Figure  3-9, arrows), confirming that lack of TG2 was responsible 

for the defects in FA formation.  

To investigate whether the externalised TG2 was responsible for the correct formation of 

vinculin-containing FA specifically, exogenous TG2 was provided to TG2 -/- fibroblasts 

by seeding them onto a matrix of TG2 immobilised on FN (TG2-FN) (Verderio et al. 

42604-14). As shown in Figure  3-10, TG2 -/- MEF seeded onto TG2-FN matrix displayed 

vinculin containing FA similarly to TG2 +/+ MEF adhering on FN, as pointed by the white 

arrows. TG2-/- MEF also formed better defined SF when seeded on TG2-FN compared to 
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Figure  3-8 Biochemical characterisation of pEGFP-TG2 construct. TG2 null MEF 

were transfected with pEGFP-TG2 or pSG5-TG2 plasmid (positive control); non 

transfected (NT) cells were used as negative control. Cell lysates (50 μg) were analysed by 

Western blotting with monoclonal anti TG2 antibody Cub7402 followed by HRP-

conjugated secondary antibody (A) or tested for transamidating activity (TG activity) 

(measured as Abs 450 nm) (B). The arrowhead points to 77 kDa TG2; the arrow points to 

TG2 fused to EGFP. *** indicates p<0.001. (C) Standard curve for TG activity measured 

on purified gplTG2, measured as absorbance at 450 nm.   
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Figure  3-9 Vinculin-containing FA formation is rescued by re-expression of TG2 cDNA. TG2 null cells (TG2 -/-) were transfected 

with the pEGFP-TG2 construct. After 48 hours, cells were allowed to adhere on FN coated slides for 45 minutes in serum-free medium. 

Untransfected wild type and TG2 -/- cells were also similarly seeded on FN as positive and negative controls. Transfected cells were 

identified by the expression of EGFP conjugated to TG2. Vinculin staining was performed as in Figure  3-6. The arrows point at restored 

FA. The bar indicates 20 μm. 
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Figure  3-10 FA formation of TG2 -/- MEF is rescued by extracellular TG2. TG2 null cells (TG2 -/-) were allowed to adhere for 45 

minutes on FN or TG2-FN coated slides for 45 minutes in serum-free medium. The cells were serum starved (0.1 % serum) for 16 hours 

before the experiment. Wild type cells adhering on FN are shown as positive control. Vinculin and actin SF were detected as in Figure  3-6 

and Figure  3-7, respectively. The arrows point at vinculin-containing FA; the arrow heads at SF ending at FA. The bar indicates 20 μm.  
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3.2.3 Matrix-Transglutaminase-2 has an RGD-independent role in FAK activation 

Next, the role of TG2 in focal adhesion kinase (FAK) activation was investigated, by 

measuring FAK phosphorylation at Tyr 397 (Y397) -the first residue to be phosphorylated 

upon extracellular ligand binding (Mitra et al., 2005)- in wild type and TG2 -/- MEF. FAK 

activation was measured at 45 minutes cell adhesion on FN in serum-free medium. Cells 

were serum-starved for 15 hours before the experiment, in order to exclude serum-induced 

effects on cell adhesion.  

 

 

Figure  3-11 Lack of TG2 impairs early FAK phosphorylation. Wild type (TG2 +/+) 

and TG2 null (TG2 -/-) MEF were serum starved for 15 hours and left to adhere on FN-

coated plates for 45 minutes in serum-free medium. The level of phosphorylated FAK in 

the cell extracts (50 μg) was determined by Western blotting using an anti phosphor-FAK 

(Y397) antibody followed by HRP-conjugated secondary antibody. For normalisation of 

the data, blots were stripped and re-probed with anti total FAK and anti β-tubulin 

antibodies. Three separate experiments were performed and a typical blot is shown. The 

mean values of FAK phosphorylation relative to total FAK are shown, normalised 

considering TG2 +/+ values as 1. * indicates p<0.05.  
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Following cell adhesion, cell homogenates were prepared and analysed by Western 

blotting using an antibody against phosphorylated FAK (Y397). In order to confirm equal 

loading, the membrane were stripped and re-probed with antibodies against total FAK and 

β-tubulin. A small but significantly lower level of FAK phosphorylation (-25%; p<0.05), 

calculated by densitometric analysis as ratio between P-FAK and the total FAK protein 

(125 kDa), was revealed in TG2 -/- MEF compared to TG2 +/+ MEF (Figure  3-11). This 

finding suggests that lack of TG2 impairs initial FAK signalling. 

FN-associated TG2 has been shown to support RGD-independent FAK-phosphorylation 

(Verderio et al., 2003). To determine if extracellular FN-bound TG2 was sufficient to 

restore FAK phosphorylation in TG2 -/- fibroblasts, TG2 -/- MEF were allowed to adhere 

on either FN or TG2-FN prior to analysis of FAK phosphorylation by Western blotting. 

BSA-coated wells were used as a negative control. As shown in Figure  3-12 A, the 

adhesion of TG2 null MEF on TG2-FN enhanced the level of FAK phosphorylation         

(+ 25%; p<0.05) compared to FN matrix.  

To investigate whether FAK phosphorylation driven by FN-bound TG2 was RGD-

independent, TG2 null MEF were allowed to adhere on TG2-FN in the presence of soluble 

RGD peptide, at a concentration which competes with integrin receptors for binding to the 

RGD cell-binding domain of FN (Verderio et al., 2003). Inactive RAD peptide was utilised 

as a negative control. As shown in Figure  3-12 B, in TG2 -/- MEF adhering on FN, FAK-P 

(Y397) level was further reduced in the presence of RGD peptide compared to RAD 

peptide (150 μg/ml). However, if TG2 null MEF were allowed to adhere on TG2-FN the 

phosphorylation level of FAK was significantly increased (p<0.01) in the presence of RGD 

pepide (Figure  3-12 B), confirming that matrix TG2 mediates RGD-independent FAK 

activation. As a negative control for the effect of TG2, cells were allowed to adhere on FN 

with a stoichiometric amount of BSA; unlike TG2-FN, BSA-FN did not reconstitute RGD-

independent FAK phosphorylation in TG2 -/- MEF (Figure  3-13).  
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Figure  3-12 Adhesion to FN-bound TG2 promotes FAK phosphorylation (Y397) in 

TG2 -/- MEF in a RGD-independent way. TG2 null (TG2 -/-) fibroblasts were serum 

starved for 15 hours and let to adhere on BSA, FN or TG2-FN coated plates for 45 minutes 

in serum-free medium (A); in selected experiments adhesion was performed in the presence 

of 150 μg/ml RGD peptide or control RAD peptide (B). Cell extracts were analysed by 

Western blotting as described in Figure  3-11; since a single cell line was used, β-tubulin 

was used for normalisation. Three separate experiments were performed and one typical 

blot is shown. The mean values of FAK phosphorylation in three experiments, relative to β-

tubulin, are displayed; * indicates p<0.05, ** indicates p<0.01. 
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Figure  3-13 Adhesion to FN-bound BSA does not induce RGD-independent FAK 

phosphorylation (Y397). TG2 null (TG2 -/-) fibroblasts were serum starved for 15 hours 

and let to adhere to either FN or BSA-FN coated plates for 45 minutes in serum-free 

medium, in the presence or absence of 150 μg/ml RAD or RGD peptide. Cell extracts were 

analysed by Western blotting as indicated in Figure  3-11; β-tubulin was used as a control 

for equal loading.  

 

3.2.4 Importance of Sdc-4 in RGD-independent FAK phosphorylation induced by 

matrix TG2 

The presence of cell-surface heparan sulphate (HS) chains, such as the ones of heparan 

sulphate proteoglycan (HSPG), has been shown to be essential in the RGD-independent 

cell-adhesion process mediated by matrix TG2 (Verderio et al., 2003). Therefore, after 

demonstrating the role of matrix TG2 in RGD-independent FAK activation, the hypothesis 

of the involvement of HSPG Sdc-4 in outside-in signalling induced by matrix TG2 was 

tested. To this aim, primary dermal fibroblasts were isolated from mice lacking Sdc-4 

(MDF Sdc-4 -/-) (Ishiguro et al., 2000) as described in Chapter 2 (2.2.1.7). Control Sdc-4 

+/+ MDF were isolated from wild type C57BL/6 mice. Firstly, the ability of Sdc-4 null 

MDF to support TG2-mediated RGD-independent cell adhesion was investigated. Wild 

type and Sdc-4 null MDF were allowed to adhere to either FN or TG2-FN in the presence 

or absence of RGD peptide before measuring the level of FAK phosphorylation (Y397) by 

Western blotting. As shown in Figure  3-14, matrix TG2 failed to mediate RGD-

independent FAK activation in Sdc-4 -/- MDF compared to wild type MDF, suggesting the 

involvement of Sdc-4 in the mechanism. Interestingly, a small but significant reduction of 

FAK-P was associated with Sdc-4 deletion at 45 minutes cell adhesion.  

 87



Chapter 3: TG2 and Sdc-4 in cell adhesion 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FN
TG2-FN

+ - + -+
- + - +-
+ + + +-

∗∗

+
-
-RGD

MDF Sdc-4 +/+
MDF Sdc-4 -/-

∗∗

FA
K

 p
ho

sp
ho

ry
la

tio
n 

(Y
39

7)

 

Figure  3-14 Co-operation of Sdc-4 and TG2 in RGD-independent FAK 

phosphorylation. Wild type (Sdc-4 +/+) and Sdc-4 -/- fibroblasts were serum starved for 

15 hours and let to adhere on FN or TG2-FN coated plates for 45 minutes in serum-free 

medium; in selected experiments adhesion was performed in the presence of 150 μg/ml 

RGD peptide. Cell extracts were analysed by Western blotting as indicated in Figure  3-11; 

FAK phosphorylation is expressed as ratio between P-FAK (Y397) and total FAK. β-

tubulin was used as a control for protein equal loading. n=3; * indicates p<0.05, ** 

indicates p<0.01. 
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In order to investigate the specificity of action of Sdc-4 in extracellular TG2-mediated 

adhesion, a construct expressing human Sdc-4 (pcDNAhS4) was created by cloning human 

Sdc-4 cDNA (hS4) into the mammalian expression vector pcDNA 3.1. Preparation of the 

construct is described in the Material and Methods section, paragraph 2.2.11. The vector 

was used to add back Sdc-4 to Sdc-4 -/- cells by cell electroporation. As illustrated in 

Figure  3-15, RT-PCR of human Sdc-4 (hS4) showed that Sdc-4 -/- cells transfected with 

pcDNAhS4 expressed human Sdc-4 at 48 hours from cell transfection. The negative 

controls, represented by both non transfected (NT) Sdc-4 -/- MDF and Sdc-4 -/- MDF 

transfected with pcDNA, did not show expression of any Sdc-4. As expected, wild type 

MDF showed expression of endogenous murine Sdc-4 (mS4) instead of hS4.  

 

 

Figure  3-15 Controls on the expression of pcDNAhS4 vector in Sdc-4 -/- cells. RNA 

was extracted from wild type (Sdc-4 +/+) and Sdc-4 -/- cells (untransfected and 

transfected with pcDNAhS4 or pcDNA) and analysed for the presence of mouse and human 

Sdc-4 (mS4 and hS4) by RT-PCR. GAPDH expression was used as a positive control. Mk, 

molecular weight markers (100 bp DNA ladder). Primers’ sequences are shown in Table 

2-2. 
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At this stage, Sdc-4 null MDF with added back Sdc-4 were tested for RGD-independent 

FAK-phosphorylation mediated by TG2. As shown in Figure  3-16, the re-introduction of 

Sdc-4 via pcDNAhS4 largely restored RGD-independent FAK activation induced by cell 

adhesion to TG2-FN, which was lost in Sdc-4 -/- MDF transfected with the empty vector. 

Sdc-4 null cells transfected with the vector only (pcDNA) showed the same profile of FAK 

phosphorylation previously observed in non transfected Sdc-4 -/- cells (Figure  3-14). This 

result confirms that Sdc-4 is implicated in TG2-mediated outside-in signalling leading to 

FAK phosphorylation (Y397) in a RGD-independent way. 
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Figure  3-16 Add-back of Sdc-4 rescues TG2-mediated RGD-independent FAK 

phosphorylation in Sdc-4 -/- MDF. Sdc-4 -/- fibroblasts were transfected with either 

pcDNAhS4 or pcDNA. After 48 hours, cells were serum starved for 15 hours and let to 

adhere on FN or TG2-FN coated plates for 45 minutes in serum-free medium; in selected 

experiments adhesion was performed in the presence of 150 μg/ml RGD peptide. Cell 

extracts were analysed as indicated for FAK-P(Y397) by Western blotting as indicated in 

Figure  3-11; FAK phosphorylation was expressed as ratio between P-FAK and β-tubulin. 

n=3; ** indicates p<0.01. 
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It was noted that the rescue of Sdc-4 (pcDNAhS4) in Sdc-4 -/- MDF did not increase the 

level of FAK-P on FN compared to cells transfected with pcDNA vector (Figure  3-16). 

This suggests that the decrease in FAK-P observed in Sdc-4 null cells (Figure  3-14) may 

not be due to the lack of Sdc-4. Alternatively, the added back Sdc-4 could not be enough to 

re-stimulate FAK-P.  

The involvement of Sdc-4 in RGD-independent adhesion was also investigated by 

monitoring actin SF formation. Staining with FITC-phalloidin revealed that the absence of 

Sdc-4 does not inhibit SF formation, even though Sdc-4 -/- cells displayed thinner SF 

compared to wild type cells when adhering on FN (Figure  3-17). The actin cytoskeleton of 

both wild type and Sdc-4 null cells was disrupted when the cells were allowed to adhere on 

FN in the presence of RGD peptide, and it was not possible to identify correctly formed 

SF. When wild type MDF were plated on FN-bound TG2 in the presence of RGD peptide 

they still formed SF which were morphologically similar to those formed on FN in the 

absence of RGD peptide (Figure  3-17). This finding agrees with previous data showing 

that matrix TG2 supports RGD-independent SF formation (Verderio et al., 2003). 

However, Sdc-4 null MDF failed to form actin SF when plated on TG2-FN in the presence 

of RGD peptide, suggesting the important role of Sdc-4 in TG2-mediated RGD-

independent cell adhesion. 

Examination of SF formation in Sdc-4 -/- cells transfected with pcDNAhS4 revealed that 

the re-introduction of Sdc-4 can restore actin SF formation in Sdc-4 -/- fibroblasts adhering 

on TG2-FN in the presence of RGD peptide, as shown by the white arrows in Figure  3-18 

A. The specificity of Sdc-4 effect was demonstrated by the absence of RGD-independent 

SF formation in Sdc-4 -/- cells transfected with pcDNA vector only (Figure  3-18 A). The 

level of SF formation was also quantified in non transfected (NT) Sdc-4 -/- cells and Sdc-4 

-/- cells transfected with either pcDNAhS4 or pcDNA demonstrating that re-introduction 

of Sdc-4 significantly increased (p<0.01) SF formation in RGD-independent cell adhesion 

on TG2-FN (Figure  3-18 B). As previously shown in the selection of pictures presented in 

Figure  3-17 and Figure  3-18 A, the transfection with pcDNA vector did not affect the 

formation of SF in Sdc-4 null cells and (Figure  3-18 B). These results indicate that it was 

the specific re-introduction of Sdc-4 that drove the RGD-independent formation of SF 

when cells were plated on TG2-bound FN, since SF were not formed in untransfected Sdc-

4 null MDF or in Sdc-4 null MDF transfected with pcDNA vector (Figure  3-18 B).  
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Figure  3-17 Co-operative role of Sdc-4 and TG2 in SF formation during RGD-

independent cell adhesion. Wild type (Sdc-4 +/+) and Sdc-4 -/- cells were plated on FN 

or TG2-FN in the presence or absence of RGD peptide (150 μg/ml). Cells were allowed to 

adhere for 45 minutes in serum-free medium. Actin SF were detected as described for 

Figure  3-6. The bar indicates 20 μm. 
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Figure  3-18 Re-introduction of Sdc-4 in Sdc-4 -/- MDF restores TG2-mediated RGD-

independent SF formation. A) Sdc-4 -/- cells transfected with pcDNAhS4 or pcDNA only 

were seeded on FN or TG2-FN in the presence or absence of RGD peptide (150 μg/ml). 

Cells were allowed to adhere for 45 minutes in serum-free medium. Actin SF were detected 

as described for Figure  3-6. The white arrows point at the restored SF in Sdc-4 -/- cells 

after re-introduction of Sdc-4. The bar indicates 20 μm. B) SF formation was quantified in 

three separate experiments by image analysis (three non-ovrlapping fields per 

experiment). Mean % of cells with SF (± SD) is plotted. ** indicates p<0.01. 
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3.3 Discussion 

In this study the role of extracellular TG2 in the early stages of cell adhesion on FN was 

analysed for the first time using a cell system of primary fibroblasts derived from wild type 

and TG2 null mice (De Laurenzi and Melino, 2001). The availability of embryonic 

fibroblasts isolated from mice where TG2 was disrupted by homologous recombination 

(De Laurenzi and Melino, 2001) provided a useful control for both the specificity of TG2 

detection and for studying the role of TG2 in cell adhesion.  

The first set of experiments addressed the issue of whether TG2 was externalised and how 

early in the cell adhesion process. Extracellular TG2 was detected by both 

immunocytochemistry and measurement of cell-surface TG activity; both experiments 

were performed in a time course fashion, analysing TG2 externalisation at 20, 40 and 60 

minutes cell-adhesion on FN-coated plates. In agreement with a possible role for TG2 in 

early cell adhesion, it was possible to detect TG2 antigen starting from 20 minutes of 

adhesion to FN. TG2 was mainly localised in cell-matrix adhesion structures at the cell 

periphery. TG2 was also detected in the cytosol, concentrated in the perinuclear area; the 

diffused cytosolic signal was absent in TG2 -/- cells, however the perinuclear staining was 

also present in TG2 null cells, suggesting its non specificity. The results obtained by 

immunocytochemistry were confirmed by measurement of cell-surface TG activity by 

incorporation of biotinylated cadaverine onto FN. Transamidating activity was detectable 

starting from 20 minutes adhesion, and it reached a plateau at 40 minutes adhesion, 

supporting the idea of a role for TG in the early stages of cell adhesion. In order to 

determine which part of the cell-surface transamidation activity measured was attributable 

to TG2, a study of expression of the different members of the TG family was performed on 

wild type and TG2 null primary fibroblasts. The study revealed that TG2 is the member 

with the highest expression level in primary fibroblasts; the only other member expressed 

is TG1, which is localised intracellularly (Mehta, 2005; Zhang et al., 2009), but its level is 

significantly lower. However, in TG2 -/- cells the level of TG1 was found to be 

significantly increased (possibly for compensatory effect). This finding was previously 

described  by (De Laurenzi and Melino, 2001), who also did not report a parallel increase 

in transamidation activity. The conclusion is that the activity measured in the considered 

cell system is mainly due to TG2.  
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TG2 has been mainly described as a cytosolic enzyme (Fesus and Piacentini, 2002), and 

this was often seen in disagreement with TG2 externalisation and involvement in cell 

adhesion. The analysis of TG2 distribution by Western blotting presented in this study has 

revealed that in our cell system the enzyme has a comparable level in the cytosol and in the 

cell membrane, together with being externalised and localised at cell-matrix adhesions. To 

my knowledge, this is the first study showing TG2 distribution in primary fibroblasts. TG2 

concentration at the cell surface and in the cell membrane, at matrix adhesion sites, is 

consistent with its role in cell-matrix interactions. 

