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A terminal sliding mode controller with nonlinear disturbance observer is investigated to control mobile wheeled inverted
pendulum system. In order to eliminate the main drawback of the sliding mode control, “chattering” phenomenon, and for
compensation of the model uncertainties and external disturbance, we designed a nonlinear disturbance observer of the mobile
wheeled inverted pendulum system. Based on the nonlinear disturbance observer, a terminal sliding mode controller is also
proposed. The stability of the closed-loop mobile wheeled inverted pendulum system is proved by Lyapunov theorem. Simulation
results show that the terminal sliding mode controller with nonlinear disturbance observer can eliminate the “chattering”
phenomenon, improve the control precision, and suppress the effects of external disturbance and model uncertainties effectively.

1. Introduction

Mobile wheeled inverted pendulum- (MWIP-) based robots
are able to provide effective physical assistance to humans in
various activities such as delivery and touring. Recently,many
robotic systems are designed based onMWIPmodel, such as
Segway [1], JOE [2], UW-Car [3], and PMP [4].

However, the control of the inherent unstable MWIP
system is a challenge. First of all, the dynamics of MWIP
system is underactuated; that is, the number of the control
inputs is less than the number of the degrees of freedom
to be stabilized. In addition, MWIP systems are different
from either the conventional cart and pendulum systems or
the conventional nonholonomic systems. Therefore, many
available control design approaches are not applicable to the
MWIP systems.

In the past several years many approaches have been
applied in the control of MWIP, including the linear [5] or
feedback linearization [6] methods, fuzzy control methods
[7], neural network-basedmethods [8], adaptive control, and
optimized model reference adaptive control [9].

The sliding mode control (SMC) approach seems an
appropriate control method to deal with uncertain MWIP
systems because SMC is less sensitive to model uncertainty
and noise disturbances. Sankaranarayanan andMahindrakar
[10] proposed a sliding mode control algorithm to robustly
stabilize a class of underactuated mechanical systems that are
not linearly controllable and violate Brockett’s necessary con-
dition for smooth asymptotic stabilization of the equilibrium,
with parametric uncertainties.

Park et al. [11] proposed an adaptive neural SMCmethod
for trajectory tracking control of nonholonomic wheeled
mobile robots with model uncertainties and external distur-
bances. Huang et al. [12] proposed a velocity control method
for the MWIP based on sliding mode and a novel sliding
surface.

Terminal sliding mode control (TSMC) of finite-time
convergence is a variable structure control method whose
formation and development are based on the introduction
of a nonlinear function into sliding hyperplane. Compared
to the conventional SMC, TSMC provides faster finite-time
convergence and higher control precision. So far, the research
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of control methods of the terminal sliding mode control
can be mainly divided into two types, that is, fractional
exponent method such as 𝑠 = ̇𝑒 + 𝑒

𝑝/𝑞 [13] and cubic
polynomials [14]. Bayramoglu and Komurcugil [15, 16] pro-
posed a nonsingular decoupled terminal slidingmode control
(NDTSMC)method for a class of underactuated fourth-order
nonlinear systems. This control method is relatively simple.
However, these references do not involve how to choose two
intermediate parameters 𝑧𝑢 and Φ𝑧, which brings difficulty
of their practical applications. Huang et al. [3], for a novel
narrow vehicle based on an MWIP system and a movable
seat, called UW-Car, proposed two terminal sliding mode
controllers to control the velocity and braking.

Although TSMC controller is less sensitive to parameter
variations and noise disturbances, its robustness is normally
obtained by increasing the switch gain 𝑘. Note that a bigger 𝑘
also brings chatter to the system which is the main drawback
of the SMC.

