21,392 research outputs found

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    Magnetometry with nitrogen-vacancy defects in diamond

    Get PDF
    The isolated electronic spin system of the Nitrogen-Vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of "NV magnetometry". It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.Comment: Review article, 28 pages, 16 figure

    Composite-pulse magnetometry with a solid-state quantum sensor

    Get PDF
    The sensitivity of quantum magnetometers is challenged by control errors and, especially in the solid-state, by their short coherence times. Refocusing techniques can overcome these limitations and improve the sensitivity to periodic fields, but they come at the cost of reduced bandwidth and cannot be applied to sense static (DC) or aperiodic fields. Here we experimentally demonstrate that continuous driving of the sensor spin by a composite pulse known as rotary-echo (RE) yields a flexible magnetometry scheme, mitigating both driving power imperfections and decoherence. A suitable choice of RE parameters compensates for different scenarios of noise strength and origin. The method can be applied to nanoscale sensing in variable environments or to realize noise spectroscopy. In a room-temperature implementation based on a single electronic spin in diamond, composite-pulse magnetometry provides a tunable trade-off between sensitivities in the microT/sqrt(Hz) range, comparable to those obtained with Ramsey spectroscopy, and coherence times approaching T1

    Assessing composition gradients in multifilamentary superconductors by means of magnetometry methods

    Full text link
    We present two magnetometry-based methods suitable for assessing gradients in the critical temperature and hence the composition of multifilamentary superconductors: AC magnetometry and Scanning Hall Probe Microscopy. The novelty of the former technique lies in the iterative evaluation procedure we developed, whereas the strength of the latter is the direct visualization of the temperature dependent penetration of a magnetic field into the superconductor. Using the example of a PIT Nb3Sn wire, we demonstrate the application of these techniques, and compare the respective results to each other and to EDX measurements of the Sn distribution within the sub-elements of the wire.Comment: 7 pages, 8 figures; broken hyperlinks are due to a problem with arXi
    corecore