37,866 research outputs found

    MicroRNA-29a suppresses the growth, migration, and invasion of lung adenocarcinoma cells by targeting carcinoembryonic antigen-related cell adhesion molecule 6

    Get PDF
    AbstractCarcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is an important regulator of cell adhesion, invasion, and metastasis. The aim of this study was to evaluate the functional roles of CEACAM6 in lung adenocarcinoma and to identify miRNAs that inhibit the growth, migration, and invasion of lung adenocarcinoma cells by targeting CEACAM6. CEACAM6 expression is associated with poor prognosis of patients with lung adenocarcinoma, and CEACAM6 has important functional roles in controlling the growth, migration, and invasion of lung adenocarcinoma cells in vitro and in vivo. Furthermore, miR-29a can suppress the growth, migration, and invasion of lung adenocarcinoma cells by targeting CEACAM6. Therefore, miR-29a/CEACAM6 axis represents a potential therapeutic target for treatment of lung adenocarcinoma

    Identification of FKBP10 prognostic value in lung adenocarcinoma patients with surgical resection of brain metastases: A retrospective single-institution cohort study

    Get PDF
    Objective: To explore the expression levels and clinical value of FKBP10 in lung adenocarcinoma brain metastases. Design: A retrospective single-institution cohort study. Patients: The perioperative records of 71 patients with lung adenocarcinoma brain metastases who underwent surgical resection at the authors’ institution between November 2012 and June 2019 were retrospectively analyzed. Methods: The authors evaluated FKBP10 expression levels using immunohistochemistry in tissue arrays of these patients. Kaplan-Meier survival curves were constructed, and a Cox proportional hazards regression model was used to identify independent prognostic biomarkers. A public database was used to detect FKBP10 expression and its clinical value in primary lung adenocarcinoma. Results: The authors found that the FKBP10 protein was selectively expressed in lung adenocarcinoma brain metastases. Survival analysis showed that FKBP10 expression (p = 0.02, HR = 2.472, 95% CI [1.156, 5.289]), target therapy (p < 0.01, HR = 0.186, 95% CI [0.073, 0.477]), and radiotherapy (p = 0.006, HR = 0.330, 95% CI [0.149, 0.731]) were independent prognostic factors for survival in lung adenocarcinoma patients with brain metastases. The authors also detected FKBP10 expression in primary lung adenocarcinoma using a public database, found that FKBP10 is also selectively expressed in primary lung adenocarcinoma, and affects the overall survival and disease-free survival of patients. Limitations: The number of enrolled patients was relatively small and patients’ treatment options varied. Conclusions: A combination of surgical resection, adjuvant radiotherapy, and precise target therapy may benefit the survival of selected patients with lung adenocarcinoma brain metastases. FKBP10 is a novel biomarker for lung adenocarcinoma brain metastases, which is closely associated with survival time and may serve as a potential therapeutic target

    BAG Family Gene and Its Relationship with Lung Adenocarcinoma Susceptibility

    Get PDF
    Background and objective BAG genes (Bcl-2-associated athanogene) belong to a recently discovered multifunctional anti-apoptosis gene family that regulate various physiological processes which include apoptosis, tumorigenesis, neural differentiation, stress response and cell cycle and so on. The expression status of BAG family genes are related to certain tumor incidence and prognosis. The aim of this study is to explore the association of the BAG family gene expression status with the susceptibility of lung adenocarcinoma. Methods The gene expression data of BAG family genes from 29 cases of lung adenocarcinoma tissues and matched pericancerous lung tissess were generated by microarray chips. Cox regression was used to analyze the association between the expression of BAG family genes and the susceptibility of lung adenocarcinoma and the results were verified by GEO database. Results The expression levels of BAG-1, BAG-2, BAG-5 in cancer tissues were significantly downregulated compared with matched pericancerous lung tissues and were protective factors of lung adenocarcinoma (P < 0.05, OR < 1); while the expression level of BAG-4 in cancer tissues were remankably upregulated compared with the matched pericancerous lung tissues and was risk factor of lung adenocarcinoma (P < 0.05, OR > 1). Conclusion BAG-1, BAG-2, BAG-5 might be the potential protective factors while BAG-4 is possible risk factor of lung adenocarcinoma

    Inhibition of ornithine decarboxylase facilitates pegylated arginase treatment in lung adenocarcinoma xenograft models

    Get PDF
    INTRODUCTION: Arginine depletion has shown anticancer effects among arginine auxotrophic cancers. Pegylated arginase (BCT-100) depletes arginine by converting arginine to ornithine. In this study, BCT-100 inhibited cell growth in a panel of lung adenocarcinoma cell lines while stimulated tumor growth in most lung adenocarcinoma xenograft models. Furthermore, ornithine decarboxylase (ODC) was induced by BCT-100 in two solid xenograft models with tumor growth stimulating effect. We postulate that accumulated ornithine was used to produce polyamines by ODC which promoted tumor growth. And ODC inhibition might rescue the therapeutic effect of BCT-100 treatment in lung adenocarcinoma ...published_or_final_versio

