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Technical Work

DurinF this period efforts have been expended for the following

tasks:

(1) Microstrip Antenna Module

Because of the physical layout of the array elements and the

proximity of the microstrip feed network, the input impedance and

radiation pattern values are dependent upon the effects of mutual

coupling, feedline discontinuities (e.g., curves, T-Junctions, and

corners), and feed point location. Consequently, in a first attempt to

assess the extent of these dependences, a number of single patch and

module structures have bPen constructed and measured at an operating

frequency of approximately 4.0 GHz. These empirical results have then

been compared to those theoretically predicted by the cavity model of

thin microstrip antennas (Lo, Richards). In doing so, of course, each

element has been modelled as an independent radiating patch and each

microstrip feedline an an independent, quasi-THM transmission line

(Hammerstad). The effects of the feedline discontinuities have been

approximated by lumped L-C circuit models originally developed by Oliner

and Milnes.

Two constructed modules are shown in Figure 1 where two key

distinguishing features of the structures namely, the individual element

feed points and the feed transmission lines, are recognizable. The

differences between the two are the direct consequences of the field,

distribution present within the array elements when the antenna is

excited at a frequency near the (0,1) resonance mode frequency of the
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patches- a condition in which side "a" of each patch exhibits no

electric field variation while that of side "b" exhibits one half cycle

of sinusoidal variation. Use has been made of this fact in the

structure depicted in Figure 1.a where it is seen that relocation of the

feed point along the "b" edge results in patch input impedance variation

in much the same manner that impedance varies along a uniform

transmission line not terminated in its own characteristic impedance.

The second difference likewise stems from the relocation of the feed

point, but is visible in the simplification of the microsrtip feed

network which is necessarily required to be symmetrical in phase length

if the antenna module , is to produce a single, broadside, mainbeam.

Because of these motivations; versions of both the commonly used

module/feed network (Figure 1.b) and the modified structure (Figure 1.a)

have been implemented and tested.

To examine the utility of the cavity model when used in conjunction

with substrates thicker ("0.025 free space wavelengths) than that used

previously (fro, Richards), numerous single patch devices were

constructed on substrates of differing relative dielectric constants and

fed by narrow microstrip (Zo- 100 to 150 Ohms) or coaxial cable. The

resulting input impedances were then measured and compared to

theoretically obtained values, One such case is seen in Figure 2 where,

as can be seen in the plot, the agreement between theory and experiment

is very good.	 Y.

In a similar manner, the input impedances of the subarray modules

were then measured and computed. The computations were identical to

those of the single patch case, except of course for the evaluation of
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the microstrip T-Junotions and corners and fors the transformation of the

'n	
impedances throughout the feed network. The results for the modules of

Figure 1.a and 1.b are shown in Figure 3.a and 3.b, respectively. In

Figure 3.a, one sees some agreement between theory and experiment but,

in Figure 3.b, severe distortion of the impedance locus is apparent,

perhaps due to the increased number of feed line corners and T-Junctions

and the increased interaction of the feed lines with themselves as well

as the array elements.

For the analysis of E plane radiation patterns, theoretical plots

were obtained by computing the pattern of a single patch having the same

dimensions as those of the array elements and by performing pattern

multiplication: The absence of mutual coupling was assumed and the

corresponding array factor for two dimensional arrays employed. In the

case of the common structure, the theoretically computed beamwidth

(Firvure 11) is consistently narrower than that obtained experimentally,

but correctly accounts for the absence of side lobes and a significant

cross polarization component. Contrarily, for the modified structure,

the theoretical plot is consistently broader than the experimental and

predicts a higher broadside cross polarization magnitude than that which

was actually measured.

Also, it has biien determined that previously written software to be

used in the analysis of rectangular microstrip antennas contains minor

programming errors. Modifications to the program (A Fortran Program For

Rectangular Microstrip Antennas, University of Illinois at Urbana

Champaign, RADC-TR-82-78, Interim Report, April 1982) are given in the

appendix.

i
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a=3.0cm

b - 2.45 cm

c = 0.75 cm
d = 0.80 cm

e = 1.3 cm

f - 1.5 cm

Zo l . = 104 Ohms

Zo2	125 Ohms

Er = 2.48

f	 = 3.88 3Hz
op.
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Single Patch
a - 4.0 cm
b = 2.43 cm
x - 2.0 cm
y-0.5cm

y axis	 a

b
Y

x	 x axis

Theoretical dotted
Experimental continuous

Figure 2
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Modified Array Module Input Impedance
a • 3.0 cm
b-2.45cm
6r o 2.48

Zo1 . 104 Ohms

d-0.8cm
Freq. in GHz

Theoretical - dotted
Experimental . continuous

Figure 3.a
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Common Array Module Input Impedance	 Theoretical dotted
a . 3.0 cm
	

Experimental continuous
b-2.45cm
& 	 2.48

?02 125 Ohms

f - 1.5 cm

Freq. in GHz

Figure 3.b
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During the next period it is intended that a completed matching

network/array structure havJ;'^, an impedance and pattern bandwidth of at

least two percent be obtained.

(2) Dual Frequency Antennas

By using both slots and shorting pins, the ratio of two operating

frrequency bands can be varied over a wide range, thus making the design

much more useful. A paper was published in the IEEE Transactions on

Antennas and Propagation September, 1984. A copy of this paper is

attached in the appendix section. At the moment, we consider this

project completed unless an idea or a new application is evolved.

