3,704 research outputs found

    Evasion Paths in Mobile Sensor Networks

    Full text link
    Suppose that ball-shaped sensors wander in a bounded domain. A sensor doesn't know its location but does know when it overlaps a nearby sensor. We say that an evasion path exists in this sensor network if a moving intruder can avoid detection. In "Coordinate-free coverage in sensor networks with controlled boundaries via homology", Vin deSilva and Robert Ghrist give a necessary condition, depending only on the time-varying connectivity data of the sensors, for an evasion path to exist. Using zigzag persistent homology, we provide an equivalent condition that moreover can be computed in a streaming fashion. However, no method with time-varying connectivity data as input can give necessary and sufficient conditions for the existence of an evasion path. Indeed, we show that the existence of an evasion path depends not only on the fibrewise homotopy type of the region covered by sensors but also on its embedding in spacetime. For planar sensors that also measure weak rotation and distance information, we provide necessary and sufficient conditions for the existence of an evasion path

    Robust Environmental Mapping by Mobile Sensor Networks

    Full text link
    Constructing a spatial map of environmental parameters is a crucial step to preventing hazardous chemical leakages, forest fires, or while estimating a spatially distributed physical quantities such as terrain elevation. Although prior methods can do such mapping tasks efficiently via dispatching a group of autonomous agents, they are unable to ensure satisfactory convergence to the underlying ground truth distribution in a decentralized manner when any of the agents fail. Since the types of agents utilized to perform such mapping are typically inexpensive and prone to failure, this results in poor overall mapping performance in real-world applications, which can in certain cases endanger human safety. This paper presents a Bayesian approach for robust spatial mapping of environmental parameters by deploying a group of mobile robots capable of ad-hoc communication equipped with short-range sensors in the presence of hardware failures. Our approach first utilizes a variant of the Voronoi diagram to partition the region to be mapped into disjoint regions that are each associated with at least one robot. These robots are then deployed in a decentralized manner to maximize the likelihood that at least one robot detects every target in their associated region despite a non-zero probability of failure. A suite of simulation results is presented to demonstrate the effectiveness and robustness of the proposed method when compared to existing techniques.Comment: accepted to icra 201

    Renyi Entropy based Target Tracking in Mobile Sensor Networks

    Get PDF
    This paper proposes an entropy based target tracking approach for mobile sensor networks. The proposed tracking algorithm runs a target state estimation stage and a motion control stage alternatively. A distributed particle filter is developed to estimate the target position in the first stage. This distributed particle filter does not require to transmit the weighted particles from one sensor node to another. Instead, a Gaussian mixture model is formulated to approximate the posterior distribution represented by the weighted particles via an EM algorithm. The EM algorithm is developed in a distributed form to compute the parameters of Gaussian mixture model via local communication, which leads to the distributed implementation of the particle filter. A flocking controller is developed to control the mobile sensor nodes to track the target in the second stage. The flocking control algorithm includes three components. Collision avoidance component is based on the design of a separation potential function. Alignment component is based on a consensus algorithm. Navigation component is based on the minimization of an quadratic Renyi entropy. The quadratic Renyi entropy of Gaussian mixture model has an analytical expression so that its optimization is feasible in mobile sensor networks. The proposed active tracking algorithm is tested in simulation. © 2011 IFAC

    Performance Evaluation of IEEE 802.15.4 for Mobile Sensor Network

    Get PDF
    The IEEE 802.15.4 standard medium access control (MAC) protocol for low rate wireless personal area networks (LRWPAN) is design mainly for static sensor networks and its capability to support mobile sensor networks has not yet been established. To the best knowledge of authors, this is the first paper that evaluates the suitability of IEEE 802.15.4 MAC in mobile sensor networks environment. We evaluate the performance based on node\u27s speed and beacon order, and observe the effect on energy usage, packet delivery ratio and time required to associate with its coordinator. From the experiment we observe that the moving nodes experienced serious problems in association and synchronization and show results on energy usage, throughput , association and reassociation rate with different speeds of moving node. We also identify some key research problems that need to be addressed for successful implementations of IEEE 802.15..4 in mobile sensor networks environment

    An efficient self-organizing node deployment algorithm for mobile sensor networks

    Get PDF

    Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks

    Get PDF
    Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed. We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios. The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations

    SimpleTrack:Adaptive Trajectory Compression with Deterministic Projection Matrix for Mobile Sensor Networks

    Full text link
    Some mobile sensor network applications require the sensor nodes to transfer their trajectories to a data sink. This paper proposes an adaptive trajectory (lossy) compression algorithm based on compressive sensing. The algorithm has two innovative elements. First, we propose a method to compute a deterministic projection matrix from a learnt dictionary. Second, we propose a method for the mobile nodes to adaptively predict the number of projections needed based on the speed of the mobile nodes. Extensive evaluation of the proposed algorithm using 6 datasets shows that our proposed algorithm can achieve sub-metre accuracy. In addition, our method of computing projection matrices outperforms two existing methods. Finally, comparison of our algorithm against a state-of-the-art trajectory compression algorithm show that our algorithm can reduce the error by 10-60 cm for the same compression ratio
    • 

    corecore