Disturbance observer might be a candidate solution for
the problem. It is found that using a disturbance observer
can further improve the robustness of controller. A nonlinear
disturbance observer was proposed by Mohammadi et al.
[17] to manage the disturbance of nonlinear system, which
is applied for a 4-degree-of-freedom SCARA manipulator.
Chen [18] proposed a nonlinear disturbance observer to deal
with the disturbance of nonlinear system, which is applied
to tracking control of pneumatic artificial muscle actuator by
using DSC control method [19]. Wei et al. [20], for uncertain
structural systems, proposed a new type of composite control
scheme of disturbance-observer-based control and terminal
sliding mode control (TSMC). Yang et al. [21], for systems
with mismatched uncertainties, proposed a sliding mode
control approach by using a novel sliding surface based on
a disturbance observer.

However, most of the aforementioned studies rarely
discussed terminal sliding mode control with disturbance
observer for an underactuated system such as the MWIP.

In this paper, we proposed a terminal sliding mode
controllerwith nonlinear disturbance observer (TSMCNDO)
for the balance control of an MWIP system. Compared
with the conventional sliding mode controller in [14], larger
stability region, very higher control precision, and smaller
chattering can be achieved by applying the TSMCNDO
strategy.

The rest of this paper is organized as follows. The MWIP
system formulation and a nonlinear disturbance observer are
discussed in Section 2. The terminal sliding mode control
with nonlinear disturbance observer (TSMCNDO) and sta-
bility analysis are discussed in Section 3. Section 4 presents
some MATLAB simulation results and the paper finally ends
by the conclusion in Section 5.

In the rest of this paper, (̂⋅) denotes a nominal value of (⋅).

2. System Formulation

2.1. MWIP System Dynamic Model. The MWIP system is a
one-dimensional inverted pendulum that rotates about the
wheels’ axles. Hence, inclination and translational motion of

Table 1: Notations for MWIP parameters.

Parameter Description
𝑚𝑏,𝑚𝑤 Masses of the body and the wheel
𝐼𝑏, 𝐼𝑤 Moments of inertia of the body and the wheel

𝑙
Length between the wheel axle and the center of
gravity of the body

𝑟 Radius of the wheel
𝐷𝑏 Viscous resistance in the driving system
𝐷𝑤 Viscous resistance of the ground
𝑢 Rotation torque generated by the wheel motor
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Figure 1: Mobile wheeled inverted pendulum (MWIP) system
model.

the body determined the whole motion on a plane. Figure 1
shows the structure of an MWIP system, where 𝜃𝑏 and 𝜃𝑤

are the inclination angle of the body and the wheel’s rotation
angle, respectively. To describe the parameters of the MWIP
system, some notations should be clarified first (see also
Figure 1), which are shown in Table 1.

Lagrange’smotion equation is used to analyze the dynam-
ics of this system, which leads to a second-order underactu-
ated model given by Huang et al. [12]. Consider

𝑚11
̈
𝜃𝑤 + 𝑚12 cos (𝜃𝑏) ̈

𝜃𝑏

= 𝑢 − (𝐷𝑤 + 𝐷𝑏)
̇
𝜃𝑤 + 𝐷𝑏

̇
𝜃𝑏 + 𝑚12

̇
𝜃
2

𝑏
sin (𝜃𝑏) ,

𝑚12 cos (𝜃𝑏) ̈
𝜃𝑤 + 𝑚22

̈
𝜃𝑏

= −𝑢 − 𝐷𝑏 (
̇
𝜃𝑏 −

̇
𝜃𝑤) + 𝐺𝑏 sin (𝜃𝑏) ,

(1)

where parameters𝑚11, 𝑚12, 𝑚22, and 𝐺𝑏 satisfy

𝑚11 = (𝑚𝑏 + 𝑚𝑤) 𝑟
2
+ 𝐼𝑤,

𝑚12 = 𝑚𝑏𝑙𝑟,
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𝑚22 = 𝑚𝑏𝑙
2
+ 𝐼𝑏,

𝐺𝑏 = 𝑚𝑏𝑔𝑙.