(3) CP Microstrip Antennas

A thin microstrip antenna can be designed to produce CP waves, in

fact waves of any polarization, without using phasing and power-dividing

networks. However, both theory and experiment show that the CP

bandwidth (for 3 dB axial ratio) is very narrow, namely (35/0%. For

substrate of a few thousandths of a wavelength thick, Q is on the order

of 100, thus resulting a CP bandwidth only a small fraction of one

percent. Suggestion has been made that a differnt design for a nearly

square patch with feed located not along the diagonal line could give a

wider band. This investigation shows that this speculation is

unfounded. The only effective method for broadbanding is to increase

the substrate thickness.
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Unfortunately, up to the present there is no theory for thick CP

mierostrip antannas available. On the other hand, we have no knowledge
:x

f4

of the upper limit in the thickness below whicY, the theory we developed

previously is applicable. In this period we investigated a number of CP '1
mierostrip antennas with various thicknesses, all designed on the basis

of our mierostrip antenna theory. To our surprise, the theory.appears

to be still useful even for thickness as much as 0.084x(dieleetrie

wavelength). For this case the CP bandwidth is respectable 3.3%. A

paper was presented at tre 1984 Antenna Applications Symposium. A copy

is also attached in the appendix section.

(4) Feed Study

i In recent years, several groups of workers (University of

Massachusetts, UCLA, MIT, University of Illinois) have attempted to

formulate and to solve the problem of microstrip antennas of any

s
thickness. Despite some progress, all failed to take the actual feed

structure into consideration. We believe the feed structure plays an

important role in the in put impedance. During this period considerable

effort has been made to tackle this problem. We find, unexpectedly,

that the problem is very complex and difficult to solve numerically even

for the relatively simple model whi& consists of an off-set coaxial

feed to a disk patch. First it requires the solutions of eigenvalues
1

(resonant frequencies) of an infinitely large matrix. When the feed

cable is near the edge, the solution becomes unstable. Second, we also

4	
need to find the modal fields and third, to match the fields to that of

i
the fixed cable. We intend to continue this investigation.

s
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Personal

During this period the following people have contributed to the

work above:

Y. C. Lo, M. Oberhart, B. Engst, B. F. Wang (without pay) and M.

Davidowitz.

Travel

Y. T. Lo and B. F. Wang attended and presented their work at the

IEEE AP-S International Synposi um June 25-29, 1984, at Boston. Y. T.

Lo, M. Oberhart, B. Engst, and B. F. Wang attended and presented papers

at the 1984 Antenna Applications Synposium at the Allerton Park, I1.

September 1984.
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Because of the form of the "y" component of the vector,

potential, (pp 4, A Fortran Program For Rectangular Micrestrip

Antennas, University of Illinois at Urbana Champaign,

RADC-TR-82-78, Int',erim Report, April 1982) discontinous pattern

plots obtained via subroutine VPAT may result

for those values of theta and phi which make

the denominator small. The effect is such that the value

will never become infinite if the loss tangent is none-zero, but

a sizable discontin ,iity will nevertheless 'exist for practical

values of loss tangent. 'rhe following modification has been

derived for the special case of a single patch which is fed by

microstrip on the "x" side ;y-0.0). It enables continous pattern

calculation f:- the cuts phi-0.0, pi/2.0 . A generalized

modification for arbitrary cute and feed points is being

examined, but if the patch i:3 i?dge fed it may, of course, be

rotated such that y-0.0.

In subroutine VPAT delete lines:

3	 YT--BOA*F*(PMBSPB*EKYSS+CMPLX(O.,KBSS)*XF)/D2
FACTOR-COS(M*PXOA)*JO(M*PD02A)/(PMBSPB)

Then define "UK" in the complex declaration statement

and insert:

3	 IF((CABS(D2).LE.0.0075).AND.(PHI.EQ.PI/2.0)
5 .AND. Y.EQ.0:0)'GO TO 5
YT=-BOA*F*(PMBSPB*EKYSS+CMPLX(O.,KBSS)*XF)/D2
GOTo6
UK-CMPLX(0.0,1.0)

5	 YT--BOA*F*(CSIN(PMB)/(PMR*2.0)+0.5*(CCOS(PMB)+UK*CSIN(PMB)))
6	 FACTOR-COS(M*PXOA)*JO(M*PD02A)/(PMBSPB)

These seven lines are to be inserted in the program specifically

at the location of the deleted lines.



Microstrip Antennas for Dual-Frequency Operation

BAO F. WANG AND YUEN T. LO, Fm.LUw, I=

l

,Abstract—Slagle element microstdp eattune for dual-frequency opera•
dou have been Investigated. By placing shorting plus at appropriate
locations In the patch, the ratio of two-bend frequencies can be varied from
3 to 1.8. In many applications a smaller ratio is dtslred, and this can be
achieved by Introducing slots In the patch. In co doing, the ratio can be
reduced to less then 1.3. For ibis type of antenna, a bybrid rnuitiport
theory Is developtd and theoretical results are found to be In excellent
agreement with the messuitil.

1. INTRODUCTION

O
NE OF THE outstanding features of a thin microstrip antenna
Is Its compactness in structure. Unfortunately it is notori.

ously narrow-banded unless some degree of compactness can be
sacrificed by using a thick substrate. In many applications, it
Is not operation in a continuous wide-band, but, operation
in two or more discrete bands that is required. In this case a
thin patch capable of operating in multiple bands is highly
desirable, particularly for large array application where con•
siderable saving in space, weight, material anti cost can be
achieved. For that gonl, 'a few attempts have be,-n made [1 j ,
[2). by using two or more patch atennas stacked on top of each

Manuscript received January 9, 1994; revised April 26, 1984. This work was
supported In pan by RAD C/EEAA, Hanscom AFB, MA, and NASA Lewis
Research Center, Cleveland, OH.

