18 research outputs found

    Terminal Sliding Mode Control of Mobile Wheeled Inverted Pendulum System with Nonlinear Disturbance Observer

    Get PDF
    A terminal sliding mode controller with nonlinear disturbance observer is investigated to control mobile wheeled inverted pendulum system. In order to eliminate the main drawback of the sliding mode control, “chattering” phenomenon, and for compensation of the model uncertainties and external disturbance, we designed a nonlinear disturbance observer of the mobile wheeled inverted pendulum system. Based on the nonlinear disturbance observer, a terminal sliding mode controller is also proposed. The stability of the closed-loop mobile wheeled inverted pendulum system is proved by Lyapunov theorem. Simulation results show that the terminal sliding mode controller with nonlinear disturbance observer can eliminate the “chattering” phenomenon, improve the control precision, and suppress the effects of external disturbance and model uncertainties effectively

    Robust Model Predictive Control Based on MRAS for Satellite Attitude Control System

    Get PDF
    In this paper, an improved robust model predictive controller (RMPC) is proposed based on model reference adaptive system (MRAS). In this algorithm, using the MRAS a combinational RMPC controller for three degree freedom satellite is designed such that the effect of moment of inertia uncertainty and external disturbance is compensated on the stability and performance of closed loop system. Control law is a state feedback which its gain is obtained by solving a convex optimization problem subject to several linear matrix inequalities (LMIs). To avoid the actuators saturation an input constraint is incorporated as LMI in the mentioned optimization problem. In addition to, using the MRAS system the effect of input disturbance is rejected on the system.The advantages of this algorithm are needless to exact information from system’s model, robustness against model uncertainties and external disturbance. Results from the simulation of the system with the proposed algorithm are presented and compared to generalized incremental model predictive control (GIPC). The results show that the suggestive controller is more robust than the GIPC method.DOI:http://dx.doi.org/10.11591/ijece.v4i1.496

    Position control of induction motor using indirect adaptive fuzzy sliding mode control

    Get PDF
    Author name used in this publication: K. W. E. ChengAuthor name used in this publication: H. F. HoVersion of RecordPublishe

    Robust Integral of Sign of Error and Neural Network Control for Servo System with Continuous Friction

    Get PDF

    Comparing Feedback Linearization and Adaptive Backstepping Control for Airborne Orientation of Agile Ground Robots using Wheel Reaction Torque

    Full text link
    In this paper, two nonlinear methods for stabilizing the orientation of a Four-Wheel Independent Drive and Steering (4WIDS) robot while in the air are analyzed, implemented in simulation, and compared. AGRO (the Agile Ground Robot) is a 4WIDS inspection robot that can be deployed into unsafe environments by being thrown, and can use the reaction torque from its four wheels to command its orientation while in the air. Prior work has demonstrated on a hardware prototype that simple PD control with hand-tuned gains is sufficient, but hardly optimal, to stabilize the orientation in under 500ms. The goal of this work is to decrease the stabilization time and reject disturbances using nonlinear control methods. A model-based Feedback Linearization (FL) was added to compensate for the nonlinear Coriolis terms. However, with external disturbances, model uncertainty and sensor noise, the FL controller does not guarantee stability. As an alternative, a second controller was developed using backstepping methods with an adaptive compensator for external disturbances, model uncertainty, and sensor offset. The controller was designed using Lyapunov analysis. A simulation was written using the full nonlinear dynamics of AGRO in an isotropic steering configuration in which control authority over its pitch and roll are equalized. The PD+FL control method was compared to the backstepping control method using the same initial conditions in simulation. Both the backstepping controller and the PD+FL controller stabilized the system within 250 milliseconds. The adaptive backstepping controller was also able to achieve this performance with the adaptation law enabled and compensating for offset noisy sinusoidal disturbances.Comment: First Submission to IEEE Letters on Control Systems (L-CSS) with the American Controls Conference (ACC) Optio

    Minimum Snap Trajectory Generation and Control for an Under-actuated Flapping Wing Aerial Vehicle

    Full text link
    Minimum Snap Trajectory Generation and Control for an Under-actuated Flapping Wing Aerial VehicleThis paper presents both the trajectory generation and tracking control strategies for an underactuated flapping wing aerial vehicle (FWAV). First, the FWAV dynamics is analyzed in a practical perspective. Then, based on these analyses, we demonstrate the differential flatness of the FWAV system, and develop a general-purpose trajectory generation strategy. Subsequently, the trajectory tracking controller is developed with the help of robust control and switch control techniques. After that, the overall system asymptotic stability is guaranteed by Lyapunov stability analysis. To make the controller applicable in real flight, we also provide several instructions. Finally, a series of experiment results manifest the successful implementation of the proposed trajectory generation strategy and tracking control strategy. This work firstly achieves the closed-loop integration of trajectory generation and control for real 3-dimensional flight of an underactuated FWAV to a practical level
    corecore