In the present study, the formation of FA and SF during cell adhesion on FN has been 

monitored in the presence and absence of TG2. Lack of TG2 inhibited the formation of 

correct FA and SF compared to wild type cells, as previously shown in cells with inhibited 

TG2 expression via antisense RNA (Jones et al., 1997; Stephens et al., 2004). TG2 was re-

introduced in TG2 null cells by either transfecting them with a pEGFP-TG2 construct or by 

seeding TG2 null cells on a TG2-FN matrix. The enhanced TG2 level largely rescued the 

formation of FA and stress fibers in both cases, confirming the essential role of 

extracellular TG2 in the early adhesion process. 

Previously, FN-bound TG2 has been shown to contribute to RGD-independent cell 

adhesion on FN, leading to RGD-independent formation of SF (Verderio et al., 2003). 

TG2-FN has also been shown to promote RGD-independent FAK phosphorylation (Y397) 

in human osteoblasts (Verderio et al., 2003). Having identified a specific role for 

extracellular TG2 in early cell adhesion, the outside-in signalling events induced by TG2 

were also investigated. The first outcome was that the absence of TG2 causes a decreased 

level of FAK-P at Tyr 397, which is likely to be responsible for altered FA and SF 

formation, since extracellular TG2 compensated both the defects in FAK-P and that of FA 

formation. Although increased expression of TG2 has been linked to FAK phosphorylation 

(Akimov and Belkin, 2003), FAK-P (Y397) was previously shown to be unaltered in 

fibroblasts where TG2 was silenced by antisense RNA (Stephens et al., 2004), even though 

these cells presented alterations in FA and SF formation. The differences in FAK-P (Y397) 

measured in the present study results from the analysis of primary cell lines of fibroblasts, 

contrary to previous experiments where TG2 effects on cell adhesion were measured on 

immortalised clones of fibroblasts were TG2 expression was altered by stable cell 

transfection with TG2 antisense RNA (Stephens et al., 2004). Thus, the results presented 
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here are more indicative of the possible role of TG2 in physiological systems of adhering 

fibroblasts.  

In this study, it was confirmed that TG2-mediated FAK phosphorylation is RGD-

independent. This finding suggests a role for externalised TG2 in situations of cell stress or 

wound healing, when FN matrix is fragmented (Davis et al., 2000) and the ordinary cell 

adhesion mechanism mediated by integrin binding to FN is not sufficient to sustain full cell 

adhesion/spreading (Jeong et al., 2001). A previous study performed in human osteoblasts 

has shown that the role of TG2 in mediating RGD-independent cell adhesion relies on the 

presence of cell surface HS, as the process is inhibited by pre-treating cells with 

heparitinase (Verderio et al., 2003). Cell surface HSPG mainly consist of glypicans and 

syndecans, each of the families containing members with specific tissue and development-

related expression. In the current study, Sdc-4 was chosen as a candidate HSPG-receptor 

for mediating the RGD-independent extracellular TG2 role since, contrary to the other 

syndecans, it is a widespread component of FA and it has an active role in mediating the 

cell spreading events (Echtermeyer et al., 1999). The role of Sdc-4 was investigated by 

studying TG2-induced SF formation and FAK phosphorylation in primary dermal 

fibroblasts isolated from wild type and Sdc-4 null mice (Ishiguro et al., 2000). It emerged 

that the presence of Sdc-4 is essential for TG2-mediated events in RGD-independent cell 

adhesion, and the essential role of Sdc-4 was confirmed by rescue experiments performed 

by transfecting Sdc-4 null cells with pcDNAhS4. Interestingly, Sdc-4 deletion did not 

result into a significant reduction in SF formation. This is in agreement with previous 

reports where it was shown that Sdc-4 null cells can form FA on FN (Bass et al., 2007; 

Ishiguro et al., 2000) and only when the heparin-binding fragment of FN is missing from 

the cell surface, then Sdc-4 deletion affects cell spreading (Ishiguro et al., 2000).  

Since both TG2 and Sdc-4 have been involved in cell spreading events, it was important to 

clarify whether the action of TG2 and Sdc-4 is synergistic or simply additive. Since no 

increase in RGD-independent cell spreading (Figure  3-18), SF assembly (Figure  3-17) and 

FAK-P (Figure  3-14) was observed in Sdc-4 null cells plated on TG2-FN matrix compared 

to FN, these findings suggest that the effect of TG2 is not simply additive to that of Sdc-4 

but synergistic (both molecules are required to mediate RGD-independent cell adhesion). 

The results of this study have identified Sdc-4 as a possible receptor in RGD-independent 

cell adhesion mediated by TG2, a process which is likely to occur in situations of 
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Chapter 4: Investigation on TG2 binding to Sdc-4 

4.1 Introduction 

4.1.1 Interactions of proteins with Heparin/HS 

Given the structure of heparin/HS (general introduction, paragraph 1.2), strong ionic 

interactions can take place between basic side chains of protein bound Arg, Lys and His 

and negatively charged sulphate groups (Fromm et al., 1997). There are also other types of 

interactions taking place between heparin/HS and partner molecules: van der Waals forces, 

hydrogen bonds and hydrophobic interactions with the carbohydrate backbone (Gandhi and 

Mancera, 2008). Affinity of protein-heparin binding can be enhanced by polar amino acids 

which provide minimal steric constraints and good flexibility, thus facilitating the 

interaction with GAG chains (Caldwell et al., 1996). 

X-Ray crystallography studies have provided several information on heparin-binding, such 

as protein fold, periodicity of basic amino acids and sulphate clusters, and sulphation level 

required for protein-GAG interaction (Hileman et al., 1998). These studies have also 

permitted the identification of amino acids consensus sequences involved in heparin-

binding. From comparison of several heparin-binding sites, it has emerged that the typical 

sequences XBBXBX, XBBBXXBX or XBBBXXBBBXXBBX (where B is Lys or Arg 

and X is a “hydropathic residue”, most commonly Asn, Ser, Ala, Gly, Ileu, Leu and Tyr) 

are involved in heparin/HS-binding (Cardin and Weintraub, 1989; Sobel et al., 1992). 

Examples of heparin-binding domains and corresponding predicted secondary structures 

have been reviewed by Hileman et al. (1998) and are shown in Figure  4-1. These binding 

sites can also be formed by residues which are distant in the amino acid sequence, but are 

brought in spatial proximity by the protein folding, and the binding usually involves a 

portion of 6-12 monosaccharides in the GAG chain. The distribution of sulphated groups in 

GAG chains can determine the structure of GAG-binding sites on the protein surface by 

neutralising inhibitory charge repulsion of residues present in a specific spatial 

arrangement (Sibille et al., 2006). The relative proportion of N- and O-sulphated groups in 

heparin and HS, together with the presence of N-linked acetyl groups, can also influence 

the interaction with proteins (Kuschert et al., 1999). 
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Figure  4-1 Heparin binding proteins with predicted secondary structure. Heparin 

binding regions and predicted secondary structure of different proteins are shown 

(Hileman et al., 1998). 

4.1.2 TG2 affinity for heparin 

TG2 has been known to have a certain affinity for heparin for a long time; in fact Signorini 

et al. (1988) have developed a method for the purification of TG2 from human 

erythrocytes involving heparin-Sepharose affinity chromatography as the last step. 

Interestingly, amino acid analysis of TG2 from human erythrocytes has shown that the 

enzyme has a lower proportion of basic amino acids compared to TG2 from guinea pig 

liver (Signorini et al., 1988), thus suggesting that the latter enzyme, which is used in the 

present investigation, could present higher affinity for negatively charged heparin and HS. 

More recently Gambetti et al. (2005) described that binding of TG2 to heparin does not 

affect TG2 accessibility to substrates of transamidation reaction, but it protects the enzyme 

from thermal unfolding and proteolytic degradation, enhancing the potential cross-linking 

activity of the enzyme. However, the binding affinity of TG2 for heparin and the kinetics 

of the interaction have never been addressed. As illustrated in Figure  4-1, ECM 

glycoproteins as fibronectin, vitronectin and laminin, known to be TG2 substrates 

(Nardacci et al., 2003; Sane et al., 1988) are heparin binding proteins (Hileman et al., 

1998). Sane and colleagues (1990) have demonstrated that TG2-mediated transamidation 

activity on vitronectin can be increased by the presence of highly sulphated GAG chains, 

suggesting that heparin could enhance TG2 accessibility to its substrates either by 

immobilising it on the cell surface or by increasing the concentration of available 

substrates in particular spatial disposition. 

The aim of this chapter was to measure for the first time the affinity of TG2 for heparin 

and HS employing in vitro systems and cells in culture. 
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4.2  Results 

4.2.1 Affinity of TG2 for heparin/HS 

The first step to test the interaction of TG2 with GAG chains was the development of an 

ELISA-based solid binding assay aimed to study the affinity of TG2 for heparin/HS. For 

this study, heparin-binding microtiter plates previously developed by (Mahoney et al., 

2004) were utilised. Since the ELISA detection of TG2 bound to heparin was conducted as 

previously described for the detection of TG2 bound to FN (Verderio et al., 2003), control 

binding studies were firstly performed on either immobilised FN or, as a control, BSA. 

TG2 was allowed to bind immobilized molecules in the presence of the Ca2+ chelator 

EDTA (2 mM) to prevent TG2 auto-transamidation, after that, bound TG2 was detected by 

ELISA using the monoclonal anti-TG2 antibody Cub7402. Under these settings, TG2 

showed a dose-dependent binding to FN (Figure  4-2). Since the binding was saturable, it 

was also possible to obtain some information on the strength of TG2 binding to FN,even 

though there was variability in estimated dissociation constant between separated 

experiments. The best fitting (R2=0.8820) of the absorbance data was obtained using the 

“one site specific binding” model of GraphPad Prism. The estimated dissociation constant 

for TG2 bound to FN was approximately 20 nM when calculated from three independent 

experiments, confirming high affinity binding. 
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Figure  4-2 TG2 binding to immobilised FN. In this controlexperiment TG2 (0-212 nM) 

was allowed to bind immobilised FN (5 µg/ml) or, as a negative control, BSA (5 µg/ml) in 

the presence of 2 mM EDTA. Binding was performed at 37°C for 2 hours. Kd for FN was 

19.47±6.92 nm. n=3.  

 

 

The same approach was then used for binding studies of TG2 to heparin and HS. Heparin, 

representative for the sulphated protein-binding regions of heparan sulphate, was initially 

used as a model for the HS chains of Sdc-4, given the structural similarity and the ready 

availability. As shown in Figure  4-3, TG2 displayed a saturable concentration-dependent 

binding to low molecular weight heparin (4-6 kDa); as for the binding to FN, the best 

fitting was obtained applying a one site specific binding model (R2=0.9785). The estimated 

affinity of TG2 for heparin was in the low nM range, with a Kd of approximately 20 nM 

(23.20±1.84 nM) estimated from three independent experiments, similar to the value 

obtained for FN-binding. 

Since the binding of TG2 to HS chains in physiological conditions occurs in presence of 

Ca2+, the ELISA was also performed in a buffer containing 2 mM Ca2+
 (Figure  4-3); under 

this condition, the binding was still saturable and fitted with a model of one site specific 

binding (R2= 0.9722). However, the affinity of TG2 for heparin in the presence of Ca2+
 

(approximate Kd = 40 nM estimated from three independent experiments) resulted slightly 

lower than the one measured in the presence of EDTA. It has to be considered that this Kd 
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is an estimated value and, although lower than the value measured for the binding in the 

presence of EDTA, it is still in the low nM range. In order to see whether it was the Ca2+-

bound conformation of TG2, as opposed to the GTP-bound conformation, to be responsible 

for the lower affinity for heparin, the experiment was also conducted in the presence of 

GTPγS, a non hydrolysable form of GTP. Even in this condition the affinity of TG2 for 

heparin was slightly lower than when measured in the presence of EDTA only, with a Kd 

of approximately 40 nM  (39.75±11.63 nM) estimated fromthree independent experiments 

(Figure  4-3). In this case the fitting with the one site specific binding model was not as 

good as for the other conditions (R2= 0.86). This finding, however, suggests that the lower 

Kd measured with Ca2+ compared to that measured with EDTA does not depend on the 

Ca2+-induced conformation of TG2.  
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Figure  4-3 TG2 binding to heparin. TG2 (0-212 nM) was allowed to bind immobilised 

heparin (4.6 µM) or, as a negative control, BSA (5 µg/ml) in the presence of either 2 mM 

EDTA, 2 mM Ca2+, or 2 mM EDTA plus 150 μM GTPγS at 37°C for 2 hours. Kd values 

were 23.20±1.84 nM, 40.33±3.75 nM and 39.75±11.63 nM, respectively. n=3.  
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Since the decreased TG2 binding to heparin in the presence of Ca2+ could also be due to 

the formation of Ca2+-dependent TG2 oligomers via TG2 auto-crosslinking activity, the 

binding reaction was monitored at the end of the 2 hours incubation time by analyzing the 

reagents through Western blotting using anti-TG2 antibody. As shown in Figure  4-4 

(arrowheads), the presence of Ca2+ was accompanied by the formation of TG2 oligomers 

generated by auto-crosslinking activity of the enzyme. The presence of TG2 oligomers was 

absent in the control (TG2 not incubated at 37°C) and it was significantly lower in TG2 

incubated in the presence of either EDTA or EDTA plus GTPγS. However, the formation 

of TG2 oligomers did not seem to reduce the amount of free monomeric TG2 in a 

considerable way (Figure  4-4, arrow) suggesting that it may not significantly affect TG2 

binding to heparin.. 

 

 

 

Figure  4-4 Western blot analysis of TG2-heparin binding reaction. The TG2-heparin 

binding reaction was performed in a test tube in identical conditions to the solid binding 

assay (Figure  4-3). After the 2 hours incubation at 37°C, the reagents were analysed by 

Western blotting using monoclonal anti-TG2 antibody TG100.  Secondary antibody was 

goat anti mouse-HRP. The arrow indicates the TG2 monomer (77-80 kDa) and the arrow 

heads indicate TG2 oligomers (approximately 155, and 310 kDa). 
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The decreased binding in the presence of Ca2+ could also be a consequence of an 

interaction of positively charged ions with heparin. For this reason, TG2-heparin binding 

was also studied in the presence of ions of similar properties such as Mg2+ and K+. As 

illustrated in Figure  4-5, by performing the assay in the presence of either 2 mM Ca2+, 2 

mM Mg2+ or 4 mM K+, the Kd values were, respectively, 40.33±3.70 nM, 43.05±5.96 nM 

and 54.85±7.57 nM; the best fitting model for all the conditions was the one site specific 

binding (R2 values were 0.9722, 0.9563 and 0.9762, respectively). Since the Kd were not 

significantly different, these results indicated that the decreased TG2-heparin affinity 

recorded in the presence of Ca2+ compared to EDTA could be a consequence of ionic 

interference in TG2 binding to heparin rather than Ca2+-dependent conformational change 

of the enzyme or Ca2+-induced oligomerisation. 
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Figure  4-5 Interference of positively charged ions on TG2-binding to immobilised 

heparin. TG2 (0-212 nM) was allowed to bind immobilised heparin (4.6 μM) or, as a 

negative control, BSA (5 µg/ml), in the presence of either 2 mM EDTA, 2 mM Ca2+, 2 mM 

Mg2+ or 4 mM K+. Binding was performed at 37°C for 2 hours. n=3. Kd values for Mg2+ 

and K+ were 43.05±5.96 nM and 54.85±7.57 nM, respectively. TG2 binding in the 

presence of EDTA and Ca2+ is the same previously shown in Figure  4-3, with Kd values of 

23.20±1.84 nM and 40.33±3.75 nM, respectively.  



Chapter 4:  Investigation on TG2 binding to S4 

 

 106

Since the GAG chains of HSPG are mainly HS, and heparin is a highly sulphated form of 

HS, the ELISA-based assay was repeated in the same way using equimolar concentrations 

of purified HS. Figure  4-6 shows that TG2 displayed a dose-dependent binding to HS (4.6 

µM), as previously recorded using heparin. Analogously to the TG2 binding studies to 

heparin, the best fit of the TG2 binding curve to HS was obtained using a one site specific 

binding model (R2= 0.9394), and the binding was saturable. The calculated Kd was 

19.47±2.76 nM, indicating high affinity of TG2 for HS. 
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Figure  4-6 Binding of TG2 to HS. TG2 (0-212 nM) was allowed to bind immobilised HS 

(4.6 µM) or, as a negative control, BSA (5 µg/ml) in the presence of 2 mM EDTA for 2 

hours at 37°C as shown in Figure  4-3. Kd for HS was 17.03±2.76 nM. n=3.  

 

 

After showing that TG2 binds either heparin or HS with similar high affinity, the 

interaction of TG2 with heparin was further investigated in real time by using surface 

plasmon resonance (SPR). For this study heparin was immobilised on a Biacore 

sensorchip, thus mimicking the cell surface presentation of HSPG, and TG2 was perfused 

above this surface in a buffer containing 2 mM EDTA. Injection of a range of TG2 

concentrations (51-586 nM) over a sensorchip activated with 50 RU of heparin gave rise to 

the binding curves shown in Figure  4-7. The data were fitted with the Langmuir 1:1 model, 
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which explains the simplest way an analyte (A) (TG2) can interact with an immobilised 

ligand (B), in our case heparin (A+B  AB).  

The fitting of the data with the Langmuir model returned a χ2 value (which describes the 

closeness of the fit) of 4.5; fitting the data with other binding models did not improve the 

closeness (data not shown). Following data fitting, it was possible to calculate: 

koff (rate of dissociation) = 4.95 × 10-4 s-1 and 

kon (rate of association) = 5.5 × 103 M-1 s-1 

leading to an average Kd (Koff/Kon) of 92.7 ± 4.7 nM. 

Within the limit of the χ2 this finding confirmed a nM-range affinity of TG2 for HS, as 

shown by the solid binding assay.  

 

 

 

 

Figure  4-7 SPR analysis of TG2 affinity for heparin. TG2 (51-586 nM) was injected over 

a heparin activated surface for 8 min at a flow rate of 10 µl/min, after which running 

buffer was injected, and the response in RU was recorded as a function of time. 