(2)

Add the first equation of (1) to the second one and consider
external disturbance; we have

𝑚11
̈
𝜃𝑤 + 𝑚12 cos (𝜃𝑏) ̈

𝜃𝑏

= 𝑢 − (𝐷𝑤 + 𝐷𝑏)
̇
𝜃𝑤 + 𝐷𝑏

̇
𝜃𝑏 + 𝑚12

̇
𝜃
2

𝑏
sin (𝜃𝑏) + 𝜏ex,

(𝑚11 + 𝑚12 cos (𝜃𝑏)) ̈
𝜃𝑤 + (𝑚22 + 𝑚12 cos (𝜃𝑏)) ̈

𝜃𝑏

= −𝐷𝑤
̇
𝜃𝑤 + 𝑚12

̇
𝜃
2

𝑏
sin (𝜃𝑏) + 𝐺𝑏 sin (𝜃𝑏) ,

(3)

where 𝜏ex are used to denote external disturbance.

2.2. Nonlinear Disturbance Observer Design. In order to
improve the robustness and control precision of the MWIP
system, it is necessary to design a nonlinear disturbance
observer estimating model uncertainties and external distur-
bance. This subsection illustrates the design procedure of a
nonlinear disturbance observer in the MWIP system.

For the nonlinear underactuated system with distur-
bances, in order to simplify the denotation, we can rewrite
(3) as

𝑀(𝑞) ̈𝑞 + 𝑁 (𝑞, ̇𝑞) + 𝐹 ( ̇𝑞) = 𝜏 + 𝜏ext, (4)

where

𝑞 = [𝑞1 𝑞2]
𝑇
= [𝜃𝑤 𝜃𝑏]

𝑇
,

𝑀 (𝑞) = [

𝑚11 𝑚12 cos (𝑞2)
𝑚11 + 𝑚12 cos (𝑞2) 𝑚22 + 𝑚12 cos (𝑞2)

] ,

𝑁 (𝑞, ̇𝑞) = [

−𝑚12 ̇𝑞
2

2
sin (𝑞2)

−𝐺𝑏 sin (𝑞2) − 𝑚12 ̇𝑞
2

2
sin (𝑞2)

] ,

𝐹 ( ̇𝑞) = [

(𝐷𝑤 + 𝐷𝑏) ̇𝑞1 − 𝐷𝑏 ̇𝑞2

𝐷𝑤 ̇𝑞1

] ,

𝜏 = [

𝑢

0
] , 𝜏ext = [

𝜏ex
0
] .

(5)

Then, we can get

𝑀(𝑞) = 𝑀̂ (𝑞) + Δ𝑀(𝑞) ,

𝑁 (𝑞, ̇𝑞) = 𝑁̂ (𝑞, ̇𝑞) + Δ𝑁 (𝑞, ̇𝑞) .

(6)

The lumped disturbance vector 𝜏𝑑 is defined as

𝜏𝑑 = [𝜏𝑑1 𝜏𝑑2]
𝑇
= 𝜏ext − Δ𝑀(𝑞) ̈𝑞 − Δ𝑁 (𝑞, ̇𝑞) − 𝐹 ( ̇𝑞) . (7)

Therefore, the effect of all modelling uncertainties and exter-
nal disturbance is lumped into a single disturbance vector 𝜏𝑑.
From (4), it is seen that

𝑀̂ (𝑞) ̈𝑞 + 𝑁̂ (𝑞, ̇𝑞) = 𝜏 + 𝜏𝑑. (8)

To estimate the lumped disturbance 𝜏𝑑, the nonlinear distur-
bance observer is designed as follows:

̇
𝜏̂𝑑 = −𝐿𝜏𝑑 + 𝐿 (𝑀̂ (𝑞) ̈𝑞 + 𝑁̂ (𝑞, ̇𝑞) − 𝜏) . (9)

Define 𝜏𝑑 = 𝜏𝑑−𝜏𝑑 as the disturbance tracking error and using
(9), it is observed that

̇
𝜏̂𝑑 = 𝐿𝜏𝑑

(10)

or, equivalently,
̇
𝜏̃𝑑 = ̇𝜏𝑑 − 𝐿𝜏𝑑.

