1,456 research outputs found

    Mode-division multiplexing for microwave signal processing

    Full text link
    [EN] We present an overview of different mode-division multiplexing fiber technologies engineered to provide tunable microwave signal processing, including signal filtering and optical beamforming for phased-array antennas. The exploitation of both the space and wavelength dimensions brings advantages in terms of increased compactness, flexibility and versatility.This research was supported by the ERC Consolidator Grant ERC-COG-2016 InnoSpace 724663 and the Spanish MINECO fellowship RYC-2014- 16247 for I. Gasulla.Nazemosadat-Arsanjani, SB.; Gasulla Mestre, I. (2021). Mode-division multiplexing for microwave signal processing. IEEE. 1-2. https://doi.org/10.1109/SUM48717.2021.95058021

    Frequency Diversity in Mode-Division Multiplexing Systems

    Full text link
    In the regime of strong mode coupling, the modal gains and losses and the modal group delays of a multimode fiber are known to have well-defined statistical properties. In mode-division multiplexing, mode-dependent gains and losses are known to cause fluctuations in the channel capacity, so that the capacity at finite outage probability can be substantially lower than the average capacity. Mode-dependent gains and losses, when frequency-dependent, have a coherence bandwidth that is inversely proportional to the modal group delay spread. When mode-division-multiplexed signals occupy a bandwidth far larger than the coherence bandwidth, the mode-dependent gains and losses are averaged over frequency, causing the outage capacity to approach the average capacity. The difference between the average and outage capacities is found to be inversely proportional to the square-root of a diversity order that is given approximately by the ratio of the signal bandwidth to the coherence bandwidth.Comment: 8 pages, 6 figure

    Mode-Dependent Loss and Gain: Statistics and Effect on Mode-Division Multiplexing

    Full text link
    In multimode fiber transmission systems, mode-dependent loss and gain (collectively referred to as MDL) pose fundamental performance limitations. In the regime of strong mode coupling, the statistics of MDL (expressed in decibels or log power gain units) can be described by the eigenvalue distribution of zero-trace Gaussian unitary ensemble in the small-MDL region that is expected to be of interest for practical long-haul transmission. Information-theoretic channel capacities of mode-division-multiplexed systems in the presence of MDL are studied, including average and outage capacities, with and without channel state information.Comment: 22 pages, 8 figure

    Incoherent mode division multiplexing for high-security information encryption

    Full text link
    In the age of information explosion, the conventional optical communication protocols are rapidly reaching the limits of their capacity, as almost all available degrees of freedom (e.g., wavelength, polarization) for division multiplexing have been explored to date. Recent advances in coherent mode division multiplexing have greatly facilitated high-speed optical communications and secure, high-capacity information storage and transfer. However, coherent mode division multiplexing is quite vulnerable to even minute environmental disturbances which can cause significant information loss. Here, we propose and experimentally demonstrate a paradigm shift to incoherent mode division multiplexing for high-security optical information encryption by harnessing the degree of coherence of structured random light beams. In contrast to the conventional techniques, our approach does not require mode orthogonality to circumnavigate unwanted mode crosstalk. In addition, our protocol has, in principle, no upper bound on its capacity. Thanks to the extreme robustness of structured random light to external perturbations, we are able to achieve highly accurate information encryption and decryption in the adverse environment. The proposed protocol opens new horizons in an array of fields, such as optical communications and cryptography, and it can be relevant for information processing with acoustical, matter as well as other types of waves.Comment: 23 pages, 6 figure

    Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    Get PDF
    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 μm etc. After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non-return to zero (NRZ) data signals over a 30 m 7-cell HC-PBGF using the offset mode launching method. In another experiment, a short piece of 19-cell HC-PBGF was used to transmit two 20 Gbit/s NRZ channels using a spatial light modulator for precise mode excitation. Bit-error-ratio (BER) performances below the forward-error-correction (FEC) threshold limit (3.3×10-3) are confirmed for both data channels when they propagate simultaneously. © 2013 IEEE

    Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics

    Get PDF
    open5openGIANLUCA RUFFATO, 1; FILIPPO ROMANATO, ; 1Department of Physics and Astronomy ‘G. Galilei’, University of Padova; 2Laboratory for Nanofabrication of Nanodevices, c.so Stati Uniti 4GIANLUCA RUFFATO, 1; Romanato, Filippo; Ruffato, Gianluca; Astronomy ‘. G. Galilei’, University of Padova; 2Laboratory for Nanofabrication of Nanodevices, c. so Stati Uniti

    Efficiency-boosted semiconductor optical amplifiers via mode-division multiplexing

    Get PDF
    Semiconductor optical amplifiers (SOAs) are a fundamental building block for many photonic systems. However, their power inefficiency has been setting back operational cost reduction, circuit miniaturization, and the realization of more complex photonic functions such as large-scale switches and optical phased arrays. In this work, we demonstrate significant gain and efficiency enhancement using an extra degree of freedom of light—the mode space. This is done without changing the SOA’s material design, and therefore high versatility and compatibility can be obtained. Light is multiplexed in different guided modes and reinjected into the same gain section twice without introducing resonance, doubling the interaction length in a broadband manner. Up to 87% higher gain and 300% higher wall-plug efficiency are obtained in a double-pass SOA compared to a conventional single-pass SOA, at the same operating current, in the wavelength range of 1560–1580 nm
    • …
    corecore