Sensorgrams were analysed with Biaeval 3.1 software. 
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4.2.2 Cell-surface TG2 interacts with heparin and HS chains 

After establishing a strong affinity of purified gpl TG2 for heparin and heparan sulphate, 

the affinity of endogenous cell-surface TG2 for heparin/HS was explored. Since wild type 

MEF externalise TG2 starting from early stages of cell-adhesion (see Chapter 3), reaching 

a peak of externalisation after 1 hour post-seeding, they were used as a source of cell-

surface TG2. The TG2-heparin binding was investigated by monitoring the cell-attachment 

to heparin/HS of wild type MEF compared to the one of TG2 null MEF. 

As shown in Figure  4-8, cells presenting TG2 at the cell surface (TG2 +/+) had a 

significantly higher level of adhesion on both heparin and heparan sulphate compared to 

TG2 -/- cells (p<0.001). Wild type cells showed a ≈60 % level of adhesion to wells coated 

with 2.3 μM heparin and ≈100% adhesion to wells coated with 4.6 μM heparin. When the 

adhesion of wild type MEF was performed on HS-coated plates, there was ≈65% adhesion 

on 1.3 μM HS and ≈100% adhesion on both 2.3 and 4.6 μM HS. Cells lacking TG2 (TG2 -

/-) cells displayed a significantly lower adhesion level (20-30%) compared to wild type 

cells on heparin/HS, suggesting that TG2 is critical for heparin/HS binding. Both TG2 +/+ 

and TG2 -/- cells displayed a similar level of cell adhesion on control FN, although 

differences in the spreading level were noticeable, with wild type cells showing a more 

homogeneous distribution and a flatter morphology (Figure  4-8). The level of cell adhesion 

on BSA-coated plates was significantly lower for both the cell lines compared to FN, and 

was estimated to be lower than 10% compared to the positive FN control.   
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Figure  4-8 Cell adhesion studies on heparin/HS-coated plates. Wild type (TG2 +/+) and 

TG2 -/- MEF were serum-starved and allowed to adhere on plates coated with either 

heparin (2.3 or 4.6 μM) or HS (1.2, 2.3 or 4.6 μM) for 1 hour in serum-free medium. 

Plates coated with BSA or FN (5 μg/ml) were used as negative and positive control, 

respectively. Adherent cells were quantified and normalised considering cell adhesion of 

TG2 +/+ cells on FN as 100%. The bar indicates 20 μm. n=3. *** indicates p<0.001.  
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4.2.3 Direct co-association of TG2 and HS chains of Sdc-4 at the cell surface 

After establishing the association of TG2 to GAG chains through affinity measurements, 

the biological significance of this binding was investigated by co-immunoprecipitation 

studies of TG2 and Sdc-4. Sdc-4 was chosen among the others HSPG given its significant 

role in TG2-mediated RGD-independent cell adhesion, as shown in Chapter 3. Given the 

transmembrane localization of Sdc-4, co-immunoprecipitation experiments were 

performed on crude membrane preparations. It was decided to undertake the co-

immunoprecipitation experiments using a cell line particularly rich in both HSPG and 

TG2; for this reason human osteoblasts (HOB) (Scotchford et al., 1998) were chosen, since 

they are rich in HSPG (Gronthos et al., 1997) and express cell-surface TG2 (Heath et al., 

2001; Verderio et al., 2001). Moreover, stably transfected HOB over-expressing human 

TG2 (HOB-TG14) (Verderio et al., 2001) were available for the study.  

As a preliminary study, the expression of Sdc-4 was tested in membrane extracts from 

HOB cells by Western blotting. In order to distinguish the glycosylated forms from the 

core protein of Sdc-4, untreated extracts were compared to heparitinase-treated extracts. 

Heparitinase catalyses the cleavage of α-N-acetyl-D-glucosaminide linkage (either 6-

sulphated or non-sulphated) in heparan sulphate, reducing or eliminating the glycosylation 

level of the Sdc-4 core protein. Western blotting analysis revealed a strong band at ~200 

kDa and other high molecular weight bands in the untreated sample (Figure  4-9, asterisk); 

these bands were markedly reduced after heparitinase treatment, indicating their 

glycosylated nature. Heparitinase treatment also resulted in the intensification of the band 

at ~44 kDa, which should correspond to Sdc-4 core protein SDS-insoluble homodimer 

(Echtermeyer et al., 1999; Longley et al., 1999) (Figure  4-9, arrow). 

Next, membrane extracts obtained from HOB and HOB-TG14 cells were 

immunoprecipitated with anti-Sdc-4 antibody and analysed by Western blotting for the 

presence of TG2. As shown in Figure  4-10 A (arrow head), a band of 77 kDa, 

corresponding to TG2 was detected in both HOB and HOB-TG14 Sdc-4-

immunoprecipitates (S4), which was not detected in the negative controls, represented by 

immunoprecipitation with beads only (B) and with anti gliadin antibody (Gl); this finding 

suggests association of TG2 with Sdc-4.  
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The above described immunoprecipitates were also examined for the presence of Sdc-4, to 

test the efficiency and the specificity of the immunoprecipitation process. As shown in 

Figure  4-10 B, Sdc-4 immunoprecipitates displayed high molecular weight bands 

corresponding to the glycosylated core protein of Sdc-4 (in particular a band of ~200 kDa, 

indicated by the asterisk) together with a large band of 35-45 kDa which may include Sdc-

4 core protein homodimer and other glycosylated Sdc-4 isoforms. The band of 50-55 kDa, 

detected in both immunoprecipitates with anti-gliadin and anti-Sdc-4 antibody corresponds 

to the heavy chain (Hc) of the rabbit antibody used for the immunoprecipitation, reacting 

with anti-rabbit IgG secondary antibody (Figure  4-10 B, Hc).  

To verify the association of TG2 and Sdc-4, membrane extracts from HOB and HOB-

TG14 were also immunoprecipitated with anti-TG2 antibody and analysed by Western 

blotting for the presence of Sdc-4. As shown in Figure  4-11 A (left panel), both 

glycosylated Sdc-4 (asterisk) and other lower Mr Sdc-4 oligomers were detected in the 

TG2-immunoprecipitates. The Sdc-4 band profile in TG2 immunoprecipitates was 

analogue to the one detected in membrane protein extracts from HOB cells (Figure  4-9). 

To verify the identity of the bands detected by the anti Sdc-4 antibody, the TG2-

immunoprecipitates were treated with heparitinase before Western blotting (Figure  4-11 A, 

right panel). Treatment of TG2-immunoprecipitates with heparitinase determined the loss 

of high molecular weight bands and the intensification of the band corresponding to Sdc-4 

core protein homodimer (Figure  4-11 A, right panel, arrow). This time the antibody heavy 

chain was not detectable, since the antibody used for immunoprecipitation was a mouse 

monoclonal and the secondary antibody used for the Western blotting was an anti-rabbit 

IgG from mouse. Control Western blotting for TG2 revealed that TG2 was correctly 

immunoprecipitated in both HOB and HOB-TG14 extracts (Figure  4-11 B, arrow head). 
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Figure  4-9 Sdc-4 detection in total membrane extract from HOB. 30 μg of untreated or 

heparitinase (Hep)-treated membrane protein extract from HOB were separated by 

reducing SDS-PAGE (10% polyacrylamide gel) and analysed by Western blotting.. Sdc-4 

was detected by anti-Sdc-4 antibody followed by secondary antibody, HRP-conjugated. 

The arrow points at Sdc-4 core protein dimers (~44 kDa). The asterisk indicates the 

predominant band of glycosylated Sdc-4 (~200 kDa). Positions of molecular weight 

markers are shown on the right hand side of the blot. 
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Figure  4-10 TG2 detection in Sdc-4 immunoprecipitates from HOB and HOB-TG14. 

Membrane preparations (500 µg) from HOB and HOB over-expressing human TG2 (HOB-

TG14) were immunoprecipitated with anti-Sdc-4 antibody [S4] (2µg) and after that the  

immunoprecipitates were subjected to Western blot analysis for TG2 (A) and, as a control, 

for Sdc-4 (B). Control immunoprecipitations were performed with beads only [B] and anti 

gliadin antibody [Gl] (2 μg). Hc represents the heavy chain of the antibody used for 

immunoprecipitation. * , glycosylated Sdc-4 (~200 kDa); arrow head, TG2 (~77 kDa). 
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Figure  4-11 Sdc-4 detection in TG2 immunoprecipitates from HOB and HOB-TG14. 

Membrane preparations (500 µg) from HOB and HOB overexpressing human TG2 (HOB-

TG14) were immunoprecipitated with anti-TG2 antibody (2µg) and after that the  

immunoprecipitates were subjected to Western blot analysis for Sdc-4 (A) and, as a 

control, for TG2 (B) before and after heparitinase (Hep) treatment. * , glycosylated Sdc-4 

(~200 kDa); arrow, Sdc-4 core protein dimer (~44 kDa); arrow head, TG2 (~77 kDa). 

  



Chapter 4: Characterization of Transglutaminase-2 binding to Sdc-4 

 115

To investigate whether TG2-Sdc-4 association was also present in the fibroblast cell type, a 

Swiss 3T3 cell line (clone TG3) with tetracyline-regulated inducible expression of TG2 

was used (Verderio et al., 1998). A band corresponding to TG2 (~77 kDa) was present in 

the Sdc-4-immunoprecipitates (S4) from TG3 Swiss 3T3 cells + tet (expressing 

endogenous level of TG2), which intensified in the Sdc-4 immunoprecipitates from cells 

overexpressing TG2 (TG3 Swiss 3T3 – tet) (Figure  4-12). A faint TG2 band could also be 

detected in the control immunoprecipitation performed by incubating the protein 

preparation with protein G agarose only, indicating aspecific binding to protein G agarose 

beads. However, the intensity of aspecific binding was much lower compared to the 

intensity of TG2 bands in Sdc-4 immunoprecipitates. 

  

 

 

 

Figure  4-12 TG2 detection in Sdc-4 immunoprecipitates from Swiss 3T3 cells with 

inducible expression of TG2. Membrane preparations (500 µg) from  Swiss 3T3 cells 

control (+tet) or with induced TG2 expression (-tet) were immunoprecipitated with anti 

Sdc-4 antibody (S4) (2 µg) or with protein G agarose beads (-) and analysed by Western 

blotting with anti TG2 antibody. The band corresponding to TG2 is indicated by the arrow 

head. 
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The experiments described in section  4.2.1 demonstrated the binding affinity of TG2 for 

heparin and heparan sulphate. To investigate if TG2 associates with Sdc-4 via binding of 

Sdc-4 HS chains, the cell suspensions of HOB and Swiss 3T3 cellswere incubated with 

protease-free heparitinase (to selectively clear HS chains) prior to immunoprecipitation of 

Sdc-4 using an antibody directed against the core protein.  

 

 

 

Figure  4-13 Immunoprecipitation of TG2 and Sdc-4 largely relies on Sdc-4 HS chains 

(1). Membrane extracts prepared from HOB and HOB overexpressing human TG2 (HOB-

TG14) were digested or not with heparitinase (Hep) (30 mU/ml) to remove HS chains. The 

membrane preparations (500 µg) were then immunoprecipitated with anti Sdc-4 antibody 

(S4) (2 µg) and analysed by Western blotting against TG2. Three independent experiments 

and their densitometric analysis are shown (data are expressed as the mean ± SD); data 

were normalised considering HOB-TG14 value without Hep as 1. gpTG2 (200 ng) was 

used as a control and for normalisation of data. * indicates p<0.05; ** indicates p<0.002. 
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The removal of HS significantly reduced the amount of TG2 associated with Sdc-4 in both 

HOB and HOB-TG14 cells (Figure  4-13) and Swiss 3T3 cells by a 40-50% value (Figure 

 4-14). This range is in agreement with the effect of heparitinase treatment on HOB cells, 

that, if measured by flow cytometry, shows a digestion level of HS chains of ~ 50% 

(previous work by E. Verderio, Nottingham Trent University).  

These results give information on the way TG2 interacts with Sdc-4, which largely occurs 

through the HS chains of Sdc-4. 

 

 

 

Figure  4-14 Immunoprecipitation of TG2 and Sdc-4 largely relies on Sdc-4 HS chains 

(2). Membrane extracts were prepared from Swiss 3T3 cells control (+tet) digested or not 

with heparitinase (Hep) (30 mU/ml). Membrane preparations (500 µg) were 

immunoprecipitated with anti Sdc-4 antibody (S4) (2 µg) and analysed by Western blotting 

against TG2. Densitometric analysis of two independent experiments is shown; data are 

normalised considering sample –Hep equal to 1. ** indicates p<0.002 
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4.2.4 Binding of TG2 to Sdc-4 is not mediated by fibronectin 

Fibronectin is known to interact with HS chains of Sdc-4 through its high affinity Hep II 

binding domain (Woods et al., 2000); since FN has also elevated affinity for TG2, it was 

important to demonstrate that the binding of TG2 to the HS chains of Sdc-4 at the cell 

surface  was direct and not mediated by FN. For this purpose TG2 binding to FN was 

inhibited by using a peptide (P3 peptide, Hang et al., 2005) which mimics FN binding site 

within TG2, and thus binds FN in competition with TG2 (Figure  4-15). 

 

 

 

 

 

Figure  4-15 Scheme of triangular association of TG2, Sdc-4 and FN. The triangular 

association of the three molecules is shown, together with the inhibitory action of P3 

peptide (Hang et al., 2005), which interferes with TG2 binding to FN by mimicking FN 

binding region of TG2. 
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In order to confirm the inhibitory action of P3 peptide on TG2 binding to FN, a plate assay 

was performed, measuring the binding of TG2 to FN in the presence of increasing 

concentrations (0-150 μM) of P3 peptide (Figure  4-16). The FN-binding of TG2 at both 20 

nM and 50 nM was significantly reduced if 100 µM P3 peptide was present; this result 

validated the use of 100 µM P3 peptide in subsequent immunoprecipitation experiments to 

interfere with TG2-FN association. 
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Figure  4-16 Inhibition of TG2 binding to FN using P3 peptide. Inhibition of TG2-FN 

binding, assayed by ELISA using 20 nM and 50 nM purified gpTG2 allowed to bind FN-

coated microtiter plates (5 µg/ml) for 1 hour  in the presence of increasing concentrations 

of P3 peptide (0-150 µM). Data (mean absorbance values ± SD from three independent 

experiments) have been normalised considering the binding of 50 nM TG2 to FN in the 

absence of P3 peptide equal to 1. 
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At this stage HOB cells were plated on a FN matrix pre-incubated with P3 peptide (100 

µM) in order to saturate the TG2 binding sites on FN; after one hour, both adherent and not 

adherent cells were collected and membrane preparations were subjected to 

immunoprecipitation with anti Sdc-4 antibody followed by Western blotting against TG2 

and FN (Figure  4-17). The pre-incubation of FN with P3 peptide did not reduce the amount 

of TG2 co-immunoprecipitated with Sdc-4 (Figure  4-17, top panel), suggesting that the 

binding is direct and not mediated by FN. As a control, FN was also detected in the Sdc-4 

immunoprecipitates, showing that the amount of FN associated with Sdc-4 was not 

reduced by the action of P3 peptide (Figure  4-17, bottom panel) (densitometric values for 

FN with and without P3 peptide were 1.2±0.2 and 1.0±0.1, respectively; p=0.32).  

 

 

 

Figure  4-17 Immunoprecipitation of TG2 and Sdc-4 in the presence of competitive 

concentrations of P3 peptide. HOB cells were let to adhere on FN matrices pre-incubated 

(+) or not (-) with P3 peptide (Hang et al., 2005) (100 µM) before preparation of 

membrane extracts. Membrane preparations (500 µg) were immunoprecipitated with anti-

Sdc-4 antibody (S4) (2 µg) and analysed by Western blotting against TG2 and FN. The 

arrow heads point at TG2 (top panel) and FN (bottom panel). 
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4.2.5 Visualisation of TG2-Sdc-4 association by fluorescence microscopy 

Association of TG2 with Sdc-4 was further investigated by using indirect double 

fluorescent labelling of HOB allowed to adhere for 2 hours on tissue culture plastic in 

serum-containing medium. A combination of secondary antibody conjugated to different 

fluorescent dyes was chosen in order to avoid overlapping emission signals, and to make 

sure that any co-staining of TG2 and Sdc-4 was effectively due to co-localisation of the 

two molecules. To this purpose, the primary antibodies mouse anti-TG2 and rabbit anti-

Sdc-4 were revealed by sheep anti mouse IgG FITC and donkey anti rabbit IgG 

AlexaFluor568, respectively. As shown in Figure  4-18, the two molecules appeared to co-

localise, in particular at the cell borders and in correspondence of cell-cell contacts, as 

pointed by the arrows. 

 

 

Figure  4-18 Co-localisation of TG2 and Sdc-4 in HOB. Fixed and permeabilised HOB 

were stained with anti-TG2 and anti-Sdc-4 antibodies and revealed with anti mouse-FITC 

and anti rabbit-AlexaFluor 568 secondary antibodies, respectively. Images were acquired 

by laser confocal microscopy and represent sections of the cellular basal surface. Two 

different fields are shown. The arrows point at areas of co-localisation. The bar indicates 

20 μm.  
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4.3 Discussion 

After showing the involvement of Sdc-4 in TG2 mediated RGD-independent adhesion 

(Chapter 3), in the present chapter the investigation was focused on the physical interaction 

between TG2 and Sdc-4. Solid binding assays were developed to measure for the first time 

the affinity of purified TG2 for heparin and HS. A strong binding affinity was measured, 

with a Kd of ≈20 nM. Considering that so far FN has been considered the main 

extracellular binding partner for TG2, this value is surprisingly high if compared to the 

measured affinity of TG2 to the 42 kDa gelatin binding domain of FN, which was 

estimated as 8-10 nM (Jeong et al., 1995; Radek et al., 1993) and, more recently, using 

SPR, as 180 nM (Hang et al., 2005). Since the estimated affinity of TG2 for HS measured 

in this thesis is similar to the measured affinity of TG2 for FN, the results shown in this 

thesis show that FN may not been the only extracellular high-affinity binding partner for 

TG2, expecially in cell systems with a high expression of HSPG. 

It was of interest that the estimated affinity of TG2 for heparin and HS was slightly lower 

in the presence of physiological extracellular concentration of Ca2+ compared to EDTA, 

even though both affinities were in the low nM range.   Given that TG2 is catalytically 

active outside the cell and Ca2+ changes TG2 conformation (Li et al., 2002), TG2 auto-

crosslinking was considered at first as an interfering factor on heparin-binding. Western 

blot analysis in reducing conditions showed that even though a certain amount of TG2 is 

present in oligomeric form in the presence of Ca2+, the majority of the enzyme is still in 

monomeric form, so auto-crosslinking can not be the cause of the reduced binding to 

heparin in the presence of Ca2+. The presence of Ca2+ is not supposed to interfere with 

heparin and HS binding to the plates used for the assay (Mahoney et al., 2004), but, given 

its positive charge, Ca2+ could interfere with negatively charged heparin and HS, thus 

potentially lowering the binding of TG2 (Rudd et al., 2007). Solid binding assays were also 

performed in the presence of positive ions with similar properties to Ca2+. The apparent 

affinity of TG2 for heparin was not significantly different in the presence of either Ca2+, 

Mg2+ or K+. This suggests that the slightly lower binding recorded in the presence of Ca2+ 

compared to EDTA was not due to a change in conformation of the enzyme, but more 

likely to altered heparin accessibility (Rudd et al., 2007).  
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A lower apparent binding affinity of TG2 to heparin was also measured in the presence of 

GTPγS (150 μM); however, there is no documented evidence of GTP/GDP interaction 

with heparin/HS. Therefore, it can not be excluded that a lower binding of TG2 to 

heparin/HS in the presence of GTPγS could be the consequence of the GTP-induced 

conformation of the enzyme (Lorand and Graham, 2003; Smethurst and Griffin, 1996), 

which may have a lower affinity for heparin/HS. 