B. F. Wang is with the Mectror.upetics Laboratory, University of Illinois,
Urbana, IL 61801, on leave from Beijing Aeronautics and Astronautics
Institute, Chita.

Y. T. Lo Is with the Electromagnetics Laboratory, University of Illinois,
Urbana, IL 61801.

other, or placed side by side, or u0ng a complex matching network
which takes as much space and weight, if not more, as the element
itself. Obviously in all those designs, the advantage of compact
structure is sacrificed.

From the cavity-model theory, a single patch antenna can
easily lie made to resonate at many frequencies associated with
various modes. But for most applications, all bands are required
to have the same polarization, radiation patterr, and input
impedance characteristics. It is also desirable to have a single
input port and an arbitrary separation of the frequency bands.
Ali these impose severe constraints on the use of the modes.
In this paper we shall describe some methods which can practi-
cally achieve all these goals.

An annular patch can have predominantly broadside radiation
when excited for the (1, 1), (1, 2) and even the (1, 3) mode.
Unlike a circular disk, the frequencies for those modes can be
adjusted by choosing the inner and outer radius dimensions.
All the aforestated properties can be obtained except that the
variation of the two-frequency band ratio is somewhat limited
(3].

By making use of the difference in the field distributions
for various modes, it is possible to practically tine the operating
frequencies associated with those modes independent of each
other. One method is to place a series of shorting pins at the
nodal lines of, for example, the (0, 3) modal electrical field of
a rectangular patch [31 . These pins will have practically no effect
on the (0, 3) modal field structure but can have a strong effect
on the (0, 1) field and thus raise the (0, 1) modal frequency.

1	 0018.926XJ84/0900.0938$01.00 © IEEE
i
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Fig. 1. Geometry of a rectangular microstrip antenna with idealized feeds.

Hx2 a Ideff ." m sin (Rm(b — y')] cos (max'/a)
atW I10 m n 0	 sin %,b)

(!7rd
to

. rfl(
	 /) f cos mrrY a sin

—ladeff	 m sin [Qm(b — y')] cos (max'/a)
tfr2 = 2	 L.^

a tW No m = 0	 sin (Amb)

, /o \mad
eftl 

sin (max/a) cos (pmy),	 (2)

where 11m =k 2 — (ma

/

/a)2 , k2 = koer(1 — %s e fr), ko is the free
space wavenumber, e, is the relative dielectric constant of the
substrate, Sett is the effective loss tangent (5] , µo Is the permea•
bility of free space, /o(Y) = sin (x)/x, and de tr is the "effective
length" of the magnetic current strip of one VIM. The concept of
effective feed length and its implication are discussed in (5].
Examination of (1) and (2) indicates that the resonance occurs
when Re ((3,b) - na, n = 1, 2, or Re (k) - [(m7r/a) 2 +
(nrr/b)2 ] 1 / 2  since Seff -4 1 • We shall denote the value Pm for
the particular value of n as Rmn, ant its associated field is called
the mnth mode. Clearly in the neighborhood of this resonance
the field will be dominated by the term associated with Qmn,
the value of which depends on the feed location (x',y'). Follow-
Ing the cavity model theory, once the field distribution is found,
the Huygen source, K(x, y) = n X iE(x, y), along the perimeter
can be determined. From K, the far field can then be computed
as given below:

EB = jk0 (Fx sin 0 + Fy cos 0),

E,p = —jk0 (Fx cos 0 + Fy sin 0) cos 0,	 (3)

where

. ^.	 r v. ,^.....m,...-^r.,u^:^ +-.m+.-^-.ura,n tvrsy r .a ..^ -n. ,...rr-c..auaMnm<....m•+..^+..-......,..»...am..i-zxat'^mvc^rer^+.-„-.e.+..+.nu'.fr«.rr..^nnsvY^v. 	 .,.:

Ie Cm 2 effl 
cos (max/a) cos (Qmy),

_ jkob sin 0 sin 0

(Rrnb) 2 -- (kob sin 0 sin 0)72$(5)

i
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Therefore the low band frequency can be tuned independently,

However, the ratio of the two operating frequencies, Fy/FL,
can be varied only from three to two approximately. On the
other hand, if slots are cut In the patch where the magnetic
field of the (0, 3) mode is maximum, they can have a strong
effect on the (0, 3) modal field but little on the (0, 1) modal
field. Thus the operating frequency for the (0, 3) mode can be
lowered. By using both sluts and pins, the two operating bands
can be varied over a wide range, in this paper an analytic theory is
developed for this type of antenna and then verified by experi•
ment.

11. A MICROSTRIP ANTENNA EXCITED BY A MAGNETIC
CURRENT K

First consider a mictostrip antenna excited by a magnetic
current K in the slot centered at (x', y') as shown in Fig, 1.
Following the cavity model theory [41, the antenna can be
considered as a cavity bounded by magnetic walls along is
perimeter and electric walls at z = 0 and t. Since the substrate
thickness t is typically a few hundredths of a wavelength, we
can assume that the field excited by the m rgnetic current

K = z [U(x — x' + deff/2) — U(x — x'— deff/2)]

S (y — Y , ) S (z — t)

in the slot is approximately the same as that excited by

K. =.k [U(x — x' + deft/2) — U(x — x' — doff/2)]

S(y - A(U(z ) — U(z — t)]lt
where de ft is the effective length of the magnetic current strip
of one VIM, and U(-) Is the unit step function, The field in the
cavity due to K can then be found by modal-matching as given
below.