(11)

In general, there is no prior information about the derivative
of the disturbance 𝜏𝑑. When the disturbance varies slowly
relative to the observer dynamics, it is reasonable to suppose
that ̇𝜏𝑑 = 0. Then, we get

̇
𝜏̃𝑑 = −

̇
𝜏̂𝑑 = −𝐿𝜏𝑑.

(12)

Let us define an auxiliary variable 𝑧 = [𝑧1 𝑧2]
𝑇
= 𝜏𝑑−𝑝(𝑞, ̇𝑞),

where (𝑑/𝑑𝑡)𝑝(𝑞, ̇𝑞) = 𝐿(𝑞, ̇𝑞)𝑀̂(𝑞) ̈𝑞. Substitute it into (9); the
observer can be designed as

𝑧̇ = 𝐿 (𝑞, ̇𝑞) [𝑁̂ (𝑞, ̇𝑞) − 𝜏 − 𝑝 (𝑞, ̇𝑞) − 𝑧] ,

𝜏𝑑 = 𝑧 + 𝑝 (𝑞, ̇𝑞) ,

(13)

where observer gain matrix 𝐿(𝑞, ̇𝑞) and vector 𝑝(𝑞, ̇𝑞) satisfy

𝐿 (𝑞) = 𝑋𝑀̂
−1
(𝑞) ,

𝑝 ( ̇𝑞) = 𝑋 ̇𝑞.

(14)

𝑋 is a constant invertible matrix; that is,

𝑋 = [

𝑐1 𝑐2

𝑐3 𝑐4

] , 𝑐𝑖 ≥ 0, 𝑖 = 1, 2, 3, 4. (15)

Substituting (14) and (15) into (13) and using (4) we have

𝑧̇

= [

𝑧̇1

𝑧̇2

]

= 𝐴
−1
[

𝑐1 𝑐2

𝑐3 𝑐4

] [

𝑚̂22 + 𝑚̂12 cos (𝜃𝑏) −𝑚̂12 cos (𝜃𝑏)
−𝑚̂11 − 𝑚̂12 cos (𝜃𝑏) 𝑚̂11

]

⋅ {[

−𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏)

−𝐺𝑏 sin (𝜃𝑏) − 𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏)

]

− [

𝑢

0
] − [

𝑐1 𝑐2

𝑐3 𝑐4

] [

̇
𝜃𝑤

̇
𝜃𝑏

] − [

𝑧1

𝑧2

]}

= 𝐴
−1
[

𝑐1𝐷1 − 𝑐2𝐷2 𝑐2𝑚̂11 − 𝑐1𝑚̂12 cos (𝜃𝑏)
𝑐3𝐷1 − 𝑐4𝐷2 𝑐4𝑚̂11 − 𝑐3𝑚̂12 cos (𝜃𝑏)

]

⋅ [

−𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏) − 𝑢 − 𝑐1

̇
𝜃𝑤 − 𝑐2

̇
𝜃𝑏 − 𝑧1

−𝐺𝑏 sin (𝜃𝑏) − 𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏) − 𝑐3

̇
𝜃𝑤 − 𝑐4

̇
𝜃𝑏 − 𝑧2

] ,

𝜏𝑑 = [

𝜏𝑑1

𝜏𝑑2

] = [

𝑧1

𝑧2

] + [

𝑐1 𝑐2

𝑐3 𝑐4

] [

̇
𝜃𝑤

̇
𝜃𝑏

] ,

(16)
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where
𝐷1 = 𝑚̂22 + 𝑚̂12 cos (𝜃𝑏) ,

𝐷2 = 𝑚̂11 + 𝑚̂12 cos (𝜃𝑏) ,

𝐴 = det (𝑀̂ (𝑞)) = 𝑚̂11𝑚̂22 − (𝑚̂12 cos (𝜃𝑏))
2
> 0.