The estimated affinity of TG2 for HS obtained with solid binding assay was confirmed by 

monitoring TG2 binding to heparin with SPR. Here the binding was measured in real time 

and not at equilibrium, after 2 hours of TG2 interaction with heparin, as in the solid-

binding assay. The estimated Kd in this case was ≈ 90 nM, a value of similar rage to what 

obtained with solid binding, although suggesting a slightlylower affinity. It has to be 

mentioned that the χ2 value obtained for this analysis (indicating the goodness of the 

fitting) was 4.5, a value higher than the limit normally considered for a meaningful fitting 

(χ2= 2). Therefore the SPR result can be regarded as indicative of a high affinity but with 

some limitations due to the complexity of the system.  

At least one of the heparin-binding motif described by Cardin and Weintraub (1989), 

XBBXB (see  4.1.1) can be found in human TG2 (position 261-265), and appears to be 

accessible on the enzyme surface (personal communication by Lortat-Jacob, Institut De 

Biologie Structurale, Grenoble). Interestingly this domain is not only conserved in TG2 

from different species (rat, mouse, human, guinea pig) (Figure  4-19) but it is also specific 

for TG2, since it is not present in TG1, TG3, TG5, TG6, TG7 and FXIIIa so it may be a 

good candidate for the specific interaction of TG2 with HSPG (Verderio et al., 2008). 

Next, to find out if cell-surface TG2 as opposite to purified TG2 could interact with 

immobilized heparin/HS, and thus support the physiological relevance of the binding, the 

adhesion of wild type MEF to heparin/HS was compared to that of TG2 null MEF. As 

shown in Chapter 3, wild type MEF display cell-surface TG2. The study revealed that the 

presence of cell surface TG2 is essential for the interaction of primary fibroblasts with 

heparin/HS. Interestingly, the absence of cell surface TG2 did not alter cell adhesion to 

immobilized FN, in accordance with the fact that TG2 inhibition via antisense RNA affects 

cell spreading but not cell attachment on FN (Stephens et al., 2004). 
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Figure  4-19 Putative heparin-binding site conserved in TG2 from different species 

(Verderio et al., 2008). Multiple sequence alignment (ClustalW) of rat, mouse, human and 

guinea pig liver TG2, showing a conserved putative heparin-binding site based on the 

motif XBBXB, where X is an hydropathic amino acid and B is either Arg (R) or Lys (K). 

N=fully conserved; N= non conserved; N=conserved; N=similar. 

 

Co-immunoprecipitation studies performed on cell membrane preparations from different 

cell lines (osteoblasts and fibroblasts) revealed that TG2 and Sdc-4 are physically 

associated at the cell surface, and that this association is largely mediated by HS chains of 

Sdc-4, since it was significantly reduced by heparitinase cleavage of HS chains. The 

physical association was confirmed by dual labeling, revealing an overlapping signal for 

TG2 and Sdc-4 in correspondence of cell-cell contacts and at the cell surface. The TG2-

Sdc-4 association resulted to be direct and not mediated by the mutual interaction of TG2 

and Sdc-4 with the high affinity partner FN, since the level of TG2 co-precipitated with 

Sdc-4 was not altered by a previously characterized peptide that inhibits the binding of FN 

to the N-terminal β-sandwich domain of TG2 (Hang et al., 2005).  

A recent study has shown that the extracellular domain of α5β1 integrins is able to bind 

heparin/HS (Faye et al., 2009). Since TG2 has been shown to have a high affinity for this 

class of integrins (Akimov et al., 2000), the reciprocal binding of α5β1 integrins to HS 

chains could mediate the association of TG2 to heparin/HS. However, in the study by Faye 

and colleagues (2009), the interaction of integrins with heparin/HS was performed using 

purified molecules, which may interact in a different way compared to a cell system. The 

study also shows no difference in cell attachment on immobilized α5β1 integrins 

(measured by SPR) between control chinese hamster ovary (CHO) cells and CHO cells 

which do not present sulfated GAG at the cell surface (Faye et al., 2009), thus confirming 
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the hypothesis that the interaction between integrins and Sdc-4 may not occur under 

physiological conditions.  

In conclusion, this study has revealed for the first time that TG2 has high affinity for 

heparin/HS, that the association is direct and physiologically relevant.  
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Chapter 5:  Role of Sdc-4 in the trafficking and cell-surface 

localization of TG2 

5.1 Introduction 

5.1.1 Insight on TG2 cell-surface trafficking 

Since TG2 is a multifunctional enzyme whose action can lead to permanent protein 

modifications, and since TG2 influences intracellular signalling, its cell-surface trafficking 

needs to be highly regulated. Several mechanisms have been proposed as regulators of cell-

surface/ECM adhesion-related TG2 functions. Belkin and colleagues have suggested a 

model of TG2 release involving proteolysis of cell-surface TG2, mediated by membrane-

anchored and soluble metalloproteases (Belkin et al., 2001; Belkin et al., 2004). Another 

model describes inside-out regulation of TG2-mediated cell-matrix adhesion by the Ras-

Raf-MEK1-ERK1 signalling pathway (Akimov and Belkin, 2003). More recently, a novel 

mechanism of TG2 regulation has been proposed, involving TG2 internalisation and 

degradation in the lysosomes (Zemskov et al., 2007). This process is mediated by the low 

density lipoprotein receptor-related protein 1 (Zemskov et al., 2007) and seems to be 

related to TG2 association to the binding partners FN and β1/β3 integrins, which are also 

internalised in an analogous way.  

The mechanism of TG2 externalisation remains tobe elucidated as numerous evidence 

justify a possible unconventional export. In fact, TG2 lacks of a hydrophobic leader 

sequence or the post-translational modifications, which would indicate processing by 

endoplasmic reticulum and Golgi apparatus leading to externalisation (Lorand and 

Graham, 2003). Interestingly, even though TG2 shows important extracellular functions, it 

presents some characteristics typical of cytosolic proteins, such as the absence of disulfide 

bridges and the lack of glycosylation (Ikura et al., 1989), thus strengthening the idea of 

non-conventional secretion. A common feature of TG2 and Factor XIIIa, both secreted 

members members of the TG family, is the modification of the N-terminal domain by 

removal of the terminal Met and acetylation of the adjacent Ala (Ikura et al., 1989; 

Takahashi et al., 1986). This modification could represent a signal for TG2 externalisation. 

So far, it has been shown that TG2 externalisation is affected by the conformation of the 

Cys-containing active site and by the N-terminal FN-binding β-sandwich domain 
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(Balklava et al., 2002; Gaudry et al., 1999). More recently,  transamidating activity was 

shown not to affect TG2 secretion, since the process was shown to occur even in the 

presence of the TG inhibitor R283 (Telci et al., 2009). Although TG2 externalisation is 

enhanced by situations of cell-stress (Lorand and Graham, 2003; Thomazy and Fesus, 

1989), this process does not seem to be a passive event following cell damage, since it 

occurs in the absence of leakage of intracellular components, when the cells are still viable 

(Skill et al., 2004).  

Work by Peng et al. (1999) has demonstrated that TG2 is also translocated in the nucleous, 

and this process is mediated  by importin α-3, a nuclear transport protein (Lorand and 

Graham, 2003). 

5.1.2 Possible role of HS in mediating the cell-surface biological action of TG2. 

Recent evidence have ascribed a role to HSPG in both membrane secretion and 

endocytosis (MacArthur et al., 2007), raising the hypothesis of the current study, that 

HSPG could influence cell trafficking of TG2 through the high affinity binding of TG2 for 

HS. 

HSPGs are specialised glycoproteins with a core protein linked to one or more HS 

glycosoaminoglycan chains, which are linear polysaccharides consisting of alternating N-

acetylated or N-sulphated glucosamine units, and uronic acids (Bishop et al. 2007). The 

assembly of HS chains on core proteins, which is catalysed by enzymes of the Golgi, leads 

to a wide structural heterogenicity (e.g. chain size and length, extent of sulphation, spatial 

distribution of negatively charged groups). Interestingly, adhesive ECM glycoproteins such 

as FN and vitronectin, and growth factors such as midkine, which all serve as substrates for 

TG2 transamidation, are also heparin-binding proteins (Table 4-1). In some cases, the 

TG2-mediated protein transamidation can be even augmented by GAGs such as heparin 

(Sane et al., 1990), suggesting that heparin could help immobilise TG2 on these target 

substrates. 

The aim of this chapter is to test the possible influence of TG2 binding to HS on its cell-

surface localisation and activity. 
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5.2 Results 

5.2.1 Role of Sdc-4 in the cell-surface localisation of TG2 in primary fibroblasts 

Given the association of TG2 and Sdc-4 at the cell surface, proven by co-

immunoprecipitation and double immunofluorescence (Chapter 4), a set of experiments 

was carried out in order to determine whether Sdc-4 was involved in TG2 extracellular 

localisation.  

In a first set of experiments, TG2 was detected by indirect immuofluorescence on fixed 

and permeabilised mouse dermal fibroblasts expressing or not Sdc-4 (Sdc-4 +/+ or Sdc-4   

-/-) adhering on FN-coated slides and visualised by confocal microscopy. As shown in 

Figure  5-1 (arrows), TG2 was found to be predominantly located in patches at the cell 

periphery of wild type cells, where contacts between cells and the ECM take place. A 

similar TG2 staining was detected in FN-adhering MEF (Chapter 3, 3.2.1). A diffused 

cytosolic signal was also present, and a marked perinuclear signal, which was, however, 

also visible in cells lacking TG2 (Chapter 3, Figure 3-1). In the absence of Sdc-4, TG2 

appeared to be mainly located in the cytosol, and its presence at the cell periphery was 

negligible (Figure  5-1). This aspect has been further investigated in Chapter 3. In order to 

gain more insights on the cellular localisation of TG2, firstly wild type and Sdc-4 -/- cells 

were further visualised by double phase contrast microscopy and ordinary confocal 

microscopy. Pictures taken at the basal cell surface confirmed that TG2 is predominantly 

located at cell-matrix adhesions in wild type cells (Figure  5-2, arrows) and that in the 

absence of Sdc-4 TG2 is mostly localised in the cytosol/perinuclear area (Figure  5-2). TG2 

was also co-stained with actin stress fibres, in order to visualise the location of TG2 in 

relation to the actin cytoskeleton. As shown in  Figure  5-3 (arrowheads), in wild type MDF 

anti-TG2 antibody stained peripheral cell structures at the basal surface, most of which 

appeared to be connected with the end of actin stress fibres; TG2 was also localised in the 

pericellular matrix, as indicated by the small arrows. As previously shown, TG2 staining 

was restricted to the perinuclear and cytosolic regions of Sdc-4 null cells ( Figure  5-3).  
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Figure  5-1 TG2 staining in wild type and Sdc-4 null MDF. Wild type (Sdc-4 +/+) and 

Sdc-4 -/- MDF were allowed to adhere for 2 hours in complete serum-containing medium.  

TG2 was detected in fixed and permeabilised cells by monoclonal anti-TG2 antibody 

Cub7402 and revealed by FITC-conjugated secondary antibody. Two representative fields 

are shown. The arrows point at TG2 at the cell periphery in Sdc-4 +/+ cells. The bar 

corresponds to 20 μm.  
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Figure  5-2 Visualisation of TG2 by dual phase contrast confocal microscopy. TG2 was 

detected in wild type (Sdc-4 +/+) and Sdc-4 -/- MDF as described in Figure  5-1. Cells 

were visualised with fluorescent confocal microscopy (left panel) and phase-contrast 

microscopy (right panel). Nuclei were stained with DAPI.  The arrows point at TG2 

localised at cell-matrix adhesions in Sdc-4 +/+ cells. The bar corresponds to 20 μm.  
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 Figure  5-3 Co-staining of TG2 and SF in wild type and Sdc-4 null MDF. TG2 and SF were detected in fixed and permeabilised Sdc-4 

+/+ and Sdc-4 -/- MDF after 2 hours adhesion in complete serum-containing medium as described in Figure  5-1. Cells were stained with 

anti-TG2 antibody Cub7402 followed by 488Alexafluor-conjugated secondary antibody. SF were detected by TRITC-conjugated 

phalloidin. Nuclei were stained with DAPI. The arrowheads point at TG2 at cell-matrix adhesions. The small arrows point at TG2 in the 

pericellular matrix. The bar corresponds to 20 μm. 
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TG2 and actin stress fibres co-staining was also performed on MDF adhering on FN-

coated slides, in order to simulate cell adhesion on a mature extracellular matrix. As shown 

in Figure 5-4, the same pattern of TG2 previously observed in cells adhering on uncoated 

slides (Figure 5-3) was produced in both wild type and Sdc-4 -/- fibroblasts. However, a 

noticeable difference could be spotted in S4 +/+ cells, where TG2 was present in diffuse 

patches at cell-matrix contacts (Figure 5-4, pointed by arrows) as if those were the sites 

from where TG2 is released into the ECM. 
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Figure  5-4 TG2 localisation in wild type and Sdc-4 null MDF adhering on FN. TG2 and stress fibres were detected in wild type (Sdc-4 

+/+) and Sdc-4 -/- MDF allowed to adhere on FN for 2 hours in complete serum-containing medium. All the stainings were performed as 

described in  Figure  5-3.  The arrows point at TG2 at cell-matrix adhesion. The bar corresponds to 20 μm. 
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The data shown so far suggest that TG2 is predominantly located at cell-matrix adhesions 

and that the absence of Sdc-4 alters the pattern of TG2 localisation. The association of TG2 

and Sdc-4 in MDF was also examined by double immunostaining, as previously done in 

osteoblasts (Chapter 4, paragraph 4.2.5). The results (Figure  5-5) showed that TG2 and 

Sdc-4 co-localise at cell-matrix adhesions, as pointed by the arrows. Only a faded Sdc-4 

signal was detected in Sdc-4 -/- cells, confirming the specificity of the antibody used for 

the staining. As previously shown in Figure  5-1 to 5-3, TG2 was absent from cell adhesion 

structures in cells lacking Sdc-4 (Figure  5-5).  

 

 

Figure  5-5 Co-staining of TG2 and Sdc-4 in MDF. The staining was performed on fixed 

and permeabilised wild Sdc-4 +/+ and Sdc-4 null -/- MDF after 2 hours adhesion in 

complete serum-containing medium. Sdc-4 was detected by rabbit anti-syndecan-4 

antibody and TG2 was detected by mouse anti-TG2 antibody Cub7402; secondary 

antibodies were goat anti rabbit IgG Alexafluor488 and goat anti mouse IgG Rhodamine 

RedX, respectively. The arrows point at cell-matrix adhesion sites where TG2 and Sdc-4 

co-localise. The bar indicates 20 μm.  
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Next, the cellular distribution of TG2 distribution in wild type MDF compared to Sdc-4 

null MDF was studied by Western blotting. Equal amounts of crude membrane (M) and 

cytosolic (C) fractions prepared from wild type and Sdc-4 -/- cells were separated by 

reducing SDS-PAGE and analysed by Western blotting for the presence of TG2. Protein 

equiloading was verified by probing blots of membrane extracts with antibody towards 

Na+/K+ATPase (a membrane marker) and the blots of cytosolic extracts with antibody 

against β-tubulin (a cytosolic marker) (Figure  5-6).  

As shown in Figure  5-6, TG2 antigen was significantly higher (p<0.05) in membrane 

fractions from wild type MDF compared to S4 -/- MDF; on the contrary, Sdc-4 -/- 

cytosolic extracts presented a significantly higher level of TG2 compared to wild type cells 

(p<0.05). There was not a significant difference in the total level of TG2 in wild type and 

Sdc-4 -/- cells when calculated as the sum of M and C (Figure  5-6).  

After studying the cellular distribution of TG2 by immunofluorescence and Western 

blotting, the distribution of TG2 activity in different cell compartments was also studied by 

measuring Ca2+-dependent transamidation (TG activity) in membrane and cytosolic cell 

extracts from wild type and Sdc-4 null dermal fibroblasts.  
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Figure  5-6 Analysis of TG2 distribution in cell compartments of wild type and Sdc-4 

null MDF. The distribution of TG2 in crude membrane (M) and cytosol (C) of Sdc-4 +/+ 

and Sdc-4 -/- fibroblasts was analysed by Western blotting. Proteins (50 μg) were 

separated by reducing SDS-PAGE (10% polyacrylamide gel) and immunoblotted with anti-

TG2 polyclonal antibody Ab10445. The equiloading was verified on a parallel blot of 

membrane and cytosolic extracts using, respectively, anti Na+/K+ ATPase and anti β-

Tubulin (β-Tub). The arrow heads point at TG2 (77 kDa), Na+/K+ ATPase (113 kDa) and 

β-tub (55 kDa). Densitometric analysis of three independent blots is shown in the 

histogram below the blots; data were normalised considering Sdc-4 +/+ M equal to 1. * 

indicates p<0.05. There was no significant difference between the total (M+C) level of 

TG2 in Sdc-4 +/+ and Sdc-4 -/- cells (p>0.05).   
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Figure  5-7 Cellular distribution of TG activity in wild type and Sdc-4 null MDF. Sdc-

4 +/+ and Sdc-4 -/- fibroblasts were fractionated into membrane (M) and cytosolic (C) 

fractions. TG activity was measured in the cell fractions through incorporation of 

biotinylated cadaverine into FN. The histogram shows the mean values ± SD of three 

independent experiments performed in triplicate. Data (Abs 450 nm) were normalised 

considering Sdc-4 +/+ M fraction equal to 1.  * indicates p<0.05. There was no significant 

difference between the total (M+C) activity level of Sdc-4 +/+ and Sdc-4 -/- cells (p>0.05). 

 

 

In wild type cells, TG2 activity was predominantly present in the membrane fraction; on 

the contrary, Sdc-4 null cells exhibited a higher level of TG2 activity in the cytosolic 

fraction compared to the membrane fraction. Considering the total level of TG activity as 

the sum of membrane plus cytosol activity, no significant differences were measured 

between wild type and Sdc-4 null cells (p>0.05) (Figure  5-7). This finding was consistent 

with the cell distribution of TG2 detected by Western blotting (Figure  5-6). As a further 

control, the specificity for TG2 of the total TG activity assay used in this study (Balklava 

et al., 2002) was confirmed by testing cell extracts lacking TG2. The results (Figure  5-8) 

showed that the Ca2+-dependent transamidation was close to zero in TG2 null MEF and 

was significantly lower than the signal measured in wild type MEF (p<0.01), indicating 

that the TG activity is predominantly due to TG2. 
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Figure  5-8 Total TG activity measurement in wild type and TG2 null MEF. TG 

activity was measured on total cell lysates from TG2 +/+ and TG2 null (-/-) MEF. Data 

presented are the mean values (Abs 450 nm ± SD) of 3 independent experiments performed 

in triplicates. **  indicates p<0.01. 

