431,759 research outputs found

    Enhanced nasopharyngeal infection and shedding associated with an epidemic lineage of emm3 group A Streptococcus

    Get PDF
    Background: A group A Streptococcus (GAS) lineage of genotype emm3, sequence type 15 (ST15) was associated with a six month upsurge in invasive GAS disease in the UK. The epidemic lineage (Lineage C) had lost two typical emm3 prophages, Φ315.1 and Φ315.2 associated with the superantigen ssa, but gained a different prophage (ΦUK-M3.1) associated with a different superantigen, speC and a DNAse spd1. Methods and Results: The presence of speC and spd1 in Lineage C ST15 strains enhanced both in vitro mitogenic and DNAse activities over non-Lineage C ST15 strains. Invasive disease models in Galleria mellonella and SPEC-sensitive transgenic mice, revealed no difference in overall invasiveness of Lineage C ST15 strains compared to non-Lineage C ST15 strains, consistent with clinical and epidemiological analysis. Lineage C strains did however markedly prolong murine nasal infection with enhanced nasal and airborne shedding compared to non-Lineage C strains. Deletion of speC or spd1 in two Lineage C strains identified a possible role for spd1 in airborne shedding from the murine nasopharynx. Conclusions: Nasopharyngeal infection and shedding of Lineage C strains was enhanced compared to nonLineage C strains and this was, in part, mediated by the gain of the DNase spd1 through prophage acquisition

    First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Nepal

    Get PDF
    BACKGROUND: Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. METHODS AND FINDINGS: We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42-4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43-5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. CONCLUSIONS: We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian reg

    Lineage specific recombination rates and microevolution in Listeria monocytogenes

    Get PDF
    Background: The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II) and an uncommon lineage (lineage III). While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA) for 195 L. monocytogenes isolates. Results: Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM) and the two virulence genes (actA and inlA). The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average) of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck. Conclusion: Our study shows that evolutionary lineages within a single bacterial species can differ considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that account for the possibility of changes in the rate of recombination would be required. While previous studies suggested that only L. monocytogenes lineage I has experienced a recent bottleneck, our analyses clearly show that lineage II experienced a bottleneck at about the same time, which was subsequently obscured by abundant homologous recombination after the lineage II bottleneck. While lineage I and lineage II should be considered separate species from an evolutionary viewpoint, maintaining single species name may be warranted since both lineages cause the same type of human disease

    Molecular epidemiology of Mycobacterium africanum in Ghana

    Get PDF
    BACKGROUND: Mycobacterium africanum comprises two phylogenetic lineages within the M. tuberculosis complex (MTBC) and is an important cause of human tuberculosis (TB) in West Africa. The reasons for this geographic restriction of M. africanum remain unclear. Here, we performed a prospective study to explore associations between the characteristics of TB patients and the MTBC lineages circulating in Ghana. METHOD: We genotyped 1,211 MTBC isolates recovered from pulmonary TB patients recruited between 2012 and 2014 using single nucleotide polymorphism typing and spoligotyping. Associations between patient and pathogen variables were assessed using univariate and multivariate logistic regression. RESULTS: Of the 1,211 MTBC isolates analysed, 71.9 % (871) belonged to Lineage 4; 12.6 % (152) to Lineage 5 (also known as M. africanum West-Africa 1), 9.2 % (112) to Lineage 6 (also known as M. africanum West-Africa 2) and 0.6 % (7) to Mycobacterium bovis. Univariate analysis revealed that Lineage 6 strains were less likely to be isoniazid resistant compared to other strains (odds ratio = 0.25, 95 % confidence interval (CI): 0.05-0.77, P < 0.01). Multivariate analysis showed that Lineage 5 was significantly more common in patients from the Ewe ethnic group (adjusted odds ratio (adjOR): 2.79; 95 % CI: 1.47-5.29, P < 0.001) and Lineage 6 more likely to be found among HIV-co-infected TB patients (adjOR = 2.2; 95 % confidence interval (CI: 1.32-3.7, P < 0.001). CONCLUSION: Our findings confirm the importance of M. africanum in Ghana and highlight the need to differentiate between Lineage 5 and Lineage 6, as these lineages differ in associated patient variables

    Kinship, lineage identity, and an evolutionary perspective on the structure of cooperative big game hunting groups in Indonesia.

    Get PDF
    Work was conducted among traditional, subsistence whale hunters in Lamalera, Indonesia in order to test if kinship or lineage membership is more important for explaining the organization of cooperative hunting parties ranging in size from 8-14 men. Crew identifications were collected for all 853 hunts that occurred between May 3 and August 5, 1999. Lineage identity and genetic relatedness were determined for a sample of 189 hunters. Results of matrix regression show that kinship explains little of the hunters' affiliations independent of lineage identity. Crews are much more related amongst themselves than expected by chance. This is due, however, to the correlation between lineage membership and kinship. Lineage members are much more likely to affiliate in crews, but beyond r = 0.5 kin are just as likely not to affiliate. The results are discussed vis-Ă -vis the evolution of cooperation and group identity

    Knot Fertility and Lineage

    Full text link
    In this paper, we introduce a new type of relation between knots called the descendant relation. One knot HH is a descendant of another knot KK if HH can be obtained from a minimal crossing diagram of KK by some number of crossing changes. We explore properties of the descendant relation and study how certain knots are related, paying particular attention to those knots, called fertile knots, that have a large number of descendants. Furthermore, we provide computational data related to various notions of knot fertility and propose several open questions for future exploration.Comment: 20 pages, 11 figures, 14 table
    • …
    corecore