(17)

Therefore, the disturbance observer can be designed as
follows:
𝑧̇1

= 𝐴
−1
[ (𝑐2𝐷2 − 𝑐1𝐷1)

⋅ (𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏) + 𝑢 + 𝑐1

̇
𝜃𝑤 + 𝑐2

̇
𝜃𝑏 + 𝑧1)

− (𝑐2𝑚̂11 − 𝑐1𝑚̂12 cos (𝜃𝑏))

× (𝐺𝑏 sin (𝜃𝑏)+ 𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏) + 𝑐3

̇
𝜃𝑤 + 𝑐4

̇
𝜃𝑏 + 𝑧2)],

𝑧̇2

= 𝐴
−1
[ (𝑐4𝐷2 − 𝑐3𝐷1)

⋅ (𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏) + 𝑢 + 𝑐1

̇
𝜃𝑤 + 𝑐2

̇
𝜃𝑏 + 𝑧1)

− (𝑐4𝑚̂11 − 𝑐3𝑚̂12 cos (𝜃𝑏))

× (𝐺𝑏 sin (𝜃𝑏)+ 𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏) + 𝑐3

̇
𝜃𝑤 + 𝑐4

̇
𝜃𝑏 + 𝑧2)],

𝜏𝑑1 = 𝑧1 + 𝑐1
̇
𝜃𝑤 + 𝑐2

̇
𝜃𝑏,

𝜏𝑑2 = 𝑧2 + 𝑐3
̇
𝜃𝑤 + 𝑐4

̇
𝜃𝑏.

(18)

3. Controller Design

TheMWIP system model (3) can be rewritten as

𝑚̂11
̈
𝜃𝑤 + 𝑚̂12 cos (𝜃𝑏) ̈

𝜃𝑏 = 𝑢 + 𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏) + 𝜏𝑑1,

(𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) ̈
𝜃𝑤 + (𝑚̂22 + 𝑚̂12 cos (𝜃𝑏)) ̈

𝜃𝑏

= 𝑚̂12
̇
𝜃
2

𝑏
sin (𝜃𝑏) + 𝐺𝑏 sin (𝜃𝑏) + 𝜏𝑑2.

(19)

From the two equations of (19), we have

̈
𝜃𝑏 = 𝐴

−1
[𝑚̂11𝐺𝑏 sin (𝜃𝑏) − 𝑚̂

2

12
̇
𝜃
2

𝑏
sin (𝜃𝑏) cos (𝜃𝑏)]

− 𝐴
−1
(𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝑢

+ 𝐴
−1
[𝑚̂11𝜏𝑑2 − (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝜏𝑑1] .

(20)

According to the TSMCmethod proposed in [14], the sliding
surface is defined as follows:

s (𝑡) = ė (𝑡) + Ce (𝑡) − w (𝑡) , (21)

where e(𝑡) = x(𝑡)−xd(𝑡), and xd(𝑡) is the reference value. And,

C = diag (𝑐1, 𝑐2, . . . , 𝑐𝑚) , 𝑐𝑖 > 0,

w (𝑡) = k̇ (𝑡) + Ck (𝑡) .
(22)

The TSMC method is applied to the subsystem (20). The
desired inclination angle 𝜃

∗

𝑏
and its rate of change ̇

𝜃
∗

𝑏
are

expected to be zero. Let us define the following sliding
surfaces:

𝑆 (𝑡) =
̇
𝜃𝑏 (𝑡) + 𝑐𝜃𝑏 (𝑡) − V̇ (𝑡) − 𝑐V (𝑡) , (23)

where 𝑐 is a positive constant.The augmenting function V(𝑡) is
designed as cubic polynomials that guarantee Assumption 1
in [14] holds.

Assumption 1. The tracking errors of the nonlinear distur-
bance observer are bounded and satisfy

󵄨
󵄨
󵄨
󵄨
𝜏𝑑1

󵄨
󵄨
󵄨
󵄨
≤ 𝑑1,

󵄨
󵄨
󵄨
󵄨
𝜏𝑑2

󵄨
󵄨
󵄨
󵄨
≤ 𝑑2, (24)

where 𝑑1 and 𝑑2 are known bounds.

