160,474 research outputs found

    Placental-mediated increased cytokine response to lipopolysaccharides: a potential mechanism for enhanced inflammation susceptibility of the preterm fetus.

    Get PDF
    BackgroundCerebral palsy is a nonprogressive motor impairment syndrome that has no effective cure. The etiology of most cases of cerebral palsy remains unknown; however, recent epidemiologic data have demonstrated an association between fetal neurologic injury and infection/inflammation. Maternal infection/inflammation may be associated with the induction of placental cytokines that could result in increased fetal proinflammatory cytokine exposure, and development of neonatal neurologic injury. Therefore, we sought to explore the mechanism by which maternal infection may produce a placental inflammatory response. We specifically examined rat placental cytokine production and activation of the Toll-like receptor 4 (TLR4) pathway in response to lipopolysaccharide exposure at preterm and near-term gestational ages.MethodsPreterm (e16) or near-term (e20) placental explants from pregnant rats were treated with 0, 1, or 10 ÎĽg/mL lipopolysaccharide. Explant integrity was assessed by lactate dehydrogenase assay. Interleukin-6 and tumor necrosis alpha levels were determined using enzyme-linked immunosorbent assay kits. TLR4 and phosphorylated nuclear factor kappa light chain enhancer of activated B cells (NFÎşB) protein expression levels were determined by Western blot analysis.ResultsAt both e16 and e20, lactate dehydrogenase levels were unchanged by treatment with lipopolysaccharide. After exposure to lipopolysaccharide, the release of interleukin-6 and tumor necrosis alpha from e16 placental explants increased by 4-fold and 8-9-fold, respectively (P < 0.05 versus vehicle). Conversely, interleukin-6 release from e20 explants was not significantly different compared with vehicle, and tumor necrosis alpha release was only 2-fold higher (P < 0.05 versus vehicle) following exposure to lipopolysaccharide. Phosphorylated NFÎşB protein expression was significantly increased in the nuclear fraction from placental explants exposed to lipopolysaccharide at both e16 and e20, although TLR4 protein expression was unaffected.ConclusionLipopolysaccharide induces higher interleukin-6 and tumor necrosis alpha expression at e16 versus e20, suggesting that preterm placentas may have a greater placental cytokine response to lipopolysaccharide infection. Furthermore, increased phosphorylated NFÎşB indicates that placental cytokine induction may occur by activation of the TLR4 pathway

    Fetal skin as a pro-inflammatory organ: Evidence from a primate model of chorioamnionitis.

    Get PDF
    BackgroundIntrauterine infection is a primary cause of preterm birth and fetal injury. The pro-inflammatory role of the fetal skin in the setting of intrauterine infection remains poorly characterized. Whether or not inflammation of the fetal skin occurs in primates remains unstudied. Accordingly, we hypothesized that: i) the fetal primate skin would mount a pro-inflammatory response to preterm birth associated pro-inflammatory agents (lipopolysaccharides from Escherichia coli, live Ureaplasma parvum, interleukin-1β) and; ii) that inhibiting interleukin-1 signaling would decrease the skin inflammatory response.MethodsRhesus macaques with singleton pregnancies received intraamniotic injections of either sterile saline (control) or one of three pro-inflammatory agonists: E. coli lipopolysaccharides, interluekin-1β or live U. parvum under ultrasound guidance. A fourth group of animals received both E. coli lipopolysaccharide and interleukin-1 signaling inhibitor interleukin-1 receptor antagonist (Anakinra) prior to delivery. Animals were surgically delivered at approximately 130 days' gestational age.ResultsIntraamniotic lipopolysaccharide caused an inflammatory skin response characterized by increases in interluekin-1β,-6 and -8 mRNA at 16 hours. There was a modest inflammatory response to U. parvum, but interleukin-1β alone caused no inflammatory response in the fetal skin. Intraamniotic Anakinra treatment of lipopolysaccharide-exposed animals significantly reduced skin inflammation.ConclusionsIntraamniotic lipopolysaccharide and U. parvum were associated with modest increases in the expression of inflammatory mediators in primate fetal skin. Although administration of Interleukin-1β alone did not elicit an inflammatory response, lipopolysaccharide-driven skin inflammation was decreased following intraamniotic Anakinra therapy. These findings provide support for the role of the fetal skin in the development of the fetal inflammatory response

    \u3cem\u3eRhizobium leguminosarum\u3c/em\u3e CFN42 Lipopolysaccharide Antigenic Changes Induced by Environmental Conditions

