research

Forbidden subposet problems for traces of set families

Abstract

In this paper we introduce a problem that bridges forbidden subposet and forbidden subconfiguration problems. The sets F1,F2,,FPF_1,F_2, \dots,F_{|P|} form a copy of a poset PP, if there exists a bijection i:P{F1,F2,,FP}i:P\rightarrow \{F_1,F_2, \dots,F_{|P|}\} such that for any p,pPp,p'\in P the relation p<Ppp<_P p' implies i(p)i(p)i(p)\subsetneq i(p'). A family F\mathcal{F} of sets is \textit{PP-free} if it does not contain any copy of PP. The trace of a family F\mathcal{F} on a set XX is FX:={FX:FF}\mathcal{F}|_X:=\{F\cap X: F\in \mathcal{F}\}. We introduce the following notions: F2[n]\mathcal{F}\subseteq 2^{[n]} is ll-trace PP-free if for any ll-subset L[n]L\subseteq [n], the family FL\mathcal{F}|_L is PP-free and F\mathcal{F} is trace PP-free if it is ll-trace PP-free for all lnl\le n. As the first instances of these problems we determine the maximum size of trace BB-free families, where BB is the butterfly poset on four elements a,b,c,da,b,c,d with a,b<c,da,b<c,d and determine the asymptotics of the maximum size of (ni)(n-i)-trace Kr,sK_{r,s}-free families for i=1,2i=1,2. We also propose a generalization of the main conjecture of the area of forbidden subposet problems

    Similar works