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ABSTRACT 

The measurement of cryogenic antennas poses unique logistical 

problems since the antenna under test must be embedding in the 

cooling chamber. In this paper, a method of measuring the per­

formance of cryogenic m;crostr;p antennas using a closed cycle 

gas-cooled refrigerator in a far field range is described . 

Antenna patterns showing the performance of gold and super­

conducting Ka-band microstrip antennas at various temperatures 

are presented. 

1. INTRODUCTION 

Printed circuit antennas have been the focus of much research 

in recent years as candidates for applications such as satellites 

where weight and volume are a premium [1]. In theory, many­

element microstrip arrays could rival the gain of traditional 

parabolic dishes. However, microstrip antennas have high ohmic 

losses which act to limit the maximum obta i nable gain. This 

problem i s compounded at millimeter wave frequencies since the 

surface resistance of metals increases with f1/2, causing micro­

strip transmission lines to be much more lossy. 
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It is well known that ohmic losses may be reduced sig­

nificantly by cooling the circuit to cryogenic temperatures. 

Gold has a resistance temperature coefficient of approximate ly 

10 nQ cm/K. Computer simulations show that a reduction in 

temperature from 300 K to 77 K translates to 10 dB/m less loss at 

30 GHz for a microstrip line on 0.25 mm alumina. The use of 

cryogenics has the additional benefit of reducing the noise fig­

ure of the system, which is critical for radiometric antennas. 

Recently, much attention has been given to the use of high 

temperature superconductors (HTS) as a solution to the problem of 

gain limitation in many-element microstrip array antennas [2 ,3 J. 

According to [3] , an HTS 100 element linear array at 35 GHz could 

e xperience a gain increase of 8 to 10 dB over an identical copper 

array. Measurements of 35 GHz HTS ring resonators have shown an 

improvement in microstrip line attenuation of 10 dB over identi­

ca l gold circuits when both are at 77 K. [4] 

In a practical sense, measuring the performance of antennas 

at cryogenic temperatures is quite difficult. If the antenna is 

to be cooled in a cryogen such as liquid nitrogen or liquid 

helium, a radio-transparent dewar must be used. In general such 

an arrangement allows performance measurements only at two 

temperatures: room temperature and the boiling point of the 

cryogen. Th is type ,of cryostat has been used by [5] to measu re 

electrically small superconducting arrays at 650 MHz and by [6J 

to measure a 500 MHz HTS dipole. A gas refrigerator, on the 

other hand, has the advantage that the temperature can be set to 

any value within its range. However, a vacuum must be main­

tained, which necessitates the use of some type of radio­

transparent vacuum jacket. 

In this paper, we discuss the design of a temperature­

controlled cryostat which has been used to successfully test 

planar superconducting microstrip arrays at 30 GHz. To our 

knowledge this is the first reported use of a gas refrigerator 

f or cryogenic antenna measurements. 
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2. DESIGN 

The cryostat used is based upon a CTI-Cryogen ics compressor 

and cold head. The unit is a closed-cycle helium refrigerator. 

·A Lakeshore Cryogenics temperature controller controls the cur­

rent through a heater element to provide temperature control over 

the system. The two-stage cold finger is enclosed by a stainless 

steel tube, capped with a lid machined from high-density 

polyethylene (HO PE) as shown in Fig. 1. HOPE was chosen because 

of its low relative permittivity (2.34) [7] and loss tangent and 

because it is inexpensive in comparison to other polymers such as 

teflon. The lid is spherical with an inner radius of 12.7 cm and 

thickness of .508 cm. A hermetically sealed coaxial feedthru 

(two back-to-back uK" sparkplug launchers) passes the RF into the 

vacuum chamber. Semirigid coaxial cable connects the feed thru to 

the antenna test fixture. 

The antennas used are 4 element microstrip arrays with a 

resonance at 31.7 GHz. The antennas were patterned onto their 

respective substrates, magnesium oxide (MgO) and lanthanum 

aluminate (LaA1203), and assembled into a brass test fixture 

(Fig. 2). A 50 Q gold microstrip feed line patterned on an 

alumina substrate separates the coax-to-microstrip transition 

(Wiltron V-connector) from the antenna. The test fi xture was 

made as thin as practically possible to reduce the thermal load­

ing of the cryostat, thereby hastening the cool-down and warmup 

times involved. Wire bonds connect the feed line to the antenna. 

To test the antennas, each test fixture was in turn mounted at 

the second stage of a 2-stage closed-cycle helium refrigerator. 

A high-density polyethylene (HOPE) cap serves as both a vacuum 

jacket and a radome. S-parameter (S1 1 ) measurements us i ng an HP 

8510B were done by calibrating to the coax i al connector inside 

the cryostat while at room temperature. The entire cryostat was 

mounted on a plexiglass stand, which in turn was fastened to the 

rotating pedestal of a far-field antenna range for pattern 

measurements in th~ receive mode (Fig. 3), 
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3. ANTENNA MEASUREMENTS 

This setup was used to measure H-plane patterns of the 

aforementioned Ka-band microstrip arrays. The arrays were fab­

ricated with high-temperature superconductors (HTS) and, for com­

parison purposes, with evaporated gold. The antennas were 

measured at 30 K, 70 K and room temperature (295 K). In addi­

tion, the array patterns of the gold antennas were measured with 

and without the HOPE lid to judge the effect of the radome. The 

measured patterns are shown in Fig. 2. Comparison of the pat­

terns with and without the lid show the H-plane patterns to be 

essentially unchanged, except for a 3-dB amplitude decrease when 

the lid is removed. This is most likely a result of the l i d 

acting as a dielectric lens, thereby weakly focusing the radia­

tion. The thickness of the HOPE lid was chosen arbitrarily, and 

at the resonant frequency of the antennas is 1.22 dielectric 

wavelengths. The gold antenna patterns show a 3 dB increase in 

received power as the temperature is lowered from 295 K to 30 K. 

The HTS arrays show a distinct difference in pattern below and 

above the critical temperature (Tc), with the received power 

increasing by more than 10 dB below Tc. 

4. CONCLUSIONS 

A specially designed cryogenic unit has been developed for 

the measurement of microstrip antennas at temperature down to 

25 K. The use of the unit was demonstrated by measuring far­

field patterns and the reflection coefficients of superconducting 

and gold Ka-band microstrip arrays. H-plane measurements show no 

substantial effects resulting from the presence of the HDPE 

radome. 

ACKNOWLEDGMENT 

The authors would like to thank Mr. Ed Smith for his help in 

the measurement of these antennas, and Dr. R.Q. Lee for his con­
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