  

 

Next, the analysis of TG2 cellular distribution was completed by examining the level of 

secreted TG2. TG2 is known to be secreted and to bind ECM components, however it is 

not easily found free in the culture medium (Balklava et al., 2002; Gaudry et al., 1999). 

Therefore, the level of extracellular TG2 was analysed by using a immunofluorescence-

based protocol designed to specifically detect matrix-bound TG2 (Verderio et al., 1998). 

TG2 was detected by incubating wild type and Sdc-4 null cells with anti-TG2 antibody 

before cell fixation, as described in the Material and Methods section; the cells were then 

fixed and the primary antibody was detected by FITC-conjugated secondary antibody. The 

resulting staining showed a much lower level of matrix TG2 in cells lacking Sdc-4 

compared to wild type (Figure  5-9). Quantitative analysis of matrix-TG2 revealed that the 

difference between wild type and Sdc-4 -/- cells was statistically significant (p<0.01), thus 

suggesting a role for Sdc-4 in TG2 externalisation. 

At this stage, a series of controls on TG2 expression was performed in order to make sure 

that the differences in TG2 expression/externalisation between wild type and Sdc-4 null 

cells were due to the presence/absence of Sdc-4 rather than to different TG2 expression in 

the two cell lines. Firstly, RNA was extracted from wild type and Sdc-4 null cells, retro-

transcribed into cDNA and analysed by real-time PCR for the expression of TG2 and 
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Figure  5-9 Matrix-TG2 distribution in wild type and Sdc-4 null cells.  Matrix TG2 was 

detected in Sdc-4 +/+ and Sdc-4 null -/- MDF by culturing them in the presence of anti-

TG2 antibody Cub7402 for 2 hours before cell fixation and incubation with FITC-

conjugated secondary antibody. Nuclei were stained with DAPI, The bar indicates 20 μm.  

The average fluorescence of 5 random fields was quantified with Leica TCSNT image 

processing and represents matrix TG2 signal per number of nuclei; data were normalised 

considering Sdc-4 +/+ matrix TG2 as 100. n=5. ** indicates p<0.01.  
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Figure  5-10 Analysis of TG2 expression in primary fibroblasts. (A) TG2 expression 

was analysed by real time PCR in extracts from Sdc-4 +/+ and Sdc-4 -/- MDF; analysis 

was performed in triplicate. Values presented in the histogram are the mean changes of 

TG2 expression versus control GAPDH expression (2-ΔΔ Ct). (B) Real-time PCR products 

were analysed by gel electrophoresis. MW, 1 kb DNA ladder. (C) Western blot analysis of 

TG2 expression in total cell extracts (30 μg) from Sdc-4 +/+ and Sdc-4 -/- MDF. TG2 was 

detected by anti TG2 antibody Ab10445. (D) TG activity was measured in total cell 

extracts from Sdc-4 +/+ and Sdc-4 -/- MDF as incorporation of biotinylated cadaverine 

into FN. The histogram shows the mean ± SD of three independent performed in triplicate; 

data were normalised considering Sdc-4 +/+ activity (Abs 450 nm) as 1.  
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5.2.2 Sdc-4 influences TG2 activity at the cell-surface. 

The biological significance of the altered TG2 distribution at the cell surface was analysed 

in terms of TG2 transamidation activity, the main TG2 activity that takes place in the 

extracellular environment. To test this, the effects caused by interference with the heparan 

sulphate (HS) chains of HS proteoglycans, in particular those of Sdc-4, were studied. Two 

different approaches were used to interfere with HS chains, the first was heparitinase 

digestion, and the second consisted in the cell-treatment with surfen (bis-2-methyl-4-

amino-quinolyl-6-carbamide), an antagonist of HS function (Schuksz et al., 2008). To test 

the consequences of lack of Sdc-4 on TG2 activity, Sdc-4 null MDF were also used. 

Measurement of extracellular TG transamidation was carried out by using a previously 

developed assay involving biotinylated-cadaverine incorporation into FN by whole cells in 

serum-free culture medium (Jones et al., 1997). The transamidation level of wild type cells 

was significantly lowered by treating the cells with heparitinase or surfen, indicating that 

an interference with cell surface HS chains is correlated with a decreased cell-surface TG2 

activity (Figure  5-11). The IC50 value for surfen-mediated cell-surface TG activity 

inhibition was calculated from the titration curve showed in Figure  5-12, and corresponded 

to 6.8 μM surfen. To rule out an effect of surfen on the transamidation potential of TG2, 

the activity of purified gpTG2 was tested in the presence of surfen (6 and 12 μM). The 

presence of surfen did not determine a significant change in TG2 transamidation compared 

to the untreated control (p>0.05) (Figure  5-13). This confirms that the effect on cell-

surface TG2 activity is due to surfen antagonism for HS chains function. 
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Figure  5-11 Cell surface HS affect extracellular TG2 activity of MDF adhering on FN. 

Cell-surface TG activity was measured in Sdc-4 +/+ and Sdc-4 -/- MDF through the 

incorporation of BTC into FN. Where indicated, cells were pre-treated with heparitinase 

(Hep, 30mU/ml), surfen (12 μM) or medium only for 1 hour at 37°C; afterwards cells were 

seeded on FN in the presence of either Hep or surfen. The histogram shows the mean 

values ± SD of 3 independent experiments performed in triplicate; data were normalised 

considering activity of untreated Sdc-4 +/+ cells as 1. **, p<0.01. 

 

 

 

 

 

 

 143



Chapter 5: Effect of Sdc-4 in trafficking and cell-surface localisation of TG2 

 

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

IC50: 6.8 μM

Surfen (μM)

C
el

l s
ur

fa
ce

 T
G

 a
ct

iv
ity

 

Figure  5-12 Titration of TG2-activity inhibition by surfen. Dose response curve of TG2 

activity in the presence of increasing concentrations of surfen (1-14 μM). Cell-surface TG 

activity of wild type MDF was measured through the incorporation of biotinylated 

cadaverine into FN.  The mean ± SD of two independent experiments performed in 

triplicate is shown; data presented are normalised considering TG activity in the absence 

of surfen as 100. The calculated IC50 was 6.8 μM.  
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Figure  5-13 Dose-response curves of TG2 in the presence of surfen. TG activity of 

purified gpTG2 (0-8.5 nM) was measured through the incorporation of biotinylated 

cadaverine into FN in the absence (control) or presence of surfen (6 or 12 μM). The data 

shown are the mean Abs 450 nm ± SD of three independent experiments performed in 

triplicate. Differences were not statistically significant (p>0.05).   

 144

 



Chapter 5: Effect of Sdc-4 in trafficking and cell-surface localisation of TG2 

 

A significantly lower level of cell-surface TG2 activity was also measured in Sdc-4 null 

cells compared to wild type (p<0.01) (Figure  5-11). However, as noticed in Figure  5-10, 

the total level of TG2 expression and activity was unchanged between the two cell lines, 

thus confirming that the differences noticed on cell-surface activity were not due to 

different enzyme levels. The treatment of wild type fibroblasts with heparitinase and surfen 

determined a lower transamidation activity compared to Sdc-4 null cells Figure  5-11. 

Moreover, interference with HS chains significantly reduced the TG activity of Sdc-4 -/- 

cells (Figure  5-11). Together, these data indicate that HS are important for the 

transamidation activity of TG2 at the cell-surface. They also show that even though Sdc-4 

appears to be the main player in determining TG2 cell-surface transamidation activity, 

other HSPG are likely to be involved in TG2 presentation at the cell-surface.  

To confirm that the observed changes in TG2 were related to the lack of Sdc-4, a series of 

add-back experiment was performed. The re-introduction of Sdc-4 in Sdc-4 null cells using 

pcDNAhS4 determined a total rescue of cell-surface TG2 transamidation (Figure  5-14), 

which, as noticed for wild type and non transfected Sdc-4 null cells, was significantly 

reduced by treating the cells with heparitinase or surfen. 
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Figure  5-14 Sdc-4 rescues the level of extracellular TG2 activity in primary 

fibroblasts. Cell-surface TG2 activity was measured in Sdc-4 -/- MDF with added back 

Sdc-4 through transfection with pcDNAhS4; TG2 activity was measured as described in 

Figure  5-11.  Wild type fibroblasts (Sdc-4 +/+) are shown as a control. The histogram 

shows the mean values ± SD of three independent experiments performed in triplicate; 

data were normalised considering activity of untreated S4 +/+ cells as 1. **, p<0.01. 
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Since the assay used to measure cell-surface transamidation activity is based on the 

incorporation of biotinylated cadaverine into FN and presupposes cell-FN contacts taking 

place, the effect of either surfen or lack of Sdc-4 on cell adhesion on FN was tested. This 

was important to determine if the decreased transamidation was really due to interference 

with TG2 presentation or simply to a reduced cell-contact with the substrate. For the 

adhesion assay, cells in suspension were incubated for 1 hour at 37°C in serum-free 

medium with or without surfen (6 or 12 μM). The cells were then seeded onto FN-coated 

plates for 2 hours as in the cell-surface TG activity protocol (Jones et al., 1997). BSA 

coated plates were used as negative control for cell adhesion. As shown in Figure  5-, the 

presence of surfen neither interfered with the level of cell-adhesion on FN, nor with the 

morphology of adhering cells. Quantitative analysis (Figure  5-, histogram) revealed that 

there was no significant difference in cell adhesion on FN between wild type and Sdc-4 

null cells (p>0.05), as well as between untreated wild type cells and cells treated with 

surfen (p>0.05), thus confirming the suitability of theTG2 assay. 
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Figure  5-15 Analysis on surfen effect on cell-adhesion on FN. Sdc-4 +/+ or Sdc-4 -/- 

MDF were incubated for 1 hour at 37°C in serum-free medium with surfen (6 or 12 μM) or 

in serum-free medium only prior to seeding on BSA or FN coated microplates (in the 

absence or presence of surfen, as indicated). After 2 hours adhesion, cells were stained 

with crystal violet and cell adhesion was quantified spectrophotometrically after dissolving 

the attached cells in acetic acid. Absorbance data were normalised considering attachment 

of Sdc-4 +/+ cells in the absence of surfen as 100. Values are the mean ± SD of three 

independent experiments.  The bar indicates 20 μm. There was not a significant difference 

in cell adhesion on FN between untreated and surfen- treated cells (p>0.05).  
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The extracellular transamidation activity of TG2 was also measured by an in situ assay 

based on the incorporation of FITC-cadaverine into endogenous cellular substrates. The 

fluorescent substrate permeates the cells, however it has been previously shown to be 

predominantly incorporated in extracellular substrates, given the high Ca2+/GTP ratio in 

the extracellular environment (Balklava et al., 2002; Verderio et al., 1998). Cells were 

incubated for 15 hours in complete serum-containing medium supplemented or not FITC-

cadaverine before being fixed and analysed by confocal microscopy. In negative controls, 

either an active-site inhibitor of TG activity (R283, 200 μM) (Balklava et al., 2002), or no 

FITC-cadaverine were added. In Figure  5-16 representative pictures of wild type and Sdc-4 

null cells incubated in the different conditions are shown; the fluorescent amine was found 

to be predominantly cross-linked in cell-matrix glutaminyl substrates and in the 

pericellular matrix of wild type fibroblasts. Quantification of the average fluorescent signal 

per cell showed that the absence of Sdc-4 determined a significantly lower level of 

extracellular TG activity compared to wild type cells (p<0.01) (Figure  5-16). The 

specificity of TG-mediated incorporation was proven by the almost total inhibition of the 

reaction by TG inhibitor R283 (Figure  5-16) (Balklava et al., 2002). The specificity of the 

in situ assay for TG2 was tested by using TG2-null MEF as shown in Figure  5-17; no 

FITC-cadaverine incorporation was detected in TG2 null cells compared to wild type cells.  
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Figure  5-16 In situ measurement of extracellular TG2 activity. In situ TG activity of 

Sdc-4 +/+ and Sdc-4 null -/- MDF was visualised by the incorporation of FITC-labelled 

cadaverine into endogenous substrates. R283 (200 μM), a specific TG inhibitor, was used 

as a control for the reaction. Nuclei were stained with propidium iodide. The bar indicates 

20 μm. The average fluorescence/cell of 5 random fields (as those shown in the image) was 

quantified with Leica TCSNT image processing; data ± SD are presented in the histogram. 

* indicates p<0.01.  
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Figure  5-17 Validation of FITC-cadaverine incorporation as TG2 activity assay for 

primary fibroblasts. In situ TG activity of TG2 +/+ and TG2 -/- MEF was visualised by 

the incorporation of FITC-labelled cadaverine into endogenous substrates. The bar 

indicates 20 μm. 
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At this stage it was important to test whether heparin and HS had a direct effect on TG 

transamidation activity to investigate whether the effect of HSPG, and in particular that of 

Sdc-4, was also due to an action on TG2 enzymatic activity. To this purpose, the enzymatic 

assay was performed on purified TG2 (0-8.5 nM) in the presence of 2.3 or 4.6 μM heparin 

(same concentrations used for the solid-binding assay showed in Chapter 3). The results, 

shown in Figure  5-18, indicated that at these concentrations heparin does not affect the 

enzymatic activity of TG2 per se, since no differences were recorded between TG2 assayed 

with or without the presence of heparin. Therefore, this finding suggests that HS affects the 

biological activity of TG2 indirectly by altering its cell-surface localisation. 
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Figure  5-18 Study of heparin-binding effect on TG2 activity. TG activity of purified 

TG2 (0-8.5 nM) was measured through the incorporation of biotinylated cadaverine into 

FN in the absence (control) or presence of heparin (2.3 or 4.6 μM). The data shown are 

the mean Abs 450 nm ± SD of three independent experiments performed in triplicate. 

Differences were not statistically significant (p>0.05).   
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5.3 Discussion 

The experiments presented in this chapter were aimed to investigate the role of Sdc-4 on 

the cell-surface trafficking of TG2 in primary fibroblasts.   

The physical association of TG2 and Sdc-4 at the cell surface was confirmed by co-

staining of the two molecules in large peripheral cell-matrix adhesions. These structures, 

which determine the cell shape, have been reported by Longley et al. (1999) and Zamir and 

Geiger (2001). The absence of Sdc-4 determined a drastic reduction of the amount of TG2 

present at these cell-surface structures, and a parallel accumulation of TG2 in the cytosol.. 

Interestingly, when the staining was performed on cells adhering on FN, the patches 

corresponding to TG2 staining became larger, as if the TG2 was externalised from these 

cell-matrix contacts. Western blot analysis and TG2 activity assays performed on 

membrane and cytosolic fractions confirmed that in the absence of Sdc-4 TG2 is mostly 

retained intracellularly. This finding suggests a possible role for Sdc-4 in the cell-surface 

trafficking of TG2 and it is supported by the observation that heparin/HS does not 

influence the Ca2+-dependent transamidation activity of purified TG2.  

The results of the previous chapter showed a direct interaction of TG2 and Sdc-4 mediated 

by the HS chains of Sdc-4. The results of this chapter support this data, as lack of Sdc-4 is 

shown to lower cell-surface TG2, which is rescued by adding back Sdc-4. However, since 

perturbation of all cell-surface HS chains by either heparitinase or surfen (Schuksz et al., 

2008), determined an even lower cell surface activity in Sdc-4 null cells, it is possible that 

Sdc-4 may not the only HSPG receptor involved in the trafficking of TG2. A possible 

candidate for this role is Sdc-2, the Sdc family member with the highest expression at cell-

matrix contact points in fibroblasts (David et al., 1992; David, 1993).  

The role of HSPG in the externalization of unconventionally secreted proteins has been 

suggested and HSPG are essential factors in the export of FGF-2, (Zehe et al., 2006). It is 

therefore  possible that the HS chains of Sdc-4 and other HSPG may be involved in the 

externalization of TG2 in a similar way. 

However, HS are also involved in endocytosis of extracellular components (MacArthur et 

al., 2007), therefore they could affect the cell-surface trafficking of TG2 influencing its 

internalization. This possibility is particularly intriguing, since Zemskov and colleagues 
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(2007) have demonstrated that internalization of TG2 requires the endocytic receptor 

LRP1, and this receptor has been shown to act in concert with HSPG  (Mahley and Ji, 

1999). Although the possible double action of HSPG receptors in externalization and 

internalization of TG2 can not be excluded, even though the model used for the 

investigation presented in this thesis (Sdc-4 null cells) is not adequate to clarify the effect 

of lack of Sdc-4 in TG2 internalisation since these cells are not able to externalize TG2.  

In conclusion, this study has shown for the first time that cell-surface HSPG like Sdc-4 

influence the activity of extracellular TG2 by driving its location at cell-matrix adhesions.  
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Chapter 6:  Physiological significance of Transglutaminase-2 

binding to Syndecan-4 in kidney fibrosis 

6.1 Introduction 

6.1.1 TG2 and kidney fibrosis 

Since kidneys are organs constantly subjected to injuries, they are regarded a good model 

for studying wound repair. There are several factors responsible for kidney insults, such as 

drugs, dietary compounds, environmental factors and diseases. Under normal conditions 

the repair processes take place without being noticed, but when the insult becomes chronic 

(eg glomerulosclerosis, diabetic nephropathy) or the repair process is aberrant, the diseased 

condition becomes evident (El Nahas et al., 1997; Verderio et al., 2004). This abnormal 

state is characterized by a continuous remodelling process, which leads to kidney scarring 

and fibrosis and carries on until the kidney looses functionality. In particular, a non-

resolving inflammatory response takes place, together with fibroblasts proliferation and 

over expression/accumulation of ECM components, leading to loss of functionality and 

destruction of the kidney (Johnson et al., 2002; Johnson et al., 2003; Johnson et al., 1997).  

Despite being the main factor in determining renal failure, the matrix accumulation and the 

changes in cells-ECM interaction typical of this process are only partially understood and 

their improved understanding would support the development of new selective therapies.  

Experimental studies on the association of TG2 with progressive kidney fibrosis have 

shown a considerable increase in TG2 expression and externalisation. Extracellularly, 

given the high Ca2+ and low GTP/GDP concentrations, TG2 catalyses the formation of ε-

(γ-glutamyl) lysine crosslinks, characteristic of kidney fibrosis (El Nahas et al., 2004; 

Johnson et al., 1997; Johnson et al., 1999). It is possible to distinguish different stages in 

the development of renal conditions where TG2 is invoved. In the initial stage, there is an 

increased level of TG-mediated cross-links in the expanding ECM; this process seems to 

be correlated with either the externalisation of existing TG2, or to the involvement of other 

members of the TG family, since the overall renal TG level remains constant (Skill et al., 

2001). With the progression of the disease state, TG2 levels increase in tubular epithelial 

and mesangial cells (El Nahas et al., 2004; Johnson et al., 2004; Johnson et al., 2003). This 

new pool of TG2 is released in the ECM, where it further contributes to the crosslinking of 



Chapter 6: Physiological significance of TG2 binding to Sdc4 in tissue fibrosis 

 155

ECM proteins. In vitro studies have shown a marked reduction in matrix accumulation 

when TG2 activity is blocked, thus confirming the direct role of the enzyme on the 

development of fibrotic diseases (Skill et al., 2004). As a consequence, understanding of 

the regulation of TG2 externalisation and activity is important in the development of an 

effective therapy against kidney fibrosis. 