Theorem 2. The sliding surfaces (23) will be achieved while
the inclination angle 𝜃𝑏 converges to zero in finite time if the
following control law is applied to the subsystem (20):

𝑢 = (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏))
−1

× [𝑚̂11𝐺𝑏 sin (𝜃𝑏) − 𝑚̂
2

12
̇
𝜃
2

𝑏
sin (𝜃𝑏) cos (𝜃𝑏) + 𝑚̂11𝜏𝑑2

− (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝜏𝑑1

+𝐴 (𝑐
̇
𝜃𝑏 − V̈ − 𝑐V̇) + 𝑘 sgn (𝑆)] ,

(25)

where

𝑘 = 𝛾 + [𝑚̂11𝑑2 + (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝑑1] , 𝛾 > 0. (26)

Proof. Choose the following Lyapunov function candidate:

𝑉 =

1

2

𝑆
2
. (27)

Differentiating (27) along the controlled system (20) yields

𝑉̇ = 𝑆 ̇𝑆 = 𝑆 [
̈
𝜃𝑏 + 𝑐

̇
𝜃𝑏 − V̈ − 𝑐V̇]

= 𝑆 [𝐴
−1
(𝑚̂11𝐺𝑏 sin (𝜃𝑏) − 𝑚̂

2

12
̇
𝜃
2

𝑏
sin (𝜃𝑏) cos (𝜃𝑏))

− 𝐴
−1
(𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝑢

+ 𝐴
−1
[𝑚̂11𝜏𝑑2 − (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝜏𝑑1]

+ 𝑐
̇
𝜃𝑏 − V̈ − 𝑐V̇] .

(28)

Substituting (25) into (28)

𝑉̇

= 𝑆 {−𝐴
−1
𝑘 sgn (𝑆)

+𝐴
−1
[𝑚̂11𝜏𝑑2 − (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝜏𝑑1]}

= −𝐴
−1
𝑆 {𝑘 sgn (𝑆) − [𝑚̂11𝜏𝑑2 − (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝜏𝑑1]}

= − 𝑘𝐴
−1
|𝑆| + 𝐴

−1
𝑆 [𝑚̂11𝜏𝑑2 − (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝜏𝑑1]

≤ − 𝑘𝐴
−1
|𝑆| + 𝐴

−1
|𝑆|

󵄨
󵄨
󵄨
󵄨
𝑚̂11𝜏𝑑2 − (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝜏𝑑1

󵄨
󵄨
󵄨
󵄨
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Table 2: Physical parameters of MWIP system.

Parameter Value Parameter Value
𝑚𝑤 29.0 (Kg) 𝐼𝑤 0.6 (Kg⋅m2)
𝑟 0.254 (m) 𝑚̂𝑏 210.6 (Kg)
𝐼𝑏 55.0 (Kg⋅m2) ̂

𝑙 0.267 (m)
𝑚𝑏 310.6 (Kg) 𝐼𝑏 65.0 (Kg⋅m2)
𝑙 0.317 (m) 𝐷𝑏 0.1 (N⋅s/m)
𝐷𝑤 4.0 (N⋅s/m)

≤ − 𝑘𝐴
−1
|𝑆| + 𝐴

−1
|𝑆| [

󵄨
󵄨
󵄨
󵄨
𝑚̂11𝜏𝑑2

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
(𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝜏𝑑1

󵄨
󵄨
󵄨
󵄨
]

≤ − 𝑘𝐴
−1
|𝑆| + 𝐴

−1
|𝑆| [𝑚̂11𝑑2 + (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝑑1]

≤ −𝐴
−1
|𝑆| (𝑘 − [𝑚̂11𝑑2 + (𝑚̂11 + 𝑚̂12 cos (𝜃𝑏)) 𝑑1])

= − 𝛾𝐴
−1
|𝑆| < 0.

