9,394 research outputs found

    Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer’s Biomarkers

    Get PDF
    Producción CientíficaIn recent years, there has been an increase in knowledge of cancer, accompanied by a technological development that gives rise to medical oncology. An instrument that allows the implementation of individualized therapeutic strategies is the liquid biopsy. Currently, it is the most innovative methodology in medical oncology. Its high potential as a tool for screening and early detection, the possibility of assessing the patient’s condition after diagnosis and relapse, as well as the effectiveness of real-time treatments in different types of cancer. Liquid biopsy is capable of overcoming the limitations of tissue biopsies. The elements that compose the liquid biopsy are circulating tumor cells, circulating tumor nucleic acids, free of cells or contained in exosomes, microvesicle and platelets. Liquid biopsy studies are performed on various biofluids extracted in a non-invasive way, and they can be performed both from the blood and in urine, saliva or cerebrospinal fluid. The development of genotyping techniques, using the elements that make up liquid biopsy, make it possible to detect mutations, intertumoral and intratumoral heterogeneity, and provide molecular information on cancer for application in medical oncology in an individualized way in different types of tumors. Therefore, liquid biopsy has the potential to change the way medical oncology could predict the course of the disease

    Effective osimertinib treatment in a patient with discordant T790 M mutation detection between liquid biopsy and tissue biopsy.

    Get PDF
    BACKGROUND:We report the successful treatment of the patient with osimertinib 80 mg/day following disease progression and a discordance in the detection of a mechanism of resistance epithelial growth factor receptor (EGFR) T790 M between liquid biopsy and tissue biopsy methods. CASE PRESENTATION:A 57-year-old Hispanic male patient initially diagnosed with an EGFR 19 deletion positive lung adenocarcinoma and clinically responded to initial erlotinib treatment. The patient subsequently progressed on erlotinib 150 mg/day and repeat biopsies both tissue and liquid were sent for next-generation sequencing (NGS). A T790 M EGFR mutation was detected in the blood sample using a liquid biopsy technique, but the tissue biopsy failed to show a T790 M mutation in a newly biopsied tissue sample. He was then successfully treated with osimertinib 80 mg/day, has clinically and radiologically responded, and remains on osimertinib treatment after 10 months. CONCLUSIONS:Second-line osimertinib treatment, when administered at 80 mg/day, is both well tolerated and efficacious in a patient with previously erlotinib treated lung adenocarcinoma and a T790 M mutation detected by liquid biopsy

    Biomarker-Drug and Liquid Biopsy Co-development for Disease Staging and Targeted Therapy: Cornerstones for Alzheimer's Precision Medicine and Pharmacology.

    Get PDF
    Systems biology studies have demonstrated that different (epi)genetic and pathophysiological alterations may be mapped onto a single tumor's clinical phenotype thereby revealing commonalities shared by cancers with divergent phenotypes. The success of this approach in cancer based on analyses of traditional and emerging body fluid-based biomarkers has given rise to the concept of liquid biopsy enabling a non-invasive and widely accessible precision medicine approach and a significant paradigm shift in the management of cancer. Serial liquid biopsies offer clues about the evolution of cancer in individual patients across disease stages enabling the application of individualized genetically and biologically guided therapies. Moreover, liquid biopsy is contributing to the transformation of drug research and development strategies as well as supporting clinical practice allowing identification of subsets of patients who may enter pathway-based targeted therapies not dictated by clinical phenotypes alone. A similar liquid biopsy concept is emerging for Alzheimer's disease, in which blood-based biomarkers adaptable to each patient and stage of disease, may be used for positive and negative patient selection to facilitate establishment of high-value drug targets and counter-measures for drug resistance. Going beyond the "one marker, one drug" model, integrated applications of genomics, transcriptomics, proteomics, receptor expression and receptor cell biology and conformational status assessments during biomarker-drug co-development may lead to a new successful era for Alzheimer's disease therapeutics. We argue that the time is now for implementing a liquid biopsy-guided strategy for the development of drugs that precisely target Alzheimer's disease pathophysiology in individual patients

    What information could the main actors of liquid biopsy provide? A representative case of non-small cell lung cancer (NSCLC)

    Get PDF
    In non-small cell lung cancer (NSCLC), there is a consensus regarding the use of liquid biopsy, generally, to detect "druggable" mutations and, in particular, to monitor tyrosine kinase inhibitor (TKI) treatments. However, whether circulating tumor cells (CTCs) are better tools than cell-free DNA (cfDNA), is still a matter of debate, mainly concerning which antigen(s) we should use to investigating simultaneously both epithelial and epithelial-to-mesenchymal transient (EMT) phenotype in the same sample of CTCs. To address this item, we exploited here a single-tube liquid biopsy, to detect both epithelial cell adhesion molecule (EpCAM)-positive CTCs and EpCAM-low/negative CTCs, because down-modulation of EpCAM is considered the first step in EMT. Furthermore, we analyzed the DNA from CTCs of four different phenotypes (ctcDNA), according to their EpCAM expression and cytokeratin pattern, and circulating tumor DNA (ctDNA) by droplet digital PCR (ddPCR), in order to disclose activating and resistancedriving mutations. Liquid biopsy reflected spatial and temporal heterogeneity of the tumor under treatment pressure. We provide the proof-of-concept that the complementary use of ctDNA and ctcDNA represents a reliable, minimally invasive and dynamic tool for a more comprehensive view of tumor evolution