6.1.2 Sdc-4 and renal diseases 

The role played by Sdc-4 in the regulation of cell-matrix interactions and the variety of 

ligands that the HS chains can bind, determine the involvement of Sdc-4 in several types of 

diseases. In particular, given the high expression of Sdc-4 in kidney, compared to other 

tissues/organs, its role in the development of renal diseases is of particular interest. 

Kidneys isolated from Sdc-4 deficient mice are functionally and structurally normal 

(Ishiguro et al., 2000), but they react differently from wild type kidneys if exposed to 

artificial stress or diseases. For example, induction of obstructive nephropathy via 

intraperitoneal injection of κ-carrageenan (polysaccharide which accumulates in the 

collecting ducts) leads to high mortality in Sdc-4 null mice but not in wild type mice 

(Ishiguro et al., 2001). Kidneys from Sdc-4 -/- mice injected wit κ-carrageenan showed a 

high level of dilation of the renal tubules and of the inner medulla, where the compound 

was accumulated and determined obstruction of the collecting ducts. This obstruction led 

to high level of blood urea nitrogen in Sdc-4 -/- mice, which was responsible of the higher 

mortality compared to wild type animals. It has been suggested a role for Sdc-4 in 

preventing carrageenan accumulation in the collecting ducts, but the mechanism behind it 

is still unknown.  

It has been demonstrated that Sdc-4 is up-regulated in progressive proliferative kidney 

diseases, such as IgA nephropathy, but not in non-proliferative diseases such as thin-

membrane nephropathy (Yung et al., 2001). Sdc-4 was increased at both the mRNA and 

protein level, and interestingly, there was a correlated up-regulation of microfilament-

associated proteins such as vinculin, α-actinin and paxillin. These proteins, in particular α-

actinin, have been shown to form stable complexes with Sdc-4 in vitro, thus suggesting a 

possible role for Sdc-4 in cytoskeletal reorganisation which occurs during the development 

of proliferative diseases (Yung et al., 2001).  
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As reported in paragraph  6.1.1, TGFβ1 is an important factor in the wound healing process 

and fibrotic response, and TG2 plays a role in the regulation of TGFβ1 activation (Nunes 

et al., 1997; Telci et al., 2009; Verderio et al., 1999). Sdc-4 has been shown to be an 

essential factor in mediating cytoskeletal re-organisation in response to TGFβ1 (Chen et 

al., 2005). These data, together with the in vitro evidence of the essential role of cell 

surface HS for TG2-mediated RGD-independent cell adhesion (Verderio et al., 2003) 

suggest a possible connection between TG2 (which is also over-expressed in kidney 

fibrosis) and Sdc-4 signalling in the development of fibrotic diseases.  

6.1.3 TG2 and HSPG in kidney fibrosis 

Chronic kidney diseases lead to kidney fibrosis, characterised by accumulation of ECM 

components, fibroblasts proliferation and tubular atrophy (Johnson et al., 2003; Johnson et 

al., 1997); this process ultimately determines kidney failure. TG2, which has a high 

expression level in several kidney cell types (tubular epithelial cells and mesangial cells) 

plays an important role in the development of kidney fibrosis, as demonstrated by in vivo 

studies on experimental renal scarring models (Johnson et al., 1999). TG2 involvement in 

kidney fibrosis requires externalisation and translocation to the ECM, and it has been 

demonstrated that the level of extracellular TG2 is significantly increased in biopsies from 

fibrotic kidneys (Johnson et al., 2003). However, it is still unclear how TG2 is translocated 

to the cell-surface and ECM, as previously mentioned (Chapter 1, paragraph 1.2.9.6.3). In 

the previous chapters new evidence have been provided for the high affinity of TG2 and 

cell-surface HSPG in vitro, which has a significant impact on cell-surface trafficking of 

TG2. Therefore, HSPG may act as modulators of TG2 extracellular functions also in vivo.  

HSPG are key components of the tubular basement membrane and play an essential role 

for the proliferation of renal fibroblasts by facilitating the interaction of FGF with its cell-

surface receptor (Clayton et al., 2001). Moreover, cell-surface HSPG have been shown to 

participate to the unconventional mechanism of FGF translocation through the plasma 

membrane, mediated by FGF binding of HS chains of the receptors (Zehe et al., 2006). 

HSPG are upregulated in chronic kidney diseases characterised by tissue fibrosis (Fisher et 

al., 2009). These cell surface receptors have been implicated in kidney fibrosis by creating 

gradients of pro-fibrotic factors. Given the length and flexibility of their HS chains they 
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could also present the bound pro-fibrotic factors to cell types that do not secrete them, thus 

amplifying the response of those HS-binding molecules. 

The results presented in this thesis so far have highlighted a role for Sdc-4 in the regulation 

of cell-surface TG2 localisation and biological activity. Given the importance of TG2 

activity as a pro-fibrotic factor in the establishment of scarring and fibrosis, the analysis of 

the co-operation between Sdc-4 and TG2 was investigated in vivo. Unilateral ureteral 

obstruction (UUO) was used as an experimental model of kidney fibrosis, firstly to assess 

the role of Sdc-4 in the development of kidney fibrotic disease, and secondly to investigate 

whether TG2 and Sdc-4 cooperate in this process. 
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6.2 Materials and Methods 

6.2.1 Experiment design 

The minimum number of animals to use for the in vivo study was determined using an 

online power calculator (http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html). The 

parameters used for the algorithm (μ 78 vs 36, σ19, Power 0.99, α 0.05) were derived from 

a previous study on the effect of lack of TG2 in unilateral ureteral obstrtruction (UUO) 

development (Mohammed et al., 2006). The power calculator returned a value of 8, for that 

reason 8 or more (wild type or Sdc- null) animals were chosen for each time point 

considered as shown in Table  6-1. Both kidneys from control animals (untreated) were 

analysed. UUO was typically induced in the left kidney and the right kidney from animals 

with UUO induction was also analysed (it is indicated as untreated kidney in UUO). 

 

Time point Sdc-4 +/+ control Sdc-4 +/+ UUO Sdc-4 -/- control Sdc-4 -/- UUO 

7 days 8 8 10 8 

14 days 8 8 8 10 

21 days 8 8 8 10 

Table  6-1 Experimental design for in vivo study on Sdc-4 and TG2 contribution to 

kidney fibrosis. The table shows the number of animals used in every experimental group.  

 

6.2.2 Induction of UUO 

Experimental unilateral ureteric obstruction (UUO) was performed by the Department of 

Histopathology, Northern General Hospital (Sheffield) in wild type and Sdc-4 -/- mice 

(Ishiguro et al. 5249-52). Anaesthesia was induced with 5% fluorothane and maintained by 

2% fluorothane during all the surgical process. The procedure consisted in the ligation of 

the left ureter of each animal with a legating clip (Hemoclip Plus, Weck Closure Systems), 

which was placed one-third of the way down the ureter from the pole of the kidney 

(Ophascharoensuk et al., 1998). The peritoneum was flooded with ADEPT (4 % Icodextrin 

solution), in order to prevent post-surgical adhesions prior to closing. The muscle wall was 

closed with single cross-over stitching using dissolvable stitches. After UUO was 

http://www.stat.ubc.ca/%7Erollin/stats/ssize/n2.html
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performed, all mice were provided with Buprenorphine (10 mg/kg) for 40 hours for 

analgesic purpose. The mice were allowed to recover and were given free access to food 

and water.  At days 7, 14 and 21, the kidneys (n≥8) were retrieved, weighed and then 

sectioned into four equal parts to be used for the different analytical techniques. All 

procedures were carried out under license according to regulations laid down by Her 

Majesty’s Government, United Kingdom (Animals Scientific Procedures Act, 1986). 

6.2.3 Preparation of kidney paraffin sections 

Paraffin sections were prepared by the Department of Histopathology, Northern General 

Hospital (Sheffield). Kidneys were fixed in neutral buffered formalin then embedded in 

paraffin and, after solidification, cut at a thickness of 4 μm.  

6.2.4 Preparation of kidney cryosections 

Cryosections were prepared from kidney tissues stored in liquid N2. Tissues were mounted 

on tissue holders using Tissue-Tek O.C.T.™, a compound made of water soluble glycols 

and resins, providing an excellent specimen for cryostat sectioning at temperatures ≤ -

10°C. After embedding, the tissues were placed inside the cryostat, at a temperature of -

16°C, for 20 minutes, in order for the embedding resin to solidify completely and for the 

tissue to reach the same temperature of the cryostat chamber. After that, 14 mm thick 

sections were cut and, with the help of a fine brush, placed on Superfrost® Plus microscope 

slides, suitable for tissue staining procedures and microscopy. Cryosections were 

immediately used for in situ enzymatic activity assay ( 6.2.8).  

6.2.5 Masson’s trichrome staining on kidney tissues 

Masson’s trichrome staining was performed by the Department of Histopathology, 

Northern General Hospital (Sheffield) to stain in blue/green any collagen present and in 

red/pink nuclei, fibers, erythrocytes and elastin. Paraffin sections were de-waxed in xylene 

for 10 minutes, serially re-hydrated in 100%, 95% and 75% (v/v) ethanol, and then washed 

in distilled water prior to staining in Weigert's iron hematoxylin working solution [0.5% 

(w/v) hematoxylin, 47.5% (v/v) ethanol, 0.6% (w/v) ferric chloride, 0.5% (v/v) 

concentrated hydrochloric acid] for 10 minutes. Sections were rinsed in distilled water, 

stained in Biebrich scarlet-acid fuchsin solution [0.9% (w/v) biebrich scarlet, 0.1% (w/v) 
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6.2.6 Multiphase image analysis 

Multiphase analysis consents to quantify the percentage of coverage of a specific colour in 

a specific image. The analysis was performed using Analysis™ 3.2 software (Soft Imaging 

Systems, Germany), considering 10 images of non overlapping regions for each kidney 

sample. For each image, a distinct phase was allocated to a defined colour shade, 

representing a specific component of the tissue (i.e. one phase was representative of the 

blue/green colour of collagen after Masson’s Trichrome staining). The phases were 

allocated in order to have a minimum total phase coverage of  95%. 

6.2.7 Measurement of Hydroxyproline by Amino Acid Analyser. 

Kidney tissue was homogenised in four times its volume of homogenising buffer (50 mM 

Tris HCl, pH 7.4 containing 0.25 M sucrose, 10 mM EDTA and proteases inhibitor 

cocktail) using a motor-driven pellet pestle (Sigma Aldrich). Total proteins were assessed 

as described in Chapter 2 (section 2.2.5.3) after dissolving 10 μl of the homogenate in 10 

μl homogenation buffer supplemented with 0.2% (w/v) SDS in order to solubilise all the 

proteins present.1.4 mg of proteins from the homogenate were hydrolysed in 1.5 ml of 6M 

HCl at 110°C for 18 hours. The samples were then freeze-dried for 8 hours and 

resuspended in 200 μl lithium citrate loading buffer (0.2 M, pH 2.2) for amino acid 

analysis. 40 ml of the preparation were loaded onto a Biochrom30 Amino Acid Analyser 

(available at Sheffield University) using a partial fill loop. The fractionation was 

performed using 96361 LiHP control program and analysis package, and the readings of 

Ninhydrin derivatised peaks at 440nm were recorded. The estimated hydroxyproline 
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concentration in the volume loaded was calculated by reference to the 10 nmol/20 μl 

Biochrom calibration standard.    

6.2.8 Detection of in situ TG activity in kidney tissues  

Determination of in situ TG activity was performed on kidney cryosections with a 

thickness of 14 μm. Unfixed sections were rehydrated in reconstitution buffer [5% (v/v) 

donkey serum; 10 mM EDTA; 0.1 (v/v) Triton X-100 in 50 mM Tris-HCl, pH 7.4 

containing protease inhibitor cocktail] for 30 minutes at room temperature, then washed 

twice with washing buffer [10 mM EDTA in PBS containing protease inhibitor cocktail]. 

Kidney sections were incubated for 1 hour at 37°C in reaction buffer containing the TG 

substrate Texas Red cadaverine [5 mM CaCl2; 5 mM DTT, 0.1 mM Texas Red cadaverine 

in 50 mM Tris-HCl, pH 7.4 containing protease inhibitor cocktail]. The TexasRed 

fluorochrome was specifically chosen instead of FITC used in the original protocol, which 

emits at a frequence similar to the auto-fluorescence of kidney tissue. In negative controls, 

10 mM EDTA was used instead of 5 mM CaCl2 in the reaction buffer. After the 

incubation, sections were washed 3 times with washing buffer, fixed in ice cold acetone for 

5 minutes at -20°C and air dried. Slides were mounted with Vectashield fluorescence 

mounting media and visualised using Leica TCS-NT confocal microscope. The level of TG 

in situ activity was determined subtracting the fluorescence level of negative control (10 

mM EDTA) to the level of samples containing CaCl2. Non overlapping fields of the same 

size were quantified for each kidney sample using the Leica oonfocal image analysis 

software. Data were expressed as TexasRed emission versus auto-fluorescent emission.  
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6.3 Results 

6.3.1 Lack of Sdc- is protective against the development of kidney fibrosis 

Impaired kidney function results from remodelling in the kidney and excess ECM 

deposition, leading to renal fibrosis. Wild type and Sdc-4 null mice were subjected to UUO 

as described in section  6.2.2. Masson’s trichrome staining was used to assess the overall 

level of scarring in normal and fibrotic kidney tissue harvested at 7, 14 and 21 days after 

the induction of UUO. The scarring level, represented by accumulation of collagen (blue 

staining), was quantified by using multiphase image analysis, as described in section  6.2.6; 

for each sample the scarring index was expressed as the average ratio of blue signal to red 

signal (non collagen staining) in order to correct the values for the area of tissue analysed.  

As shown in Figure  6-1 normal kidney sections from both wt and Sdc-4 -/- mice showed 

almost absence of blue/green colour and a tight association of tubules (index of renal 

functionality) in the cortical region of the kidneys. No differences were registered in the 

scarring level, with a measured value of 0.015±0.004 for Sdc-4 +/+ and 0.016±0.006 for 

Sdc-4 -/- kidneys (Figure  6-2). There was a progressive accumulation of tubulo-interstitial 

collagen in both Sdc-4 +/+ and Sdc-4 -/- kidneys after the induction of UUO, reaching the 

maximum level at 21 days post UUO induction. The induced fibrosis also disrupted the 

association of tubules, with the creation of gaps among them filled by ECM components. 

Starting from day 7 after UUO induction, it was possible to detect collagen deposition in 

the tubulointerstitial space and in the area surrounding the glomeruli (Bowman’s capsule) 

in kidneys from wild type mice.  At the same time point, sections taken from Sdc-4 -/- 

mice showed a significantly lower amount of collagen deposition compared to the sections 

from wild type mice (p<0.05), and the association between the tubules did not appear to be 

altered. The scarring index was 0.117±0.059 for the wild type and 0.030±0.012 for the 

Sdc-4 null kidneys (Figure  6-2). 

At 14 days after the induction of UUO the blue signal indicating collagen deposition was 

more diffused compared to the previous time point in wild type cells (0.221±0.081), and 

the association between tubules also started to be compromised (Figure  6-1). The scarring 

index was also increased in Sdc-4 -/- kidney tissues (0.133±0.058), but in these samples 

the tubular structure was maintained. Even though wild type kidneys displayed a higher 
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The trend observed after 21 days of UUO was consistent with what observed at the 

previous time points, with a higher level of collagen deposition in wild type kidneys 

compared to Sdc-4 -/- kidneys (Figure  6-1). At this time point the structure of Sdc-4 null 

kidneys was also altered, with an accumulation of blue-stained collagen in the tubulo-

interstitial space compromising the contact between tubules. The scarring index values 

calculated at 21 days were 0.3167±0.171 for Sdc-4 +/+ tissues and 0.133±0.087 for Sdc-4  

-/- tissues (p<0.05). 



Chapter 6: Physiological significance of TG2 binding to Sdc4 in tissue fibrosis 

 164

Figure  6-1 Extracellular matrix accumulation after induction of kidney fibrosis-Masson’s Trichrome staining. Paraffin sections 

from normal and UUO (7, 14 and 21 days) kidneys from Sdc-4 +/+ and Sdc-4 -/- mice were stained to evaluate renal scarring. Collagen is 

stained in blue/green; nuclei, fibers and elastin in red/pink. White arrow: glomerulus; asterisk: tubular lumen; black arrow: peritubular 

space. The bar indicates 50 μm. 
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Figure  6-2 Quantification of scarring index in normal and fibrotic (UUO) kidneys. 

The data represent the average values obtained from multiphase analysis of 4 to 10 

kidneys from Sdc-4 +/+ and Sdc-4  -/- mice at 7, 14 and 21 days after UUO induction; 

scarring index of normal kidneys is shown as a control. 10 images taken from non-

overlapping fields were analysed for each kidney sample. Average scarring index ± SD is 

shown. * indicates p ≤ 0.05. Normal kidneys, n=48. UUO kidneys, n=8. 

 

To have a clearer idea of the localisation of the collagen staining, kidney sections were 

analysed at 400X magnification and separate pictures were taken for proximal tubules and 

glomeruli. Figure  6-3 displays collagen accumulation in the proximal tubules of the kidney 

cortex. It is possible to see that, with the progression of the disease, there is an expansion 

of the matrix surrounding the tubules, with a loss of the compact structure observed in 

normal tissue. As presented in Figure  6-1, the blue staining appeared to be higher in wild 

type kidneys compared to Sdc-4 -/-. A similar analysis was performed on the glomeruli, the 

functional units of the kidney (Figure  6-4). A progressive collagen accumulation is evident 

in the space surrounding the glomerulus (Bowman’s capsule), indicating 

glomerulosclerosis, characteristic of renal fibrotic diseases.  
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Figure  6-3 Collagen accumulation in the proximal tubules after UUO induction. Progressive collagen accumulation was monitored 

after UUO induction (7, 14 and 21 days) in the proximal tubules of Sdc-4 +/+ and Sdc-4 -/- kidneys. Collagen was detected using 

Masson’s trichrome staining. The bars correspond to 50 μm. 
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Figure  6-4 Collagen accumulation in the glomeruli after UUO induction. Progressive collagen accumulation was monitored after UUO 

induction (7, 14 and 21 days) in the periglomerular area of Sdc-4 +/+ and Sdc-4 -/- kidneys. Collagen was detected using Masson’s 

trichrome staining. The bars correspond to 50 μm.  
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The scarring index was also assessed in untreated kidneys of animals which had UUO 

induced in the left kidney, in order to determine if compensatory effects were taking place. 