In region I (y' G y < b)

__ deff	 stn (pmy') cos (max'/a)
Ezt	 at , =	 sin ((smb)

,10
 ^

mirdeffl 
cos (max/a) cos [Rm(b — y)]

2a J

/deft	 am sin (pmy') cos (max'/a)
ffxl 

_a tWNo map	 sin (0,b)

/o 
C

m aeffl 
cos (max/a) sin [Qm (b — y)] ,

_ jadeff	 m sin (pmy') cos (max'/a)

Hy1 a 2 1WJ10 m =0	 sin (Pnb)

io
 C

madeffl
 sin (mmc/a) cos [pm (b — y)] •	 (1)

l 2a if

In region II ((j <y <y')

—derr	 sin [9,(b — y')] cos (mar.'/a)__
E92	

at m = o	 sin (limb)

deffE'-
Ikpr ^.

Fx =	 Am (sin (amy')e/kob sin 0 sin 0
tar	 m°0

+ sin [fl, (b — y')] } . 	 Z koa sin 0 cos 0

	

2	 (4)(ma) — (kqa sin 0 cos ^)

bdeffe-Ikon
F) -	 T Am (sin(pmb)e/koy sinasin0

Zara	 m =o

J,Y,)e lkohsinosino + sin [pm(b-- y')]}



h21 = —h12

2	 2 Cmad2eff 1
• cos (m frx2 /a)jo	 J

2a

h22 = /d2eff VC pm sin (pmY2) sin IPM (b —Y2)I
tacJ110 M ao	 sin (pmb)

(17)
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Am =
clis(mfrx'/a)/o(mirdeff/2a) [(-1)m,/koasinocosO _ 1J

sin (pmb)

(6)

Also, from the field in the cavity, the ohmic and dielectric losses
as well as the stored energy can be computed and finally the
effective loss tangent can be determined.

III. MULTIPORT ANALYSIS

Let us consider a rectangular microstrip antenna with two
ports: port 1 at (x i , y i ) is fed with an electric current J I , and
port 2 at (x2 i y2) is fed with a magnetic current K2 as shown
in Fig. 1. The following hybrid matrix [6] can then be used to
describe the relationship between the voltage and current at
these ports:

h12	 11

	

VI = h l l	
1 f

[12 [ h21 h22J L V2 (7)

where It = d 1 effJ1 , d t err = effective width of source J 1 ,
V2 = tK2 and the h parameters are given below:

h 11 = jtclµo
m=0

cost (rnfrx i /a) Cos (pmy i ) cos [pm(b yl)I
apm sin (0, b"

' /o(m7rdleff/2a)

h 12 =
d2eff	 sin 10M (b—y2)] COS (pmY1)—

	

a M a o	 sin (pmb)

cos (max i /a) cos (mfrx21a)

' fo(mrrdl err/2a)/o(mfrd2offl2a)

where
lkontbe—lkor

Fl `°
2m	 Mao

eo m cos (m 71X I /a)/o(m7rdleff/2a)

pmb sin (pmb)

I(-1)n' e/koasineColo _ I]

• I z[cos (pmyl)e/kob sin I sin 0 _ COs 
[pm(b —Y1)I I

/koa sin 8 cos 0	 b
• (m7r)2 — (koa sin B cos 0) 2 — Pa 

[p,n b

' sin (pmb)eJkor l sin 0 sin,, 4 /kob sin 8 sin 0

' [Cos (amyr)e/kebsinOsinO _ Cos [0. (b —Y1)11

[(pnr b)2 — (kob sin @ sin 0)2 1 -1 
	 (14)

__ d2effe—
/kor

'V 
cos (m fcr2 /a)/o(mrrd2 erf/2a)

F2	 2fn mao	 sin (pmb)

• [(-1)M e/koa tin 0coso _ II • I x [ sin (9111Y21..1kob sin B sin 0

/koa sin B Cos 0+ sin [pm (b — y 2 )] ]
(m7r) 2 — (koa sin B cos 0)2

+y -[sin (/imb) elkoy2sina sino + sin (pmY2)a
. 8/kobsin0sino + sin [pm @ — Y2)I I

/kob sin B sin 0
. (pmb)2 — (kob sin 9 sin	 (15)

Cos ,^rx1 /a)/o(mfrdl erf/2a)
P = l wuo	 cos (pmY 1)

pma sin (pmb)

(8)

(9)

cos (mfrx2/a) Cos [pm(b — Y2)I •	 (16)
(10) From these and (3), the far field is readily computed. The analysis

can be generalized for N slots in a straightforward manner.
A similar theory has been developed for a, microstrip antenna

with shorting pins [3] For N pins at N ports, the impedance
parameters Zrr and ZIl are given by

( I 	 o / mzrd
)	 Zu = —Iko tno ^% a

Eom cost (mfrxr/a)/2 1\ 2a 
rf

From (8)-(11) all the z-parameters can thus be determined by
the relationship between h and z parameters. Then, the input
impedance at port 1, Zin , can be computed:

Zin =Z I I `Z12 /(Z2 2 +ZL) (12)

where ZL is the load impedance across the slot terminals at
(x2 , y2 ). The far-field electric vector potential F for the two
sources can be obtained by superposition as given below:

