145 research outputs found

    Forbidden subposet problems for traces of set families

    Get PDF
    In this paper we introduce a problem that bridges forbidden subposet and forbidden subconfiguration problems. The sets F1,F2,,FPF_1,F_2, \dots,F_{|P|} form a copy of a poset PP, if there exists a bijection i:P{F1,F2,,FP}i:P\rightarrow \{F_1,F_2, \dots,F_{|P|}\} such that for any p,pPp,p'\in P the relation p<Ppp<_P p' implies i(p)i(p)i(p)\subsetneq i(p'). A family F\mathcal{F} of sets is \textit{PP-free} if it does not contain any copy of PP. The trace of a family F\mathcal{F} on a set XX is FX:={FX:FF}\mathcal{F}|_X:=\{F\cap X: F\in \mathcal{F}\}. We introduce the following notions: F2[n]\mathcal{F}\subseteq 2^{[n]} is ll-trace PP-free if for any ll-subset L[n]L\subseteq [n], the family FL\mathcal{F}|_L is PP-free and F\mathcal{F} is trace PP-free if it is ll-trace PP-free for all lnl\le n. As the first instances of these problems we determine the maximum size of trace BB-free families, where BB is the butterfly poset on four elements a,b,c,da,b,c,d with a,b<c,da,b<c,d and determine the asymptotics of the maximum size of (ni)(n-i)-trace Kr,sK_{r,s}-free families for i=1,2i=1,2. We also propose a generalization of the main conjecture of the area of forbidden subposet problems

    A group-theoretic approach to fast matrix multiplication

    Full text link
    We develop a new, group-theoretic approach to bounding the exponent of matrix multiplication. There are two components to this approach: (1) identifying groups G that admit a certain type of embedding of matrix multiplication into the group algebra C[G], and (2) controlling the dimensions of the irreducible representations of such groups. We present machinery and examples to support (1), including a proof that certain families of groups of order n^(2 + o(1)) support n-by-n matrix multiplication, a necessary condition for the approach to yield exponent 2. Although we cannot yet completely achieve both (1) and (2), we hope that it may be possible, and we suggest potential routes to that result using the constructions in this paper.Comment: 12 pages, 1 figure, only updates from previous version are page numbers and copyright informatio

    Pre-compact families of finite sets of integers and weakly null sequences in Banach spaces

    Get PDF
    Two applications of Nash-Williams' theory of barriers to sequences on Banach spaces are presented: The first one is the c0c_0-saturation of C(K)C(K), KK countable compacta. The second one is the construction of weakly-null sequences generalizing the example of Maurey-Rosenthal

    Two-part set systems

    Get PDF
    The two part Sperner theorem of Katona and Kleitman states that if XX is an nn-element set with partition X1X2X_1 \cup X_2, and \cF is a family of subsets of XX such that no two sets A, B \in \cF satisfy ABA \subset B (or BAB \subset A) and AXi=BXiA \cap X_i=B \cap X_i for some ii, then |\cF| \le {n \choose \lfloor n/2 \rfloor}. We consider variations of this problem by replacing the Sperner property with the intersection property and considering families that satisfiy various combinations of these properties on one or both parts X1X_1, X2X_2. Along the way, we prove the following new result which may be of independent interest: let \cF, \cG be families of subsets of an nn-element set such that \cF and \cG are both intersecting and cross-Sperner, meaning that if A \in \cF and B \in \cG, then A⊄BA \not\subset B and B⊄AB \not\subset A. Then |\cF| +|\cG| < 2^{n-1} and there are exponentially many examples showing that this bound is tight

    Acta Cybernetica : Tomus 8. Fasciculus 3.

    Get PDF

    On LL-close Sperner systems

    Get PDF
    For a set LL of positive integers, a set system F2[n]\mathcal{F} \subseteq 2^{[n]} is said to be LL-close Sperner, if for any pair F,GF,G of distinct sets in F\mathcal{F} the skew distance sd(F,G)=min{FG,GF}sd(F,G)=\min\{|F\setminus G|,|G\setminus F|\} belongs to LL. We reprove an extremal result of Boros, Gurvich, and Milani\v c on the maximum size of LL-close Sperner set systems for L={1}L=\{1\} and generalize to L=1|L|=1 and obtain slightly weaker bounds for arbitrary LL. We also consider the problem when LL might include 0 and reprove a theorem of Frankl, F\"uredi, and Pach on the size of largest set systems with all skew distances belonging to L={0,1}L=\{0,1\}
    corecore