The results presented in Figure  6-5 show that at the three time points considered there was 

not a significant difference between kidneys from normal mice and untreated kidneys from 

UUO mice (p>0.05) even though a general increase in scarring index could be measured in 

untreated kidneys from UUO mice at the higher stages of UUO development (Figure  6-5). 

 

 

Figure  6-5 Quantification of scarring index in the untreated kidneys of mice with 

UUO induction. Scarring index was quantified as described in Figure  6-2. Normal 

kidneys (n=16) and untreated kidneys from UUO mice (n=8) were compared at every time 

point (7, 14 and 21 days) for wild type and Sdc-4 mice. 
 168
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The effect of the gender in the development of kidney fibrosis was investigated by 

analysing separately the scarring index values relative to male and female individuals. 

Normal kidneys from either wild type (Figure  6-6 A) or Sdc-4 null (Figure  6-6 B) 

displayed similar values of scarring index at the three time points considered and no 

significant differences were detected between male (M, shown in blue) and female (F, 

shown in red) samples.  

 

 

 

Figure  6-6 Effect of gender on scarring index of normal kidneys. Kidney scarring index 

(quantified with Masson’s trichrome staining) was compared between normal male (M, 

blue) and female (F, red) at 7, 14 and 2 days. Quantification of wild type samples is shown 

in A, Sdc-4 null samples is presented in B.  

 

 

 

Wild type kidneys affected by UUO showed a progressive increase in scarring index, but 

no significant differences could be identified between males and females at the three time 

points considered (Figure  6-7 A). Sdc-4 null samples displayed a lower level of scarring 

index compared to wild type samples, as already shown in Figure  6-1, but, as wild type 

samples, there was no difference between male and females at the three time points 

considered (Figure  6-7 B). 
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Figure  6-7 Effect of gender on scarring index on kidneys subjected to UUO. Kidney 

scarring index (quantified with Masson’s trichrome stainig) was compared between UUO 

male (M, blue) and female (F, red) at 7, 14 and 21 days. Quantification of wild type 

samples is shown in A, Sdc-4 null samples are presented in B. 

 

 

Collagen accumulation during UUO was also monitored by measuring the level of 

hydroxy-Pro, a major component of collagen. Hydroxy-Pro gives a more precise 

measurement of collagen deposition compared to Masson’s trichrome staining, which can 

be altered by urine infiltration in kidneys subjected to UUO. As shown in Figure  6-8, a 

significantly higher value of the hydroxyl-Pro was detected in wild type samples after 21 

days UUO compared to Sdc-4 null samples. No significant differences were measured 

between wild type and Sdc-4 null normal samples. The analysis validated what previously 

determined with Masson’s trichrome quantification. 

In conclusion, these data have shown that Sdc-4 is involved in the development of 

experimental renal fibrosis. Since previous work has shown that TG2 is also implicated in 

this process, we next tested whether the interaction of TG2 with Sdc-4 could affect TG2 

activity also in vivo.  
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Figure  6-8 Hydroxy-Pro quantification in normal and fibrotic kidneys. The total level 

of hydroxyproline was quantified in normal and UUO (21 days) kidney homogenates from 

Sdc-4 +/+ and Sdc-4 -/- mice, as described in section  6.2.7. **, p<0.01. n≥3. Normal 

kidneys, n=24. UUO kidneys, n=8 
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6.3.2 Lack of Sdc-4 leads to lower in situ Transglutaminase activity 

In situ TG activity was assayed on kidneys from wild type and Sdc-4 null mice through the 

incorporation of Texas Red labelled cadaverine into unfixed cryosections, either normal or 

post UUO.  Since the TG-reaction is Ca2+-dependent, reaction buffer containing EDTA 

was used as a negative control. The green auto-fluorescence of the kidney tissue was used 

as a normaliser for the area of tissue considered (kidney cortical area).  

As shown in Figure  6-9 and Figure  6-10, TG in situ activity was hardly detectable in 

normal kidneys from wild type and Sdc-4 -/- mice. At 7 days after the induction of UUO 

there was a clear distribution of TG activity in the space surrounding the tubules of wild 

type kidneys, as pointed by the arrow in Figure  6-9. The signal measured in Sdc-4 -/- 

kidneys at the same time point was significantly lower (p<0.05), as shown in Figure  6-10 

and quantified in the histogram of Figure  6-11. At 14 days after UUO induction, the 

peritubular signal was increased in wild type kidneys compared to the previous time point 

(Figure  6-9 and Figure  6-11), with a pattern analogue to the collagen distribution measured 

with Masson’s trichrome (Figure  6-1). At the same time, a similar pattern of TG activity 

was detected in Sdc-4 null kidneys, as pointed by the arrow in Figure  6-10, even though 

the activity level was significantly lower (p<0.01) than what measured in wild type 

kidneys. TG in situ activity was still significantly higher (p<0.05) in wild type kidneys 

compared to Sdc-4 null kidneys at 21 days UUO. At this late time point post UUO, the 

kidney integrity was also compromised, so it was difficult to have a clear idea of TG 

activity localisation (Figure  6-9). 

 

 



Chapter 6: Physiological significance of TG2 binding to Sdc4 in tissue fibrosis 

 

Figure  6-9 Measurement of TG activity in situ in normal and fibrotic (UUO) kidneys 

from wild type mice. TG activity was measured in cryosections produced from normal 

and UUO (7, 14 and 21 days) kidneys from wild type mice via the  incorporation of 

TexasRed-cadaverine into endogenous substrates in the presence of either 5 mM CaCl2 or, 

as a negative control, 10 mM EDTA. The green auto-fluorescence of the kidney tissue was 

used as a area normaliser. 3 non-overlapping images acquired by confocal microscopy 

were quantified for each kidney sample. Normal kidneys, n=48. UUO kidneys, n=8.  The 

arrows point at the TG distribution in the ECM surrounding tubules and glomeruli. The 

bar indicates 50 μm.  
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Figure  6-10 Measurement of TG activity in situ in normal and fibrotic (UUO) kidneys 

from Sdc-4 -/- mice. The staining was performed on normal and UUO (7, 14 and 21 days) 

from Sdc-4 null mice as described in the legend of Figure  6-9. Normal kidneys, n=48. 

UUO kidneys, n=8. The arrows point at the TG distribution in the ECM surrounding 

tubules and glomeruli. The bar indicates 50 μm.  
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Figure  6-11 Quantification of TG in situ activity in normal and fibrotic (UUO) 

kidneys. The data represent the average values obtained from quantification of the 

fluorescent signal of 4 to 10 kidneys from wild type (Sdc-4 +/+) and Sdc-4  -/- mice at 7, 

14 and 21 days after UUO induction. TG activity of normal kidneys is shown as a control. 

5 images taken from non-overlapping fields were analysed for each kidney sample. 

Average in situ activity ± SD is shown. Normal kidneys, n=48. UUO kidneys, n=8. *, p ≤ 

0.05; **, p<0.01. 

 

 

Linear correlation (Pearson’s correlation) between renal scarring (estimated with Masson’s 

trichrome quantification) and in situ TG activity was determined using GraphPad software. 

The analysis revealed a coefficient of linear correlation (r) equal to 0.6532 when measured 

considering Masson’s trichrome as scarring index (Figure  6-12); the linear correlation 

resulted statistically significant (p<0.0001). It has to be considered that the large number of 

samples analysed can determine a low p value and significant correlation even though from 

the graph many samples do not appear to fit with the correlation line. 
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Figure  6-12 Correlation between TG activity and renal scarring index after the 

induction of UUO. Correlation was determined between in situ TG activity and scarring 

index (measured with Masson’s trichrome staining) using GraphPad Prism software. 

Values relative to all the samples used in the study (normal and UUO kidneys from wild 

type and Sdc-4 null mine) are plotted. R2 indicates the fitting with the regression line. r, 

Pearson’s coefficient of linear correlation; p is relative to positive correlation. 

 

 

Linear correlation was also estimated separately for wild type and Sdc-4 samples (normal 

and UUO). The data in Figure  6-13 show clearly that in wild type samples the levels of 

both TG activity and scarring index are higher compared to Sdc-4 null samples. In both 

wild type and Sdc-4 -/- there was a positive correlation between TG activity and scarring 

index (r= 0.6355 and r=0.5318, respectively) and the correlation was statistically 

significant (p=0.0001 and p=0.003, respectively). It is interesting to see how the values of 

TG activity start to increase before the scarring index in UUO samples compared to normal 

samples (Figure  6-13). This observation is consistent with a role of TG activity in the 

development of the fibrotic status, where the accumulation of ECM is a consequence of 

TG activity.  
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Figure  6-13 Effect of Sdc-4 on the correlation between TG in situ activity and 

scarring index. Correlation was determined between in situ TG activity and scarring 

index (measured with Masson’s trichrome staining) using GraphPad Prism software. 

Values relative to wild type samples (normal and UUO) are presented in A; values relative 

to Sdc-4 null samples (normal and UUO) are shown in B. R2 indicates the fitting with the 

regression line. r, Pearson’s coefficient of correlation; p is relative to positive correlation. 

 

 

Controls on TG2 expression level were performed by Western blotting on normal and 21 

days UUO kidney sample from wild type and Sdc-4 -/- animals. The results presented in 

Figure  6-14 show that there was no significant difference in the level of TG2 expression in 

normal kidneys from wild type and Sdc-4 null mice. The level of TG2 was increased in an 

analogous way in wild type and Sdc-4 null kidneys at 21 days after the induction of UUO, 
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Figure  6-14 TG2 level in kidney extracts from wild type and Sdc-4 null mice. TG2 

expression was measured by Western blotting in protein extracts of normal and UUO 

kidneys from Sdc-4+/+ and Sdc-4 -/- mice. 25 μg protein extract were loaded; three 

separate samples were analysed for each condition.  TG2 was detected by anti-TG2 

polyclonal antibody Ab10445 and revealed by incubation with HRP-conjugated secondary 

antibody. Cyclophilin A (CypA) was used as a control for equiloading. The histogram 

shows TG2 level expressed as ratio TG2/CypA. Mr, indicates gpTG2 standard, 100 ng.
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Kidney fibrosis, characterised by glomerular sclerosis accompanied by interstitial fibrosis 

is a common consequence of several renal diseases of different aetiology. For this reason, 

understanding the mechanisms regulating the development of kidney fibrosis is particularly 

important in order to develop specific therapies aimed to the reduction of fibrotic diseases 

progression. UUO was chosen as experimental model for progressive proliferative renal 

fibrosis since it is a well established model for rodents which permits the development of 

fibrotic state in a relatively short time without the use of exogenous toxins and without the 

development of uremia (Chevalier et al., 2009). Moreover, UUO gives the advantage of the 

availability of the contralateral kidney as a control. The use of UUO as a fibrotic model is 

also particularly significant considering that in infants and children the obstruction of the 

urinary tract due to congenital factors is the principal cause of kidney failure (Seikaly et 

al., 2003). One important disadvantage of this model is that, since the urinary tract is 

blocked, it is not possible to perform studies on renal functionality (i.e. analysis on urine 

samples). On the other side, given the high correlation between UUO-induced renal 

insufficiency and interstitial fibrosis (Schainuck et al., 1970), UUO represent a valid 

experimental model for fibrotic studies.  

The first step of the investigation consisted in the measurement of changes in ECM 

deposition (collagen) in wild type and Sdc-4 null kidneys after the induction of UUO. 

Quantification of Masson’s trichrome staining, which allows an estimation of collagen 

fibres deposition, revealed a significantly higher level of scarring in wild type kidneys 

compared to the Sdc-4 -/- at all the time points considered, suggesting a protective role for 

Sdc-4 against the development of kidney fibrosis. This finding was confirmed by the 

measurement of hydroxyl-Pro in kidney homogenates, directly correlated to the amount of 

collagen. Samples prepared from UUO Sdc-4 null kidneys displayed a significantly lower 

level of the amino acid compared to the wild type at 21 days UUO. Being kidney fibrosis 

related to an un-regulated tissue repair process, this result is in accordance with the 

involvement of Sdc-4 in wound healing and the reported delay in wound healing in Sdc-4 -

/-mice (Echtermeyer et al., 2001). Our findings of a protective role of Sdc-4 in kidney 

fibrosis appeared to be in contrast with a previous study focused on the role of Sdc-4 in 

kidney diseases induced by unilateral nephrectomy (UNX). In the reported study, the 

absence of Sdc-4 determined an increased level of glomerulosclerosis after UNX, which 

was however correlated to the compensatory overexpression of Sdc-2 in Sdc-4 -/- kidneys 
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(Cevikbas et al. 42-52). Indeed, Sdc-2 promotes the activity of pro-fibrotic TGF-β1, a key 

mediator of glomerulosclerosis (Chin et al., 2001; Gagliardini and Benigni, 2006). 

Moreover, Cevikbas and colleagues did not show any significant changes in wild type 

kidneys after UNX. The UUO model used in the current study analyses the effect of Sdc-4 

knock out from a different perspective compared to UNX model, where one of the kidneys 

is eliminated and the remaining kidney is subjected to glomerular hyperfiltration. This may 

explain the differences observed in the development of renal fibrosis between the present 

study and the one reported by Cecikbas et al. (2008), where no interstitial fibrosis was 

detected.  

Several studies have been published on gender effect in the susceptibility to renal diseases 

such as ischemia/reperfusion injury (Hu et al., 2009), polycistc kidney disease (Stringer et 

al., 2005) and diabetic nephropathy (Tomiyoshi et al., 2002). When the effect of gender 

was investigated in the current study, no significant differences were detected in the 

development of kidney fibrosis after UUO induction, suggesting that hormonal levels do 

not influence this experimental model of kidney fibrosis. However, the analysis of a higher 

number of samples would be required in order to have a more representative study on 

gender effect on kidney fibrosis. 

Given the direct association of TG2 and Sdc-4 demonstrated in this study, next the role of 

Sdc-4 in the regulation of TG activity was studied in normal and fibrotic kidneys. TG 

activity was found to be distributed in the same regions where collagen deposition was 

detected, in particular in the periglomerular area and in the extracellular space surrounding 

the tubules. The amount of in situ TG activity was found to be increased with the 

progression of the disease in both wild type and Sdc-4 ko kidneys, in accordance with 

previous reports (Fisher et al., 2009). At any time point considered (7, 14 and 21 days post 

UUO induction) TG2 activity was always significantly higher in wild type kidneys 

compared to Sdc-4 -/-. TG2 in situ activity was also positively correlated with the collagen 

deposition quantified by Masson’s trichrome staining. Since the TG activity level was 

comparable in normal wild type and Sdc-4 -/- kidneys, as well as the level of TG2 

expression, these data suggest a possible role for Sdc-4 in the regulation of extracellular 

TG2 activity correlated with the development of kidney fibrosis. Expression analysis of 

TG2 antigen failed to show a significantly increased TG2 level in wild type kidneys 

compared to Sdc-4 null kidneys at 21 days UUO. This finding suggests that the reduced 
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TG2 activity observed in Sdc-4 -/- kidneys post UUO may be due to the involvement of 

Sdc-4 in TG2 externalisation, as reported in vitro in this study (Chapter 5). The analysis 

also failed to show a significant difference in TG2 antigen between normal and post UUO 

samples, both wild type and Sdc-4 -/-. This finding is surprisingly, given that previous 

reports have shown an increased level of TG2 expression in kidney fibrotic diseases (El 

Nahas et al. 2004; Johnson et al., 2003; Johnson et al., 1999). 

In conclusion, these data suggest that the role of Sdc-4 is not directly related to the 

activation of TG2 expression, but it may involve the translocation of the enzyme in the 

extracellular environment, where the conditions are favourable for the Ca2+-dependent 

transamidating activity.  
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Chapter 7:  General discussion 

TG2 plays an important role in the ECM, regulating cell-matrix interactions in 

physiological conditions and in situations of cell stress/wound healing by influencing cell 

adhesion and matrix stabilisation. The results presented in the first part of this thesis aimed 

to investigate the specific role of extracellular TG2 in the early stages of cell adhesion to 

FN, which was studied in primary fibroblasts for the first time. In order for TG2 to mediate 

extracellular events, the enzyme needs to be externalised and presented at the cell surface. 

This concept has been clearly demonstrated by the results presented in Chapter 3, showing 

FA formation in TG2 -/- MEF with or without added-back matrix TG2. Moreover, it is 

known that extracellular TG2 combined to FN mediates a novel adhesion mechanism, 

independent from integrin binding to FN (RGD-independent cell adhesion) (Verderio et 

al., 2003). This mechanism plays an important role in mediating cell survival in situations 

of cell stress, when the ECM is fragmented and RGD-dependent adhesion is impaired 

(Davis et al., 2000; Verderio et al., 2003). However, even though TG2 is known to be 

externalised, the mechanism regulating its cell-surface trafficking is still not fully 

understood. TG2-mediated RGD-independent cell-adhesion relies on the presence of cell-

surface HS chains (Verderio et al., 2003), moreover, TG2 has been known for a long time 

to have a certain affinity for heparin (analogue of HS) (Gambetti et al., 2005; Signorini et 

al., 1988). In this study HSPG like Sdc-4 were investigated as possible receptors for TG2 

at the cell surface.  

These results presented in Chapter 3 are in accordance with previous reports describing the 

presence of TG2, in association with FN, in the pericellular matrix and in the ECM of 

Swiss 3T3 fibroblasts (Gaudry et al., 1999; Verderio et al., 1998). In fact both TG2 antigen 

and activity could be detected at the cell surface of primary fibroblasts starting from 20 

minutes of cell adhesion on FN. TG2 localisation at cell-matrix contacts supported the idea 

of a role for the enzyme in early cell adhesion. Further studies aimed to investigate the role 

of externalised TG2 in cell adhesion were based on the use of primary cells isolated from 

mice where TG2 was disrupted by homologous recombination (De Laurenzi and Melino, 

2001). TG2 was selectively re-introduced on these cells either by cell transfection with a 

pEGFPTG construct or by plating the cells on a matrix of TG2 bound to FN. Cell adhesion 

was evaluated by monitoring FAK activation (phosphorylation of Tyr 397), actin 

cytoskeleton morphology and formation of vinculin-containing FA. Cells lacking TG2 
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displayed a significantly lower level of FAK-P in the early stages of cell adhesion, 

moreover they failed to form correct actin SF and vinculin-containing FA. These 

observations suggested a role for TG2 in the initial activation of FAK, showing that TG2 is 

involved in this step of FAK activation together with participating to the following 

activation by phosphorylation at Tyr 576 and Tyr 577 as previously described by Stephens 

et al. (2004).  