(29)

Therefore, 𝑉 is a positive-definite function and 𝑉̇ is a
negative-definite function. From Remark 1 in [14], it is easily
known that 𝑆(0) = 0, and it implies that 𝑉(0) = 0. Thus,
it implies that 𝑉(𝑡) ≡ 0 and 𝑆(𝑡) ≡ 0. This completes the
proof.

Theorem 3. For the internal dynamic model of the MWIP
system (the second equation of (3)), the proposed TSMCNDO
controller (25) guarantees that the angular velocity ̇

𝜃𝑤 can
converge to zero.

Proof. Similar to Proposition 2 in [3], the second equation of
(3) can be rewritten as

𝑄 (𝑡)
̈
𝜃𝑤 (𝑡) + 𝐷𝑤

̇
𝜃𝑤 (𝑡) = 𝑃 (𝑡) , (30)

where 𝑄(𝑡) = 𝑚11 + 𝑚12 cos(𝜃𝑏) > 0 and 𝐷𝑤 > 0. Therefore,
we can know, the solution of (30) is asymptotically stable.
From Theorem 2, it follows that 𝜃𝑏 and ̇

𝜃𝑏 converge to zero,
which makes 𝑃(𝑡) finally converge to zero. This results in the
final convergence of ̇

𝜃𝑤.

4. Simulation Study

In order to verify the performance of the proposed controller,
we present some simulations in this section. In the simula-
tions, the nominal values of system parameters come from
a real MWIP-based vehicle. All the parameters are given in
Table 2.

The external disturbance is assumed as

𝜏ex = 100 sin(2𝑡 + 𝜋

2

) (N ⋅m) . (31)

The augmenting function V(𝑡) is designed as a cubic polyno-
mial:

V (𝑡) = {

𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2
+ 𝑎3𝑡
3
, if 0 ≤ 𝑡 ≤ 𝑇𝑓,

0, if 𝑡 > 𝑇𝑓,

(32)

Table 3: Control parameters of TSMC and TSMCNDO strategies.

Controllers Parameters
TSMC 𝐹 = 0.7𝐹, 𝐶 = 3, Γ = 3,𝐷 = 0.3, 𝜙TSMC = 0.05

TSMCNDO 𝛾 = 3, 𝑐 = 3, 𝑑1 = 1, 𝑑2 = 1, 𝑐1 = 𝑐4 = 2000,
𝑐2 = 𝑐3 = 0, 𝜙TSMCNDO = 0.05

where

𝑎0 = 𝜃𝑏 (0) , 𝑎1 =
̇
𝜃𝑏 (0) ,

𝑎2 = −3(

𝜃𝑏 (0)

𝑇
2

𝑓

) − 2(

̇
𝜃𝑏 (0)

𝑇𝑓

) ,

𝑎3 = 2(

𝜃𝑏 (0)

𝑇
3

𝑓

) + (

̇
𝜃𝑏 (0)

𝑇
2

𝑓

) .

(33)

For the sliding surface, 𝑇𝑓 = 1 were used.
Suppose the initial conditions are given by 𝜃𝑏 =

−10/180𝜋, ̇
𝜃𝑏 = 0, 𝜃𝑤 = 0, and ̇

𝜃𝑤 = 0.
We consider the balance control of MWIP systems by

using the conventional linear quadratic regulator (LQR),
the TSMC in [14], and the TSMCNDO proposed in this
paper. When using the LQR controller, an approximately
linearized dynamic model was established by choosing state
as x = [𝑥1, 𝑥2, 𝑥3]

𝑇
= [

̇
𝜃𝑤, 𝜃𝑏,

̇
𝜃𝑏]
𝑇. The calculated

state feedback gain matrix of LQR controller is K =

[−4.3141, −962.2, −255.2].
In order to avoid chattering associated with the terminal

sliding mode control law, we have approximated the dis-
continuous sign function sgn(𝑆) with continuous saturation
function sat(𝑆) defined as

sat (𝑆) =
{

{

{

sgn (𝑆) if |𝑆| > 𝜙,

𝑆

𝜙

if |𝑆| ≤ 𝜙,

𝜙 > 0,

(34)

where 𝜙 is boundary layer. For applying the two control
strategies to the subsystem (20), the determined parameters
of all controllers are listed in Table 3.