F = F I +PF2 	(13)

cos (pmYc) Cos [0, (b —Yr) I
•	 pm sin (pmb)

b
Zt/ ° j	

EOCornkotno 	 cos (mfrxr/a)
m=o a

• cos (mfrx11a)1o(m7rdreff/2a)

• Cos [0. (b— yl)] Cos (pm.yt)

P, sin (pmb)
(18)
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Fig. 2. (a) Measured and computed impedance loci of a rectangular microstrip
antenna with one slot (I = 3.0 cm) for low band, a - 19.4 cm, b = 14.6
cm, and t = 0.158 cm. (b) Measured and computed impadance loci for high
band. a = 19.4 cm, b = 15.6 cm, and t = 0 . 158 cm. (c) Measured and
computed radiation patterns for both bands. a = 19.4 cm, b - 14.6 cm,
and t = 0.158 cm.
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where no . 377 S2, eom - 1 for m - 0, and 2 otherwise, (.Ct,
y,) and (xt , yl) are the coordinates of the source J and shorting
pin, respectively. For a general case, when the N ports consist

of both slots and pins as shown in Fig. 4, the o!irrente and volt•
ages at the N ports can also be written as follows;

Gillvtl = vl,	 1,	 N,	 (19)

Since the solutions to E and b( everywhere in the patch for any
J and K have been obtained, one can therefore compute the

input impedance Zin at any port, using the same method as
discussed above.

IV. THEORETICAL AND EXPERIMENTAL RESULTS

Our approach to the dual-frequency microstrip antenna,
as stated earlier, is based on the theoretical argument that short•
ing pins and slots if placed at appropriate locations In the patch
can raise the (0, 1) and lower the (0, 3) operating frequencies,
respectively. In general, with pins and slots, the modal field is
no longer pure, The existence of a substantial amount of higher
order modes will modify the antenna overall resonant frequency
which, as defined in (3] , occurs when the reflection coefficient
I F I reaches a minimum.

Several, antennas have been constructed and tested to deter-

mine the validity of the theory. All of them were made of double
copper-clad laminate Rexolite 2200, 1/16 in thick. The relative
permittivity e, -- 2.62, the loss tangent 6 = 0.001, and the cop-
per cladding conductivity --4 270 KTS. These values were used for
theoretical computations.

One of the rectangular microstrip antennas, having the dimen-
sion, = 19.4 cm and b = 14.6 cm, is fed with a miniature cable
at x t = 9.7 cm andy i = 0 as shown in Fig. 1. A slot of length
1 = 3.0 cm and width w = 0.15 cm is cut at x 2 = 9.7 cm
and y2 = 7.3 cm on the patch. The feed locations was chosen
for a good match to the 50 92 line for both FH and FL bands,
The calculated and measured input impedance loci for both
bands are shown in FIgs. 2(a) and 2(b), where for comparison
the corresponding loci without slot are also shown by the dashed
curves. The calculated and measured radiation patterns are shown
in Fig. 2(c). Similar results for slot length I = 4.5 cm are shown in
Figs. 3(a) and 3(b). it is seen that the agreement between theoreti-
cal and measured results is excellent for both bands and that

the slot has only a minor effect on the low-band impedance

locus, but a significant effect on the high-band impedance locus
as expected.

To further reduce the ratio of the operating frequencies of the
high and low band Fy/FL , in addition to the slots, shorting pins
can be inserted along the nodal lines of the (0, 3) mode electric
field as illustrated in Fig. 4. Due to limited space here, only a
few typical measured impedance loci and radiation patterns for
both bands are shown in Figs. 3, 5, and 6. From Figs, 3, 5, and
6, it is seen that while the "resonant" frequencies are changed
for both bands with pins and slots, in general, the radiation
patterns for both bands remain primarily the same. It may also
be noted that the input impedance can vary widely with the

feed position, and one is therefore free to choose the feed posi-
tion for a desired impedance without undue concern about Its
effect on the pattern. The measured gains of these microstrip
antennas as compared with those of a X/2-tuned dipoles, 0.2 X

e,

i
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MEASURED	 x x x x COMPUTED

(b)

Fig. 3. (a) Measured and computed impedance loci for a rectangular
microstrip antenna with one slot (I - 4.5 cm). a - 19.4 cm, b - 14.6 cm,
and I - 0.158 cm. (b) Measured and computed radiation pattern for a

rectangular microstrip antenna with one slot (I - 4.5 cm). a - 1.94 cm,
b - 14.6 cm, and t - 0.158 cm.

—^—

I^
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..	 Pin

194

Fig. 4. The microstrip antenna with shorting pins and slots. All dimensions
are in mm.
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Fig. 5. (a) Measured impedance loci for a rectangular microstrip antenna with
three slots and four pins. a - 19.4 cm, b - 14.6 cm, and I = 0.158 cm. (b)
Measured radiation patterns for a rectangular microstrip antenna with three
slots and four pins. a - 19.4 cm, b - 14.6 cm, and t - 0.158 cm.

over a ground plane are about —0.5 dB for the low band and —1.5
dB for the high band.

Table I summarizes the values of FHIFL for six cases. From
these results, it is seen that in general the slots can lower FH
and shorting pins raise FL , resulting in a variation of FHIFL

from 3.02 to 1.31. In fact, this ratio can be reduced even further
by adding more pins and slots. However the effectiveness of
adds-5 more pins and shots will eventually diminish. Instead,
we find that the ratio FHIFL can be reduced to about 1.07
by using a C•shaped slot (or a wrapped around microstrip line).
This will be reported elsewhere.