Syndecans and glypicans are the two families of membrane-bound proteoglycans, and both 

carry HS chains (Bernfield et al., 1992). The difference between the two families is that 

syndecans are type-1 transmembrane receptors, while glypicans are linked to the cell 

surface by a C-terminal GPI anchor (Bernfield et al., 1992). Since the current work aimed 

to understand the mechanism which regulates TG2 externalisation and biological activity 

at the cell surface, the attention was focused on syndecans for a number of reasons. Firstly, 

given their transmembrane and cytosolic domains, they can be involved in cell membrane 

trafficking. Secondly, TG2-mediated RGD-independent cell adhesion has been shown to 

be repressed by a specific inhibitor of PKCα (Go6976) (Verderio et al., 2003) and Sdc-4 

mediates PKCα activation (Defilippi et al., 1997; Slater et al., 2001). Thirdly, Sdc-4 is a 

widespread component of FA (Echtermeyer et al., 1999; Woods and Couchman, 1994), a 

site where TG2 was also found to be localised (Chapter 3 and Chapter 5). In order to 

investigate the role of Sdc-4 in TG2-mediated RGD-independent cell adhesion, 

experiments were performed on primary MDF isolated from mice lacking Sdc-4 (Ishiguro 

et al., 2000) using wild type MDF as a control. It is well known that, following initial cell 

attachment to FN via α5β1 integrins, Sdc-4 is essential for the formation of actin SF 

(Baciu and Goetinck, 1995; Woods and Couchman, 1994; Woods and Couchman, 2001) . 

However, the results showed in this thesis indicated that Sdc-4 -/- primary fibroblasts can 

still spread and form stress fibers when plated on FN. Anyway, SF of Sdc-4 null cells 

appeared to be less thick compared to those of wild type fibroblasts, indicating impairment 

in the spreading process. This hypothesis fits with the results obtained on the 

phosphorylation level of FAK. FAK phosphorylation at Tyr397 is an early event in FA 

formation. Results showed that Sdc-4 -/- MDF have a significantly lower amount of 

activated FAK compared to wild type cells; this could be the justification for the defects in 

actin cytoskeleton assembly, since FAK has a role in the modulation of stress fibers 

formation mediated by the small GTPase RhoA (Arthur and Burridge, 2001). This 

observation is in accordance with what previously published, stating that lack of Sdc-4 
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only affects cell spreading when the cell-binding domain of FN is missing (Ishiguro et al., 

2000). Measurements of FAK phosphorylation and SF formation revealed that the lack of 

Sdc-4 impairs TG2-mediated RGD-independent focal adhesion, which was rescued when 

Sdc-4 was added back to Sdc-4 null cells via transfection with pcDNAhS4 construct. 

While this study was being conducted, a parallel work stating the importance of Sdc-4 in 

FN-bound TG2-mediated RGD-independent cell adhesion was published (Telci et al., 

2008). The cited work did not explore the contribution of Sdc-4 to TG2-mediated RGD-

independent FAK activation, which is an original outcome of the studies presented in this 

thesis.  

Syndecans are constituted by a transmembrane protein which carries GAG chains 

(predominantly HS) on the extracellular domain; these chains, spanning outside the cell 

surface, are mostly responsible for binding properties of syndecans (Bernfield et al., 1992). 

For these reasons, binding studies were performed using purified TG2 and heparin (highly 

sulphated analogue of HS) or HS. Both SPR and solid-binding assays revealed a high 

binding affinity of TG2 for heparin/HS, estimated to be in the nM range. The apparent 

affinity of TG2 for both heparin and HS was measured, with a Kd of approximately 20 nM, 

when estimated with solid binding assay; the apparent affinity of TG2 for heparin was 90 

nM when measured by SPR. It is interesting to notice that the affinity of TG2 for 

heparin/HS is slightly higher of the measured affinity of TG2 for FN (Kd= 180 nM, 

measured by SPR), which, so far, has been considered the main binding partner for TG2 

(Hang et al., 2005). However, given the high affinity of TG2 for both FN and HS and, in 

turn, the affinity of FN for HS chains, collectively these data suggest a possible triangular 

association of TG2, HS chains of Sdc-4 and FN at cell-matrix contacts. Janiak et al. (2006) 

proposed an association of TG2 and β1 integrins at the cell surface, leading to integrin-

mediated signalling involved in cell adhesion. Our results lead to the hypothesis that TG2 

may exist in complex with Sdc-4 and FN at the cell surface. It is tempting to propose that 

TG2 may mediate the cross-talking between integrins and Sdc-4 leading to full adhesion 

and spreading (Saoncella et al., 1999).  

The work was carried on by showing that endogenous TG2 secreted by primary fibroblasts 

can interact with immobilised extracellular heparin/HS, indicating the possibility of a 

physiological role for the interaction of TG2 with HSPG, as already introduced in the work 

by Verderio et al (2003). This hypothesis was validated by studies on the physical 
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association of TG2 and Sdc-4 in vitro, which revealed a direct association of the two 

molecules at the cell surface of different cell types when analysed by co-

immunoprecipitation studies. In a parallel work exogenous FN-bound TG2 has been shown 

to co-immunoprecipitate with Sdc-4 (Telci et al., 2008). The work by Telci and colleagues 

however did not investigate the association of endogenous TG2 and Sdc-4. On the 

contrary, the results presented in this thesis (Chapter 4) show for the first time that cell-

secreted TG2 is associated with Sdc-4 at the cell surface and the interaction involves TG2-

binding of Sdc-4 HS chains. 

In this study, the extracellular localization and the cell-surface activity of TG2 were found 

to be regulated by Sdc-4 in primary fibroblasts, since MDF lacking Sdc-4 failed to show 

TG2 antigen and activity on the cell surface and the enzyme appeared to be retained 

intracellularly. In addition, added back Sdc-4 restored TG2 cell-surface activity in Sdc-4 

null cells. Further studies showed that the interference with cell-surface HS chains, either 

via heparitinase treatment or the HS antagonist surfen, significantly decreased the level of 

cell-surface TG2 activity. Since the HS chains did not appear to alter the intrinsic 

transamidation activity of TG2, these findings collectively demonstrated that HS chains of 

Sdc-4 influence cell-surface TG2 activity by controlling the localisation of the enzyme and 

not by affecting its transamidating activity.  

TG2 externalisation is enhanced in situations of cell stress and TG2 activity assumes an 

important role in the wound repair process, where it contributes to cell adhesion and to the 

stabilisation of the ECM. When the wound repair mechanism is altered, or when the insult 

causing the wound becomes chronic, there is the development of a fibrotic condition, 

characterised by an excess of ECM deposition leading to block of function of the interested 

organ (Singer and Clark, 1999). The involvement of TG2 in kidney fibrosis has been 

already described (El Nahas et al., 1997; Haroon et al., 1999; Johnson et al., 1999), and 

experiments performed on animal models have shown that lack of TG2 is protective 

against the development of renal fibrosis (Johnson et al., 2003). Therefore TG2 may be 

regarded as a novel therapeutic target for the cure of kidney fibrosis; consequently, current 

work in the field is aimed to find a way to regulate TG2 externalisation and activity 

(Johnson et al., 2007). 

 After studying the interaction of TG2 and Sdc-4 in vitro and defying a role for Sdc-4 HS 

chains in the localisation of TG2 biological activity, further studies were performed in 
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order to see if Sdc-4 regulates TG2 activity in vivo. Using an experimental model of kidney 

fibrosis (UUO) it was shown that the absence of Sdc-4 is protective against the 

development of kidney fibrosis. This data is in accordance with data previously published 

illustrating the role of Sdc-4 in the wound repair process and showing that wound repair is 

delayed in Sdc-4 null mice (Echtermeyer et al., 2001). TG activity was measured in situ in 

normal and fibrotic kidneys from wild type and Sdc-4 mice and its level was found to be 

positively correlated to the level of ECM accumulation. Even though normal kidneys from 

wild type and Sdc-4 null mice displayed the same level of in situ TG activity, this was 

found to be significantly lower in Sdc-4 -/- kidneys subjected to UUO compared to wild 

type kidneys. This result is reminiscent of what obtained with MDF isolated from wild 

type and Sdc-4 null mice, with wild type cells showing a higher level of cell-surface TG2 

activity compared to Sdc-4 null MDF. Therefore it is possible that Sdc-4 may also be 

involved in TG2-mediated ECM accumulation in fibrotic diseases (Verderio et al., 2008). 

In recent years much research in the area focused on the development of inhibitors of TG 

activity, in order to block TG2 action and therefore the progression of the fibrotic disease 

(Johnson et al., 2007). The major problem in designing these inhibitors is the lack of 

specificity. In fact, aiming the TG conserved catalytic site, they interfere with the activity 

of all the members of the TG family causing severe side effects such as problems in blood 

coagulation (FXIIIa) and in maintenance of skin integrity (TG1 and TG3) (Huang et al., 

2009). In order to achieve a higher level of specificity, new inhibitors have been designed 

in order to target only externalised transglutaminases (Huang et al., 2009), however, even 

though these inhibitors have a more limited target, the side effects related to the inhibition 

of FXIII, another member of the TG family to be externalised, are still present. Given the 

problems related to the use of TG inhibitors, it would be of great interest to have a better 

understanding on the mechanism of TG2 localisation, in order to control the secretion of 

the enzyme and hence its extracellular role.  

In conclusion, this study has shown that the association of TG2 with Sdc-4 could have 

several key roles. In fact Sd-4 is involved in TG2 cell-surface trafficking (Figure  7-1 point 

1) and, therefore, it indirectly regulates TG2 transamidation in the ECM (Figure  7-1 point 

2). Moreover, by acting as a cell surface receptor, Sdc-4 regulates TG2-mediated signalling 

in cell adhesion events in co-operation with integrins (Figure  7-1 point 3). In situations of 

cell stress, when integrin-mediated adhesion is inhibited and ECM is fragmented, 
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Figure  7-1 Events mediated by TG2 association with Sdc-4. 1) Sdc-4 regulates TG2 

cell-surface trafficking. 2) Extracellular TG2 associates to and stabilises FN. 3) Signalling 

from FN-associated TG2 in co-operation with Sdc-4 and integrins promotes cell adhesion 

and migration. 4) Externalised FN-bound TG2 mediates RGD-independent cell adhesion 

in a Sdc-4 dependent way 5) In fibrotic diseases, extracellular TG2 promotes ECM 

accumulation in a Sdc-4 dependent mechanism.  
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Substrates Isoenzyme Localization 
Proteins acting as amine donor 
Actin TG2  Intracellular 

Aldehyde dehydrogenase TG activity of the nematode 
C. elegans    

Amines (monoamines, diamines, polyamines): 
cadaverine and monodansilcadaverine, histamine, 
putrescine, serotonine, spermidine, spermine  

Different isoenzymes   

Beta amyloid peptide TG2   
Aspartyl protease TG2 and Factor XIII Viral protein (HIV-1) 
Bacteriorhodopsin Bacterial TG   

Calgizzarin—S100C protein—MLN 70—S100A11 TG1 and TG2 Keratinocyte cornified 
envelope (CE) 

Cell adhesion molecule C-CAM TG2   
Alpha B-crystallin TG2 Intracellular 
Cystatin TG2 and possibly others   
Beta-endorphin TG2 Endogenous opiates 
Fibrinogen A alpha TG2 and factor XIII Extracellular 

Glutamate dehydrogenase TG activity of the nematode 
Caenorhabditis elegans   

Glutathione S-transferase TG2 Intracellular 
Glyceraldeheyde 3 phosphate dehydrogenase TG2 Intracellular 
gp41 TG2 Transmembrane 
Keratin, type II cytoskeletal 1 TG2 and TG3   
Keratin, type II cytoskeletal 2 epidermal TG2 and TG3   
Keratin, type II cytoskeletal 5 TG2 and TG3   
Keratin, type II cytoskeletal 6 TG2 and TG3   

Alpha ketoglutarate dehydrogenase TG2 Intracellular 
(Mitocondrial) 

Alpha-lactalbumin TG2 and Streptoverticillium 
TG (MTG) Secretory protein 

Beta lactoglobulin TG2 (?) Secretory protein 
Laminin FXIII   
Loricrin   Cell envelopes 
Microtubule-associated protein tau—isoform Tau-F 
(Tau-4) TG2 Intracellular 

Monellin (analog of) Microbial TG   
Root and leaf pea proteins     

Protein disulfide isomerase TG activity of the nematode 
Caenorhabditis elegans   

Seminal vesicle secretory protein IV TG2 Extracellular 

S-peptide Microbial TG (MTG) from 
Streptomyces mobaraensis   

Thymosin beta 4   Intracellular 
(cytoplasmatic) 

Vasoactive intestinal peptide (VIP) TG2   
Vimentin TG2   
Proteins acting as amine acceptor (i.e. glutamine donor) 
Acetylcholine esterase TG2 Intracellular 

Actin TG2 Intracellular 
(cytoplasmatic) 
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Substrates Isoenzyme Localization 
Beta amyloid peptide TG2   
Annexin I (lipocortin I) TG2 Intracellular 
Alpha(2)-antiplasmin FXIII better than TG2 Extracellular 
Aspartyl protease TG2 and Factor XIII Viral protein (HIV-1) 

ATP synthase alpha subunit TG of the nematode C. 
elegans    

Bacteriorhodopsin Bacterial TG   

Calgizzarin—S100C protein—MLN 70—S100A11 TG1 and TG2 Keratinocyte cornified 
envelope (CE) 

Calpactin I light chain (S100A10) TG2   
Caraxin-1 (horseshoe crab)     
Beta casein Factor XIII Secreted protein 
Chloroplast proteins Plant TG(s)   
Collagen alpha 1(III) TG2 Extracellular 
Beta A3 crystallin TG2 Intracellular 
Beta B3 crystallin   Intracellular 
Beta Bp (betaB2) crystallin   Intracellular 
Cytocrome c TG2 Intracellular 
Beta-endorphin TG2 Endogenous opiates 

Enolase 
Transglutaminase of the 
nematode Caenorhabditis 
elegans 

Intracellular 
(Cytoplasmic) 

Erythrocyte anion transporter—band 3 anion transport 
protein 

Intrinsic TG of human red 
blood cell Intracellular 

Fibrinogen A alpha TG2 and factor XIII Extracellular 
Fibrinogen gamma Factor XIII Extracellular 
FibN (peptide derived from the N-terminal sequence 
of fibronectin)   Extracellular  

Glucagon TG2   
Glutathione S-transferase TG2 Intracellular 
gp41 TG2 Transmembrane 
gp120 TG2 Viral envelope 
H3 histone TG2 Intracellular 
H4 histone TG2 Intracellular  
H2A histone TG2 Intracellular 
H2B histone TG2 Intracellular 
Hemoglobin (denatured)     
Hepatitis C virus core protein TG2 Viral protein 
Insulin A chain TG2   
Insulin B chain TG2   
Insulin-like growth factor-binding protein-1 TG2   

Interleukin 2 Microbial transglutaminase 
(M-TG)   

Involucrin TG1 Membrane 

Alpha-lactalbumin TG2 and Streptoverticillium 
TG (MTG) Secretory protein 

Beta lactoglobulin TG2 (?) Secretory protein 
Laminin FXIII   
Loricrin   Cell envelopes 
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Substrates Isoenzyme Localization 
Alpha-2-macroglobulin receptor-associated protein   Extracellular 
Mellittin TG2   
Microtubule-associated protein tau—isoform Tau-F 
(Tau-4) TG2 Intracellular 

Midkine TG2   
Monellin (analog of) Microbial TG   
Nidogen (entactin) TG2 Extracellular 
Osteonectin TG2 Extracellular 
Osteopontin (extracellular matrix cell adhesion 
protein) TG2 Extracellular 

Root and leaf pea proteins     
Phosphoglycerate kinase   Intracellular ? 
Phospholipase A2 TG2 Extracellular 
Alpha2 plasmin inhibitor FXIII Extracellular? 
Plasminogen-activator inhibitor type-2 TG2 and FXIII   
Polyglutamine repeats TG2   
Procarboxypeptidase U (EC 3.4.17.20) plasma 
procarboxypeptidase B TG2 and factor XIII   

S100 calcium-binding protein A7—Psoriasin (S100A7 
or PSOR1) TG2   

Seminal vesicle secrtorey protein IV TG2 Extracellular 

S-peptide Microbial TG (MTG) from 
Streptomyces mobaraensis   

Substance P TG2 Extracellular 
Synapsin I TG2 Intracellular 
Tetanus toxin TG2   
Vasoactive intestinal peptide—VIP TG2   
Vimentin TG2   
Vitronectin Factor XIII Extracellular 
Von Willebrand factor Factor XIII   
Unknown acceptor/donor function, non-protein substrates, other molecules and activities 
Aldolase   Intracellular 

Androgen receptor TG2 Intracellular (nuclear 
receptor) 

CD38 TG2 Intracellular  
Clara Cell p10 Kda     
eIF5A (initiation factor 5A) TG2 and Factor XIII Intracellular 
Drugs (antibiotics) TG homologue   
Fibronectin Factor XIII Extracellular 
Filaggrin linker segment peptide (FLSP) TG3   
Galectin 3 TG2   
Glutathione S-transferase TG2 Intracellular 
Gluten proteins (alpha/beta-, gamma-gliadin, and low 
molecular weight glutenin) TG2 Extracellular 

Growth hormone TG2   
Small GTPases   Intracellular 

Histidine-rich glycoprotein FXIII Expressed by the liver 
and secreted in plasma 

Alpha2 HS-glycoprotein (AHSG) TG2   
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Substrates Isoenzyme Localization 
Huntingtin TG2   

Importin alpha3 TG2 Nuclear transport 
protein 

Insulin-like growth factor binding protein-3 (IGFBP-
3) TG2   

Latent TGF-beta binding protein-1 (LTBP-1) TG2 Extracellular 
Lipoprotein a TG2 and FXIII   
Alpha2 macroglobulin     
Myoglobin TG2   
Myosin   Intracellular 
Nucleotide(s) binding/hydrolyzing TG2 TG3 TG5 Intracellular 
Osteocalcin   Extracellular 
Periplakin TG2   
Phosphorylase kinase   Intracellular 
Proapoptotic kinase DLK TG2   

Protein disulfide isomerase TG activity of the nematode 
Caenorhabditis elegans    

Retinoblastoma protein     
Rho A   Intracellular 
Ribonuclease A TG2   
Semenogelin I Factor XIII   
Semenogelin II Factor XIII   
Bone sialoprotein (BSP) TG2 Bone matrix 
Soybean proteins   Extracellular 
Alpha-synuclein TG2 Intracellular 
Thrombospondin factor XIII Extracellular 
Troponin T   Intracellular 
Tubulin   Intracellular 
Uteroglobin TG2 FXIII? Extracellular 
Vinculin Factor XIII   
Whey proteins Microbial TG Extracellular 
 
Appendix 1 Substrates of transglutaminases (Facchiano and Facchiano, 2009).  
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Appendix 2 Schematic representation of the human TG2 expression vector pSG5-
TGase (Gentile et al., 1992). Human TG2 cDNA was EcoRI inserted into pSG5 vector. 
SV-40 early gene enhancer and promoter, intron II of the rabbit beta-globin gene (b-
globin), T7 bacteriophage promoter, and SV-40 polyadenilation sequence (polyA) are 
shown; Amp, ampicillin resistance gene.  
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