    Get PDF
    Four monoclonal antibodies were raised against the lipopolysaccharide of Rhizobium leguminosarum bv. phaseoli CFN42 grown in tryptone and yeast extract. Two of these antibodies reacted relatively weakly with the lipopolysaccharide of bacteroids of this strain isolated from bean nodules. Growth ex planta of strain CFN42 at low pH, high temperature, low phosphate, or low oxygen concentration also eliminated binding of one or both of these antibodies. Lipopolysaccharide mobility on gel electrophoresis and reaction with other monoclonal antibodies and polyclonal antiserum indicated that the antigenic changes detected by these two antibodies did not represent major changes in lipopolysaccharide structure. The antigenic changes at low pH were dependent on growth of the bacteria but were independent of nitrogen and carbon sources and the rich or minimal quality of the medium. The Sym plasmid of this strain was not required for the changes induced ex planta. Analysis of bacterial mutants inferred to have truncated O-polysaccharides indicated that part, but not all, of the lipopolysaccharide O-polysaccharide portion was required for binding of these two antibodies. In addition, this analysis suggested that O-polysaccharide structures more distal to lipid A than the epitopes themselves were required for the modifications at low pH that prevented antibody binding. Two mutants were antigenically abnormal, even though they had abundant lipopolysaccharides of apparently normal size. One of these two mutants was constitutively unreactive toward three of the antibodies but indistinguishable from the wild type in symbiotic behavior. The other, whose bacteroids retained an epitope normally greatly diminished in bacteroids, was somewhat impaired in nodulation frequency and nodule development

    Correlation of Lipopolysaccharide Endotoxin Level in Cotton Dust with the Increase of TNFα Level and the Decline of Lung Function in Cotton Spinning Factory Workers

    Full text link
    Lipopolysaccharide (LPS) endotoxin contained in cotton dust may cause airway inflammation and decline of lung function when inhaled, which eventually leads to respiratory symptoms. The objective of this research is to analyze the correlation of the exposure of LPS endotoxin in cotton dust with the increase of TNFα level and the decline of lung function after one day’s work. This study applies analytical observation method and prospective cohort approach. Main participants of this study were the workers of a cotton spinning factory located in Tulangan District, Sidoarjo Regency, East Java Province. Sixteen samples from cotton factory were taken as study group, and twenty three samples from village administrators were taken as control group. Data collection involves several techniques: spirometry, laboratory test, and interview. Results showed that concentration of personal dust has a significant relationship with the decline of FVC, %FVC, FEV1, and %FEV1, with Pearson correlation test showing p<0.05. LPS endotoxin in personal dust samples has a significant relationship with the increase of blood serum TNFα and the decline of FEV1 and %FEV1, with Pearson correlation test showing p>0.05. The research concludes that the level of LPS endotoxin was strongly related to the increase of blood serum TNFα and the decline of lung function. Development of more effective preventive measures such as stronger enforcement of worker’s health maintenance regulations and use of personal protective equipment is needed to ensure the best protection of cotton workers’ health

    The Effects of Acute Lipopolysaccharide Induced Inflammation on Spinal Cord Excitability

    Get PDF
    Peripheral inflammation alters the excitability of dorsal horn interneurons and increases flexor reflex strength (Dubner & Ruda, 1992); however, its effect on the spinal stretch reflex is not well understood. The stretch reflex is a muscle contraction in response to muscle stretch. We hypothesize that the acute inflammation caused by an injection of lipopolysaccharide (LPS) will cause an increase in spinal cord excitability. To test this hypothesis, we measured Hoffman’s (H) reflex, the electric analog of the stretch reflex in adult mice receiving an injection of LPS (.5mg/kg) or saline (200μl). Adult male and female mice (C57Bl/6) were anesthetized; then, the sciatic nerve was exposed and stimulated at current strengths from H-wave threshold (T) to 8T (20 x 0.1 ms pulses at 0.1 Hz). Recording electrodes were placed in the foot. We measured the maximum M wave amplitude (Mmax), maximum H wave amplitude (Hmax) and latencies of both waves. We compared the ratio of the maximal H wave over the maximal M wave (Hmax/Mmax), which reports the percentage of motor neurons activated by electrical stimulation of Group Ia muscle sensory neurons. Increased spinal cord excitability would be reflected in a larger Hmax/Mmax. We found that LPS-induced inflammation does not alter the Hmax/Mmax. While we found no evidence of changes in spinal cord excitability, inflammation could be altering Group Ia muscle spindle afferent responses to stretch. Future studies will test whether stretch reflex strength is altered by inflammation

    Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane

    Get PDF
    Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane

    Role of p52 (NF-ÎşB2) in LPS tolerance in a human B cell line

    Get PDF
    Cells of the weakly CD14 positive human B cell line RPMI 8226, clone 1, will mobilize NF-ÎşB (p50/p65 and p50/p50) proteins and produce TNF mRNA when stimulated with lipopolysaccharide (LPS), When such cells are precultured with a low amount of LPS (50 - 250 ng/ml) for 3 - 4 days followed by a secondary stimulation with a high dose of LPS (1 mu g/ml) then the cytokine expression is strongly reduced, i.e, the cells have become tolerant. Western blot analysis of proteins of the NF-kappa B/rel family demonstrates cytoplasmic p50 and p65 for naive B cells plus a low level of p52. While with tolerance induction the pattern of p50 and p65 proteins remains essentially unchanged, the LPS tolerant 8226 cells show a dramatic increase of both p52 protein and its p100 precursor in the cytosol. This p52 is found strongly upregulated in Western blots of extracts from purified nuclei of tolerant cells, Also, gelshift analysis with the -605 kappa B motif Of the human TNF 5'-region shows an additional high mobility complex in LPS tolerant cells - a complex that is supershifted with an anti-p52 antibody, Functional analysis with the -1064 TNF 5'-region in front of the luciferase reporter gene demonstrates that transactivation of the TNF promoter is strongly reduced in tolerant cells, Also, overexpression of p52 will suppress activity of TNF promoter reporter gene constructs. Taken together these data show that tolerance to LPS in the human RPM1 8226 a cell line involves upregulation of the p52 (NF-kappa B2) gene, which appears to be instrumental in the blockade of TNF gene expression

    Varying the Abundance of O Antigen in \u3cem\u3eRhizobium etli\u3c/em\u3e and Its Effect on Symbiosis with \u3cem\u3ePhaseolus vulgaris\u3c/em\u3e

    Get PDF
    Judged by migration of its lipopolysaccharide (LPS) in gel electrophoresis, the O antigen of Rhizobium etli mutant strain CE166 was apparently of normal size. However, its LPS sugar composition and staining of the LPS bands after electrophoresis indicated that the proportion of its LPS molecules that possessed O antigen was only 40% of the wild-type value. Its LPS also differed from the wild type by lacking quinovosamine (2-amino-2,6-dideoxyglucose). Both of these defects were due to a single genetic locus carrying a Tn5 insertion. The deficiency in O-antigen amount, but not the absence of quinovosamine, was suppressed by transferring into this strain recombinant plasmids that shared a 7.8-kb stretch of the R. etli CE3 lps genetic region α, even though this suppressing DNA did not carry the genetic region mutated in strain CE166. Strain CE166 gave rise to pseudonodules on legume host Phaseolus vulgaris, whereas the mutant suppressed by DNA from lps region α elicited nitrogen-fixing nodules. However, the nodules in the latter case developed slowly and were widely dispersed. Two other R. etli mutants that had one-half or less of the normal amount of O antigen also gave rise to pseudonodules on P. vulgaris. The latter strains were mutated in lps region α and could be restored to normal LPS content and normal symbiosis by complementation with wild-type DNA from this region. Hence, the symbiotic role of LPS requires near-normal abundance of O antigen and may require a structural feature conferred by quinovosamin

    Effect of fish oil on lipopolysaccharide-induced hydroxyapatite loss in rat alveolar bone: A Preliminary Study

    Get PDF
    Dietary fish oil has been shown to inhibit bone resorption and, therefore, the aim of the present study was to test the hypothesis that fish oil alters lipopolysaccharide (LPS)-induced hydroxyapatite loss in rat alveolar bone. Rats were divided into four groups. The animals injected with saline or Escherichia coli-derived LPS into the maxillary alveolar mucosa on the buccoapical site of the molar region daily for 8 days were served as a negative or positive control, respectively. Other groups of animals were injected with LPS and orally treated with fish oil at the same day with or after LPS injection. The results of the present study showed that the hydroxyapatite contents of alveolar bone in rats treated with fish oil at the same day with or before LPS injection were significantly higher than those in rats injected with LPS alone, but still lower than those in untreated animals. Therefore, the present study suggests that oral treatment with fish oil may reduce LPS-induced hydroxyapatite loss in rat alveolar bon
    • …
    corecore