V. CONCLUSION

This investigation shows that a single rectangular microstrip
antenna element can be designed to perform for dual -frequency
bands corresponding approximately to the (0, 1p and (0, 3)

modes. The frequencies of both bands can be tuned over a wide
range, with their ratio from 3 to less than 1.3, by adding shorting
pins and slots in the patch. A method for analyzing these antennas
has been developed and treats the antenna as a multiport cavity.
The validity of this theory is verified by comparing the computed
impedance loci and radiation patterns with the measured for
a few simple cases.
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7.02A.	 oast slat	 t I	1.0 v at	 (1.7,7.3)

A.	 One slot	 11.7 	• 3.0 o at	 (9.7,7.3) 396 1700 2.83

C.	 rhroe slot:	
1 
• 7,0 0 14, -	 - 3.0 

Cis1 7
737 1420 2.57

at	 (9.1,2.4).	 !i1,7,7,7)	 (9.7,12.2)

D.	 ThrNaloes	 - 7.0 ea at the
I

stir beat Ion u lE caal C.
333 1310 2.36

2.	 Sans as Casa D but with four pins as 698 IOU 1.56
shwa to l i tsuce 2.

I.	 fans a	 [ vtth sir a441tloaal pins at 890 1181 1.31
79.	 .7,2.4).	 (13.7,2.4),	 (3.7,12.2).

(9.7,12.2)	 ad	 (17.7,12.2)

As a design guide, in general, the effect of slot on the high-band
frequency is stronger if it is placed where the high-order modal
magnetic field is stronger, and the effect of short pin on the low•
band frequency is stronger If it is placed where the low-order
modal electric field is stronger.
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I. Introduction

It is well known that a simple microetrip antenna can be made to radiate EM

waves of any polarization, in particular, the circular polarization (CP) without

any phasing network and power divider 11 - 51. A simple but surprisingly

accurate theory for this family of antennas has been developed and reported in

the 1979 Antenna Applications Symposium. However, the CP bandwidth, (CPBW)

namely the bandwidth in which the axial ratio (AR) is less than a certain

specified value, say 3 dB, is very small. For example, for a nearly square

patch made of 1/16" thick Rexolite 2200 and designed to operate at 800 MHz, the

CP bandwidth is only about 0.3%. Most of those experimental designs were made

for a feed placed along the diagonal of the patch. But the theory shows that

there are practically inZinitely many possible designs with different feed loca-

tion's [3 - 51. The purposes of this paper are: first to clear up the specula-

tion that other designs might give a wider bandwidth, and second to show an

effective method for broadening the bandwidth.

II. Theory

First we briefly review the theory for CP microstrip antennas [3]. For

concreteness, let us consider a rectangular patch with effective dimensions

a x b, relative substrate dielectric constant er , and effective loss tangent

6eff which can be either computed or simply measured from the Q-factor of the

antenna. In general, an infinite number of modes will be excited. However, as

the excitation frequency w is near the resonant frequency of one of the modes,

say the ninth mode:

22 1/2
W . 

wM 11 Coer C^ a^ + b
n 	 1 kmn	 (1)

L	 uo oeer

1
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the meth modal field will overwhelmingly dominate over all others, particularly

for thin microstrip antennas. The radiated field is ttmn found to be inversely

proportional to (k kmn) where k . w u^e r0 -- J6eff) " kover(1 - J6eff/2) r
kore r (1 - 9/2Q) - k' + jk". Nokr let us consider a nearly , square patch, namely

0 < a - b a. c << a and b; then for the two dominant modes,

k01 W rr/b u k10 w ?r/a .	 (2)

If the excitation frequency is such that

k10 < k' < k01	 (3)

the,a the fields associated with both of these modes will be strongly excited.

Let the normal of the patch be the z -axis, the patch side having dimension a be

along the x-axis and b along the y -axis. The radiated field along the z-axis

will have two orthogonal components whose ratio is approximately given by

E	 k - k

E = A k - k10	 (4)
x	 01

where

A ' cos(/b)	 (5)cos(nx'
-rtx a

(x' ,y') . coordinates of the feed location	 (6)

If a, b, x', and y' are such that

Ey/Ex ° *-j 	 (7)

f then LH and RH CP will be obtained, respectively. To see how the design parame-

ters a, b, x', and y' are related, it 2s not only the simplest but also the most

illuminating method by examining ( 4) and ( 7) in the k-plane as shows in Figure 1.

2
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For LHCP the phasor (k - k 1Q ) must lead (k - k01 ) by x/2 and the ratio of their

lengths must be equal. to 1/A. For given a and b, the solution. for k' is given

by the intersection of the circle whose diameter is (k01 - klu) and center at

(0,(k01 + k10)/2) and the line k"/k' a -1/2Q. Clearly these are three

possibilities: (1) no solution if 
(k01 - k10) < 2k" 

M k'/Q » k10/Q; (2) one

solution if (k01 - 
k10 ) " 2k" 

m k10/Q; and (3) two solutions if

(k01 - k
1Q ) > 2k" M k10/Q.