    The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring

    Get PDF
    The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis, patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and biomarker development being addressed by the Liquid Biopsy Consortium, established through the National Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed existing challenges and provided recommendations for advancing biomarker assays

    Focused ultrasound-enabled brain tumor liquid biopsy

    Get PDF
    Abstract Although blood-based liquid biopsies have emerged as a promising non-invasive method to detect biomarkers in various cancers, limited progress has been made for brain tumors. One major obstacle is the blood-brain barrier (BBB), which hinders efficient passage of tumor biomarkers into the peripheral circulation. The objective of this study was to determine whether FUS in combination with microbubbles can enhance the release of biomarkers from the brain tumor to the blood circulation. Two glioblastoma tumor models (U87 and GL261), developed by intracranial injection of respective enhanced green fluorescent protein (eGFP)-transduced glioblastoma cells, were treated by FUS in the presence of systemically injected microbubbles. Effect of FUS on plasma eGFP mRNA levels was determined using quantitative polymerase chain reaction. eGFP mRNA were only detectable in the FUS-treated U87 mice and undetectable in the untreated U87 mice (maximum cycle number set to 40). This finding was replicated in GL261 mice across three different acoustic pressures. The circulating levels of eGFP mRNA were 1,500–4,800 fold higher in the FUS-treated GL261 mice than that of the untreated mice for the three acoustic pressures. This study demonstrated the feasibility of FUS-enabled brain tumor liquid biopsies in two different murine glioma models across different acoustic pressures

    Measure Twice: Promise of Liquid Biopsy in Pediatric High-Grade Gliomas

    Get PDF
    Purpose To review and critique the current state of liquid biopsy in pHGG. Materials and Methods Published literature was reviewed for articles related to liquid biopsy in pediatric glioma and adult glioma with a focus on high-grade gliomas. Results This review discusses the current state of liquid biomarkers of pHGG and their potential applications for liquid biopsy development. Conclusions While nascent, the progress toward identifying circulating analytes of pHGG primes the field of neuro-oncoogy for liquid biopsy development

    Liquid Biopsy in Rare Cancers: Lessons from Hemangiopericytoma

    Get PDF
    Hemangiopericytoma (HPT) is a rare mesenchymal tumor of fibroblastic type and for its rarity is poorly studied. The most common sites of metastatic disease in patients with intracranial HPT are the bone, liver, and lung, suggestive for an hematogenous dissemination; for this reason, we investigated, for the first time, the presence of circulating tumor cells (CTCs) in hemangiopericytoma patient by CellSearch® and SceenCell® devices. Peripheral blood samples were drawn and processed by CellSearch, an EpCAM-dependent device, and ScreenCell®, a device size based. We found nontypical CTCs by CellSearch system and the immunofluorescence analysis performed on CTCs isolate by ScreenCell demonstrated the presence of single CTCs and CTC clusters. The molecular characterization of single CTCs and CTC clusters, using antibodies directed against EpCAM, CD34, cytokeratins (8, 18, and 19), and CD45, showed a great heterogeneity in CTC clusters. We believe that the present study may open a new scenario in the rare tumors: the introduction of the liquid biopsy and the molecular characterization of circulating tumor cells could lead to personalized targeted treatments and also for rare tumors

    Advances in liquid biopsy

    Get PDF
    Cancer is a lethal disease and ranks as the world’s second most prevalent cause of death. So far, tissue-based biopsy is conducted routinely to detect and monitor the progression of cancer. However, the traditional technique is deemed too invasive and cannot be used repeatedly. On the other hand, liquid biopsy, also known as blood-sample test, has recently surged and has been proved to be more and more promising. Using cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA), liquid biopsy can effectively profile the genetic landscape of cancer and can detect the presence of cancer in patients at very early stages due to its high sensitivity. Liquid biopsy is not only capable of monitoring the risk or potential of tumorigenesis, but also capable of predicting and tracking metastasis and relapse. Therefore, liquid biopsy is believed to revolutionize cancer detection, prognosis, and personalized medicine treatment. In this review, the concept, history, recent advances of liquid biopsy, and existing commercial companies’ most commonly used techniques were summarized; the advantages and disadvantages and the broad applications of liquid biopsy in various fields including cancer were discussed
    corecore