6,052 research outputs found

    Microstrip antennas

    Get PDF
    It is possible to design and construct simple, efficient microwave antenna, either linearly or circularly polarized, which should be useful in phased arrays. Mounted on thin dielectric substrate, it extends slightly above ground plane. Space behind ground plane is required for feed line and mounting hardware

    Measurement techniques for cryogenic Ka-band microstrip antennas

    Get PDF
    The measurement of cryogenic antennas poses unique logistical problems since the antenna under test must be embedded in a cooling chamber. A method of measuring the performance of cryogenic microstrip antennas using a closed cycle gas cooled refrigerator in a far field range is described. Antenna patterns showing the performance of gold and superconducting Ka-band microstrip antennas at various temperatures are presented

    Optimization of aperture coupled microstrip patch antennas

    Get PDF
    Aperture coupled microstrip patch antennas (ACMPA) are special class of microstrip antennas with high gain and wide impedance bandwidth. These antennas differ from other microstrip antennas with their feeding structure of the radiating patch element. Input signal couples to the radiating patch through the aperture that exists on the ground plane of the microstrip feedline. These special antennas are multilayer stacked type of antennas with so many design variables that will affect the antenna performance. This paper presents the design and optimization procedure of ACMPA while taking care of all possible design variables and parameters to get the highest possible antenna gain and minimum VSWR

    Analysis of an air-spaced patch antenna near 1800 MHz

    Get PDF
    Microstrip antennas are a type of printed antenna which consists of a patch on top of a grounded substrate. A major limitation for the performance of the patch antenna is the dielectric substrate. The idea of using air as dielectric was therefore considered to overcome that limitation because air has the lowest permittivity and no loss. The goal of this work is to build an air-spaced patch antenna, with the minimum resonant frequency at 1800 MHz and with a return loss of at least 10 dB. This work is novel because the air-spaced patch antenna has not been extensively studied. Existing literature on patch antennas with dielectric were used for the design of the antenna (dimensions of the patch, ground plane and height) and to understand the principles of operation of microstrip patch antennas in general. Simulations using the NEC code and experiments in the RF laboratory were used for this air-spaced patch antenna study. The Numerical Electromagnetic Code (NEC) was used as the simulation tool in this work. The air-spaced patch antenna was simulated to find a trend for the variation of the return loss and impedance with the resonant frequency. Simulation also helped determine cases that will not be meaningful to explore in the experiment. The experiment was done in the RF laboratory of Marquette University College of Engineering. Two procedures were used to calculate the patch dimensions using two different sources ([2], [3]). They lead to two patch antennas that were tested. For each antenna, the height of the dielectric substrate and the recess feed distance were varied. Antenna 2 (procedure 2 – [3]) provided the best results with a resonant frequency of 1800 MHz and a return loss of 21 dB. It was found that the error between experimental and simulation resonant frequency is generally 5% or less. This error increases as the dielectric height increases, and as the recess distance increases. Simulation results roughly follow the experimental results trend

    Slotted Microstrip Patch Antenna: A Way to Improve the Performance of Microstrip Patch Antenna

    Get PDF
    Now a days, In wireless communication the most challenging task is to design antennas with light weight , low cost and better performance. Microstrip antennas are widely used antennas because of it’s several advantages like compact size, low cost and easy to fabricate. But Microstrip antennas have also several limitations of low gain and low bandwidth. This paper describes the performance improvement technique of Microstrip antennas, which contains design rule of radiating patch, proper feed position and loading slot on patch

    Bow-Tie Microstrip Antenna Design

    Get PDF
    In this paper, the bow-tie microstrip antennas have been designed with two different angles of 40° and 80°. An investigaton on the effect of the angle to the return loss and radiation patterns had been carried out. The impedance matching network with the niicrostrip transmission line feeding was used in this study. Simulation and measurement results for the return loss and radiation patterns were presented

    The study of microstrip antenna arrays and related problems

    Get PDF
    The physical layout of the array elements and the proximity of the microstrip feed network makes the input impedance and radiation pattern values dependent upon the effects of mutual coupling, feedline discontinuities and feed point location. The extent of these dependences was assessed and a number of single patch and module structures were constructed and measured at an operating frequency of approximately 4.0 GHz. The empirical results were compared with the ones which were theoretically predicted by the cavity model of thin microstrip antennas. Each element was modelled as an independent radiating patch and each microstrip feedline as an independent, quasi-TEM transmission line. The effects of the feedline discontinuities are approximated by lumped L-C circuit models

    On Artificial Magneto-Dielectric Loading for Improving the Impedance Bandwidth Properties of Microstrip Antennas

    Full text link
    In the present paper we discuss the effect of artificial magneto-dielectric substrates on the impedance bandwidth properties of microstrip antennas. The results found in the literature for antenna miniaturization using magnetic or magneto-dielectric substrates are revised, and discussion is addressed to the practically realizable artificial magnetic media operating in the microwave regime. Using a transmission-line model we, first, reproduce the known results for antenna miniaturization with non-dispersive material fillings. Next, a realistic dispersive behavior of a practically realizable artificial substrate is embedded into the model, and we show that frequency dispersion of the substrate plays a very important role in the impedance bandwidth characteristics of the loaded antenna. The impedance bandwidths of reduced size patch antennas loaded with dispersive magneto-dielectric substrates and high-permittivity substrates are compared. It is shown that unlike substrates with dispersion-free permeability, practically realizable artificial substrates with dispersive magnetic permeability are not advantageous in antenna miniaturization. This conclusion is experimentally validated.Comment: 22 pages, 14 figures, 5 tables, submitted to IEEE Trans. Antennas Propaga

    Analysis of microstrip antennas by multilevel matrix decomposition algorithm

    Get PDF
    Integral equation methods (IE) are widely used in conjunction with Method of Moments (MoM) discretization for the numerical analysis of microstrip antennas. However, their application to large antenna arrays is difficult due to the fact that the computational requirements increase rapidly with the number of unknowns N. Several techniques have been proposed to reduce the computational cost of IE-MoM. The Multilevel Matrix Decomposition Algorithm (MLMDA) has been implemented in 3D for arbitrary perfectly conducting surfaces discretized in Rao, Wilton and Glisson linear triangle basis functions . This algorithm requires an operation count that is proportional to N·log2N. The performance of the algorithm is much better for planar or piece-wise planar objects than for general 3D problems, which makes the algorithm particularly well-suited for the analysis of microstrip antennas. The memory requirements are proportional to N·logN and very low. The main advantage of the MLMDA compared with other efficient techniques to solve integral equations is that it does not rely on specific mathematical properties of the Green's functions being used. Thus, we can apply the method to interesting configurations governed by special Green's functions like multilayered media. In fact, the MDA-MLMDA method can be used at the top of any existing MoM code. In this paper we present the application to the analysis of large printed antenna arrays.Peer ReviewedPostprint (published version
    corecore