Let us consider the last case first. Using the similarity of triangles one

readily obtains the following:

.F'
k" 	 r>	 p . Ik" I/A	 (8)

(k-k10 1	 (k-k01(

q	 s 	 q - Ik" JA	 (9)
lit- 'CO,
	 (k	

k10

where p and q aze (k' - k10 ) and N, - k'), respectively, as indicated in

Figure 2, and

A m Ik - kol I/ Ik - k10 1	 (10)

as from ( 4) and ( 7). One of the two possible solutions for k' is

,
k' - 

k10 + p ' k10 + 2QA	
W>	 k' ' k10/ (1 - 2QA	

(11)

Furthermore,

1	
kl	

1
k01_ k10 p+q' I k"IA+A	

2Q 
A + A .

From ( 11) and ( 12), one obtains an equation for A:

t^

(12)

3
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A2 -^A+ (1 +- w 0	 (13)

Thus there are, in general, two possible solutions for A which will be denoted

by Al and A2 . From (13)

A1A2 w 
1 + 'b
	 1 .
	

(14)

Thus, when c << b if Al is a solution, so is 1 /A1 . The latter when substituted

into ( 11) gives the corresponding second solution of k':

k' 
W klo/ 1 - 	 (15)

Equations ( 13) and (11) are the two basic daS:A'gn formulas. For example, for a

given material and given dimensions a aad b, Q can be either computed or

measured ( 3J. Then (13) is solved for the two solutions of A, each of which

determines the feed locus and its corresponding . frequency from ( 11). Since for

c <( b, Al A .2 w 1, the two loci for the two frequencies are approximately sym-

metrical with respect to the line x - y.

For RHCP, the lower sign of (7) should be used. Then by defining

A	 _ cos(rt '/b)	
(16)

cos nx a

awl the above derivations and, therefore, all the above results remain

unchanged. In other words the feed loci for RHCP are simply the reflections of

those for LHCP with respect to the line x a a/2, or y . b/2. These will be

demonstrated later in some examples.

-For the special case Al = A.2 4 1 1 i.e., the feed is along the diagonal line

y' /x'	 b/a, (13) reduces to

a *^ 2Q + z 1+ 1+ 1	 (17)
b 2Q - 1	 Q 2Q2

4
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and the circle in Figure 1 becomes tangent to the line 1t"/k' A -1/2Q.

IV. Numerical and Bx erimental Results

Several experimental patch antennas were designed and testod. All of them

were made of Rexolita 2200 with 
c  

w 2.62 and dielectric loss tangent 0.001.

One of them has the following physical dimensions:

a » 16.1 cm, b w 15.9 cm, t w 0.32 cm .

Past results show that the effectiva values of a and b are about 1.5t larger

than the actual physical dimensions. The Q of this patch is found to be about

100. Using ( 13) the four feed loci, two at f l and f2 for LHCP-and two others

also at f 1 and f2 for RHCP were computed and plotted in Figure 2. The patterns

measured with a rota, ig dipole for feed points 1 and 2 at 597 MHz and

590.4 MHz, respectively, are shown in b gures 3(a) and 3(b). These patterns are

about the same as those reported earlier for the patches designed for A w 1.

For the feed at point 2, the AR vs. f is listed in Table 1. The CP bandwidth is

about 0.5%. An attempt to broaden the bandwidth by feeding the patch at a

compromise point between points 1 and 2 as Caund ineffective and sometimes

resulting in worse AR. The input impedance characteristic for feed at 1 and 2

are shown in Figures 4(a) and 4(b).

V. Broadbanding of CP Microstrip Anten nas

Assuming that the dimensions of a CP patch antenna have been determined by

using the design formula given above, one can then compute the CP bandwidth by

using ( 4) as the frequency, or k', departs from the designed value until the AR

becomes 3 dB. Using this method we have previously shown that the CP bandwidth

is approximately ( 35/Q) percent for Rexolite 2200 ( 3]. Thus to broaden the

5
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bandwidth, Q must be lowered. This can only be achieved effectively by using

thick substrate (6J. Unfortunately, so far there is no theory available for

thick'CP microstrip antennas, nor a procise knowledge about the upper limit of

the substrate thickness beyond which the cavity-model theory breaks down. Under

this circumstance we simply used the latter theory to design several patch anten-

nae with thickness as much as 0.053 Ao , (AO • free space wavelength) or 0.084 A,
(a - substrate dielectric wavelength). To our surprise excellent results could

still be obtained. This is discussed below with several examples.

(a) The first patch, designed to operate in the 10 GHz range, has the

following physical dimensions:

a ., 0.946 cm, b - 0.911 cm, t - 0.08 cm

and its Q•-factor is found to be about 20. Using (13) one finds that the proper

feed location is along the diagonal of the patch. For a good match to the 50 n

line, the feed coordinates are chosen to be

X1 = 0.21 cm, y' . 0.2 cm

The measured patterns at 10.22 GHz in the two planes 0 - 0° and 90° are shown in

Figures 5a. Excellent AR is observed over a wide angular region. Figures 5b'-

5c show the patterns in the ` 0 0 plane at the two edge frequencies, 10.306 and

10.16 GHz, of the CP bandwidth, which is about 1.44%, substantially larger than

that obtained earlier, for the thin substrate. But in this case t z 0.044 A.

(b) The second patch has the following physical dimensions: 	
u

a ® 0.964 cm, b - 0.8 .59 cm, t - 0.16 cm

Its Q, is found to be 8 and (x',y') - (0.3, 0.28) em. The parts-ens for 9.74 GHz

in the two principal planes and for the two edge frequencies, 9.9 and 9.577 G11z,
6
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of the CP band in the M 0° plane are shown in Figures 6a - 6c. For this

thick substrate, the CPBW is about 3.3%.