    DNA Methylation Changes in Atypical Adenomatous Hyperplasia, Adenocarcinoma In Situ, and Lung Adenocarcinoma

    Get PDF
    BACKGROUND:Aberrant DNA methylation is common in lung adenocarcinoma, but its timing in the phases of tumor development is largely unknown. Delineating when abnormal DNA methylation arises may provide insight into the natural history of lung adenocarcinoma and the role that DNA methylation alterations play in tumor formation. METHODOLOGY/PRINCIPAL FINDINGS:We used MethyLight, a sensitive real-time PCR-based quantitative method, to analyze DNA methylation levels at 15 CpG islands that are frequently methylated in lung adenocarcinoma and that we had flagged as potential markers for non-invasive detection. We also used two repeat probes as indicators of global DNA hypomethylation. We examined DNA methylation in 249 tissue samples from 93 subjects, spanning the putative spectrum of peripheral lung adenocarcinoma development: histologically normal adjacent non-tumor lung, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS, formerly known as bronchioloalveolar carcinoma), and invasive lung adenocarcinoma. Comparison of DNA methylation levels between the lesion types suggests that DNA hypermethylation of distinct loci occurs at different time points during the development of lung adenocarcinoma. DNA methylation at CDKN2A ex2 and PTPRN2 is already significantly elevated in AAH, while CpG islands at 2C35, EYA4, HOXA1, HOXA11, NEUROD1, NEUROD2 and TMEFF2 are significantly hypermethylated in AIS. In contrast, hypermethylation at CDH13, CDX2, OPCML, RASSF1, SFRP1 and TWIST1 and global DNA hypomethylation appear to be present predominantly in invasive cancer. CONCLUSIONS/SIGNIFICANCE:The gradual increase in DNA methylation seen for numerous loci in progressively more transformed lesions supports the model in which AAH and AIS are sequential stages in the development of lung adenocarcinoma. The demarcation of DNA methylation changes characteristic for AAH, AIS and adenocarcinoma begins to lay out a possible roadmap for aberrant DNA methylation events in tumor development. In addition, it identifies which DNA methylation changes might be used as molecular markers for the detection of preinvasive lesions

    Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics

    Get PDF
    Therapeutic manipulation of the gasotransmitter hydrogen sulfide (H(2)S) has recently been proposed as a novel targeted anticancer approach. Here we show that human lung adenocarcinoma tissue expresses high levels of hydrogen sulfide (H(2)S) producing enzymes, namely, cystathionine beta-synthase (CBS), cystathionine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), in comparison to adjacent lung tissue. In cultured lung adenocarcinoma but not in normal lung epithelial cells elevated H(2)S stimulates mitochondrial DNA repair through sulfhydration of EXOG, which, in turn, promotes mitochondrial DNA repair complex assembly, thereby enhancing mitochondrial DNA repair capacity. In addition, inhibition of H(2)S-producing enzymes suppresses critical bioenergetics parameters in lung adenocarcinoma cells. Together, inhibition of H(2)S-producing enzymes sensitize lung adenocarcinoma cells to chemotherapeutic agents via induction of mitochondrial dysfunction as shown in in vitro and in vivo models, suggesting a novel mechanism to overcome tumor chemoresistance

    Peritoneal carcinomatosis, an unusual and only site of metastasis from lung adenocarcinoma

    Get PDF
    Isolated peritoneal metastases of lung adenocarcinoma are very rare, even exceptional, occurring most often in the context of a multi-metastatic disease. This report presents a rare clinical case of isolated peritoneal metastasis from lung adenocarcinoma. We report a 56-year-old male who was monitored for lung adenocarcinoma whose evolution has been marked by an isolated metastatic recurrence in the peritoneum objectified by an abdominal-pelvic computed tomography (CT) and confirmed by a laparoscopy with abiopsy of the peritoneal nodules. The patient had received palliative chemotherapy with gemcitabine, cisplatin and bevacizumab. The evolution was marked by a progressive deterioration of the general condition and death two months after the third treatment cycle. Peritoneal carcinomatosis from lung adenocarcinoma is a very rare event, and is often associated with a poor prognosis.Pan African Medical Journal 2016; 2

    An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors.

    Get PDF
    To address the biological heterogeneity of lung cancer, we studied 199 lung adenocarcinomas by integrating genome-wide data on copy number alterations and gene expression with full annotation for major known somatic mutations in this cancer. This showed non-random patterns of copy number alterations significantly linked to EGFR and KRAS mutation status and to distinct clinical outcomes, and led to the discovery of a striking association of EGFR mutations with underexpression of DUSP4, a gene within a broad region of frequent single-copy loss on 8p. DUSP4 is involved in negative feedback control of EGFR signaling, and we provide functional validation for its role as a growth suppressor in EGFR-mutant lung adenocarcinoma. DUSP4 loss also associates with p16/CDKN2A deletion and defines a distinct clinical subset of lung cancer patients. Another novel observation is that of a reciprocal relationship between EGFR and LKB1 mutations. These results highlight the power of integrated genomics to identify candidate driver genes within recurrent broad regions of copy number alteration and to delineate distinct oncogenetic pathways in genetically complex common epithelial cancers
    • …
    corecore