The balance control simulation results of the MWIP
system with uncertainties and disturbances using the LQR,
the TSMCgiven by [14], and the TSMCNDOproposed in this
paper are shown in Figures 2, 3, 4, and 5.

Figure 6 shows the inclination angle tracking errors of the
MWIP system considering uncertainties and disturbances
using the two control strategies.

From Figures 2–6 the following turn out.

(1) The control performance of LQR controller seems
worst because it is not designed to deal with themodel
uncertainties and external disturbance.

(2) Even if there are model uncertainties and external
disturbance, the inclination angle, angular velocity,
and wheel rotation velocity of the MWIP system will
finally converge when either TSMC or TSMCNDO
controller is employed.
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Figure 2: Inclination angles of the MWIP system by employing
LQR, TSMC, and TSMCNDO control strategies (𝜃𝑏(0) = −10

∘,
𝜙TSMC = 𝜙TSMCNDO = 0.05).
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Figure 3: Inclination angle velocities of the MWIP system by
employing LQR, TSMC, and TSMCNDO control strategies (𝜃𝑏(0) =
−10
∘, 𝜙TSMC = 𝜙TSMCNDO = 0.05).

(3) The control performance of the MWIP system by
using TSMCNDO control strategy is better than the
one by using TSMC control strategy. The effect of
external disturbance on the MWIP system is signif-
icantly reduced by using TSMCNDO control strategy
while it still remains when using a conventional
TSMC controller.
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Figure 4: Wheel rotation velocities of the MWIP system by
employing LQR, TSMC, and TSMCNDO control strategies (𝜃𝑏(0) =
−10
∘, 𝜙TSMC = 𝜙TSMCNDO = 0.05).
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Figure 5: Control inputs of the MWIP system by employing LQR,
TSMC, and TSMCNDO control strategies (𝜃𝑏(0) = −10

∘, 𝜙TSMC =

𝜙TSMCNDO = 0.05).

In the case of TSMC strategy, the control precision of
the system is mainly related to parameter 𝜙TSMC. In order to
improve the control precision of the MWIP system, usually
smaller value of the parameter 𝜙TSMC should be chosen.
However, the chattering will increase as the value of 𝜙TSMC
decreases. On the other hand, when using the TSMCNDO
strategy, a satisfactory control performance can be easily
achieved even if the value of parameter 𝜙TSMCNDO is relatively
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Figure 6: Inclination angle tracking errors of the MWIP system by
employing TSMC and TSMCNDO control strategies (𝜃𝑏(0) = −10

∘,
𝜙TSMC = 𝜙TSMCNDO = 0.05).

large. This is because the NDO can compensate the lumped
disturbance in a feedforward way.

In a word, the proposed TSMCNDO control strategy is
superior to a conventional LQR or TSMC strategy in the
balance control of an MWIP system.

5. Conclusion

The balance control of MWIP system is a challenge due
to its strong nonlinearity and underactuated feature. The
TSMC seems an appropriate method because it can deal with
both the modeling uncertainties and external disturbances.
In addition, a TSMC controller can guarantee the system
trajectory converges in a finite time, whereas there are
few researches about the robust finite-time control strategy
applied in an underactuated system such as an MWIP. The
main contribution of this paper lies in the following.

(1) We formulated the TSMC design for the balance
control of the underactuated MWIP system.

(2) To remove the “chattering” caused by sliding mode
control and further improve the control performance,
a new TSMCNDO strategy is proposed for control-
ling the MWIP system.

Together with the nonlinear disturbance observer, the
control precision is significantly enhanced by the proposed
method even if the boundary layer parameter 𝜙 is relatively
large. Simulation results demonstrate the effectiveness of the
proposed methods.
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