All of these results as well as a few others are summarized in Table 2.

The C1' bandwidth vs * t in X or ho is plotted in Figure 7. It is interesting to

note that their relationship is nearly linear and can )e given approximately by

	

CPBW(%) at 36.7t(X) + 0.16 	 for t > 0.005 X

Earlier we showed that the CPBW ,(in %) is approximately equal to 35/Q. This is

plotted in Figure 8 where the experiment results are also marked. The

agreement is surprisingly good.

(c) The last example has the physical dimensions

a a 1.088 cm, b s 0.90 cm, t - 0.08 cm

These dimensions result a feed point at x' - 0.2 cm, y' . 0.39 cm which is noc

on the diagonal line. The patterns are shown in Figures 9a - 9c for f - 10.27,

10.18, and 10.36 GHz, the latter two being the edge frequencies of the CPBW of

about 1.75%. The small improvement of this BW over that of the design (a) with

the feed along the diagonal UQe is probably within our experimental error and

should not be taken seriously.

VI. Conclusions

(1) Despite the fact that our CP microstrip antenna theory is based on the

cavity model, valid only for thin substrate, this investigation shows that it is

still applicable for substrate as thick as 0.084 of a dielectric wavelength.

(2) The CP bandwidth of a microstrip antenna depends mainly can its Q-

f actor, thus its thickness. A CPBW of 3% can be obtained if the substrate is

about 8% of a dielectric wavelength thick. For this case Q = 8, indicating a

	

very good radiation efficiency. 	
7
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(3) For a fixed thickness, the CPDW cannot be broadened significantly by

using other designs. However, other designs do provide a means for moving the

feed from one point to some other point which may be necessary, due to some

packaging problem.

VII. References

(11 H. D. Weinachel, "A cylindrical array of circularly polarized microstrip

antennas," IEEE AP-S International Symposium Digest, pp. 175-180, June

1975, Urbana, IL.

(21 J. L. Kerr, "Microstrip polarization techniques" Proc. of the 1978 Antenna

Applications Symposium at Allerton Park, University of Illinois, Urbana,

IL.

(31 Y. T. Lo, W. F. Richards, and D. D. Harrison, "An improved theory for

microstrip antennas and applications - Part I," Interim Report,

RADC-TR-79-111, May 1979; also W. F. Richards, Y. T. Lo and D. D. Harrison,

"An improved theory for microstrip antennas and applications," IEEE Trans.,

AP-29, pp. 38-46, Jan. 1981.

(41 W. F. Richards, Y. T. Lo, and P. Simon, "Design and theory of circularly

polarized microstrip antennas," IEEE AP-S International Symposium Digest,

pp. 117-120, June 1979.

[5] Y. T. Lo and W. F. Richards, "A perturbation approach to the design of cir-

cularly polarized microstrip antennas," IEEE AP-S Inernational Symposium,

pp. 339-342, June 1981.

(61 Y. T. Lo, et al.., "Study of microstrip antenna elements, arrays, feeds,

losses, and applications," Final Technical Report, RADC-TR-81-98, June

1981.

Acknowledgement

This work is supported by Lewis Research Center, NASA, Cleveland, OH and
RADC Hanscom AFB, MA.	 8

s

f

x



C

0 ^#

f

1

TABLE 1.

AR vs. frequency of the microstrip antenna shown in Figure 2
and fed at point 2: x' 0 6.75 cm, y' - 5.1 cm

P i

f ( MHz) AR (dB)

588.96 3

589.3 2.5

589.8 1.5

59x.4 i

591.2 1.4

591.8 2.7

592 3



TABLE 2.

Measured CP bandwidths for various substrate thicknesses t

f (GHz) x0 (cm) t(cm) t(A0) t(A) CPBW( %) Q

0.59 50.85 0.16 0.0032 0.0051 0.35 130

0.59 50.85 0.32 0.0063 0.01 0.5 100

1.200 25 0.32 0.0128 0.021 0.84 58

10.22 2.935 0.08 0.0273 0.044 1.44 20

9.74 3.093 0.16 0.053 0.084 3.3 8
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r' Figure 1. Geometric relations of phasors k10 , k01 and k in k-planefor CP operation.
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Figure 2. Feed loci for a rectangular CP microstrip antenna with
substrate thickness 0.32 cm and relative dielectric
constant 2.62.
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Figure 3(a). Field patter-is in principal planes of the microstrip antenna shown
In Figure 2, at point 1: x' - 4.55 cm, y' - 6.37 cm, and
f - 597 4Hz.
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Figure 3(b). Field patterns in principal planes of the microstrip antenna shown
in Figure 2, at point 2: x' - 5.75 cm, y' - 5.1 cm, and

f - 590.4 KHz.
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e) Impedance locus, frequency
increment - 5 MHz.

E
Figure 4. Input impedance of the antenna shown in Figure 2 and fed at point

(a) 1 and (b) 2.
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b) Impedance locus, frequency
increment - 5 Wdz.
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Figure 7. Bandwidth vs. the su)strate thickness t, expressed in terms of free
space wavelength, No , or substrate dielectric wavelength X.
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Figure 9. Field patterns of the mlcrostrip antenna with dimension a 	 1.088 cm,
b - 0.90 cm, t - 0.08 cm, and feed point at x' ^ 0.2 cm,	 - 0.39 cm.
All patte nis were taken for 9 - 0'.
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