On L-close Sperner systems

Dániel T. Nagy¹ Balázs Patkós^{1,2}

¹ Alfréd Rényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary.

²Lab. of Combinatorial and Geometric Structures, Moscow Inst. of Physics and Technology

 $\{nagydani, patkos\}$ @renyi.hu

Abstract

For a set L of positive integers, a set system $\mathcal{F} \subseteq 2^{[n]}$ is said to be L-close Sperner, if for any pair F, G of distinct sets in \mathcal{F} the skew distance $sd(F, G) = \min\{|F \setminus G|, |G \setminus F|\}$ belongs to L. We reprove an extremal result of Boros, Gurvich, and Milanič on the maximum size of L-close Sperner set systems for $L = \{1\}$ and generalize to |L| = 1 and obtain slightly weaker bounds for arbitrary L. We also consider the problem when L might include 0 and reprove a theorem of Frankl, Füredi, and Pach on the size of largest set systems with all skew distances belonging to $L = \{0, 1\}$.

1 Introduction

One of the first results of extremal finite set theory is Sperner's theorem [13] that states that if for any pair F, F' of distinct sets in a set systems $\mathcal{F} \subseteq 2^{[n]}$ we have $\min\{|F \setminus F'|, |F' \setminus F|\} \ge 1$, then $|\mathcal{F}| \le {n \choose \lfloor n/2 \rfloor}$ holds. Set systems with this property are called *antichains* or *Sperner systems*. This theorem has lots of generalizations and applications in different areas of mathematics (see the book [7] and Chapter 3 of [11]). Recently, Boros, Gurvich, and Milanič introduced the following notion: given a positive integer k, we say that a set system \mathcal{F} is k-close Sperner if every pair $F, G \in \mathcal{F}$ of distinct sets satisfies $1 \le \min\{|F \setminus G||, |G \setminus F|\} \le k$. In particular, \mathcal{F} is 1-close Sperner if every pair $F, G \in \mathcal{F}$ of distinct sets satisfies $\min\{|F \setminus G||, |G \setminus F|\} = 1$. (The authors used the unfortunate k-Sperner term which, throughout the literature, refers to set systems that are union of k many antichains. That is why we decided to use instead the terminology k-close Sperner systems.) Boros, Gurvich, and Milanič's motivation to study these set systems (see also [4] and [6]). They obtained some structural results from which they deduced the following extremal theorem. For a set $F \subseteq [n] = \{1, 2, ..., n\}$, its characteristic vector v_F is a 0-1 vector of length n with $(v_F)_i = 1$ if and only if $i \in F$. **Theorem 1.1** (Boros, Gurvich, Milanič [5]). If the set system $\{\emptyset\} \neq \{F_1, F_2, \ldots, F_m\} \subseteq 2^{[n]}$ is 1-close Sperner, then the characteristic vectors $v_{F_1}, v_{F_2}, \ldots, v_{F_m}$ are linearly independent over \mathbb{R} . In particular, $m \leq n$.

In this short note, we reprove the extremal part of Theorem 1.1 via a different linear algebraic approach and generalize the result. For a subset L of [n], we say that a set system \mathcal{F} is L-close Sperner if every pair $F, G \in \mathcal{F}$ satisfies $\min\{|F \setminus G|, |G \setminus F|\} \in L$. Our first result is the following.

Theorem 1.2. If the set system $\{F_1, F_2, \ldots, F_m\} \subseteq 2^{[n]}$ is L-close Sperner for some $L \subseteq [n]$, then we have $m \leq \sum_{h=0}^{|L|} {n \choose h}$. Furthermore, if |L| = 1, then $m \leq n$ holds.

Note that if |L| is fixed and n tends to infinity, then the bound is asymptotically sharp as shown by $L = \{1, 2, ..., k\}$ (i.e. the k-close Sperner property) and the set system $\binom{[n]}{k} = \{F \subseteq [n] : |F| = k\}$. Observe also that the inequality $m \leq n$ is sharp for $L = \{1\}$ as shown by the family of singletons, but there exist many other 1-close Sperner systems with n sets. Furthermore, if $L = \{q\}$ for some prime power q and $n = q^2 + q + 1$, then the lines of a projective plane of order q form an L-close family of size n, so the bound $m \leq n$ is sharp in this case, too.

Apart from Sperner-type theorems, the other much studied area in extremal finite set theory are intersection properties (see e.g. Chapter 2 of [11]). For a set L of integers, a set system \mathcal{F} is said to be L-intersecting if for any pair F, F' of distinct sets in \mathcal{F} we have $|F \cap F'| \in L$. Frankl and Wilson [10] proved the same upper bound $\sum_{h=0}^{|L|} {n \choose h}$ on the size of L-intersecting set systems. Frankl and Wilson used higher incidence matrices to prove their result, but later the polynomial method (see [2] and [1]) turned out to be very effective in obtaining L-intersection theorems. In the proof of the moreover part of Theorem 1.2, an additional idea due to Blokhuis [3] will be used.

We will need the following well-known lemma, we include the proof for sake of completeness. For any field \mathbb{F} , we denote by $\mathbb{F}^{n}[x]$ the vector space over \mathbb{F} of polynomials of n variables with coefficients from \mathbb{F} .

Lemma 1.3. Let $p_1(x), p_2(x), \ldots, p_m(x) \in \mathbb{F}^n[x]$ be polynomials and $v_1, v_2, \ldots, v_m \in \mathbb{F}^n$ be vectors such that $p_i(v_i) \neq 0$ and $p_i(v_j) = 0$ holds for all $1 \leq j < i \leq m$. Then the polynomials are linearly independent.

Proof. Suppose that $\sum_{i=1}^{m} c_i p_i(x) = 0$. As $p_i(v_1) = 0$ for all 1 < i we obtain $c_1 p_1(v_1) = 0$ and therefore $c_1 = 0$ holds. We proceed by induction on j. If $c_h = 0$ holds for all h < j, then using this and $p_i(v_j) = 0$ for all i > j, we obtain $c_j p_j(v_j) = 0$ and therefore $c_j = 0$.

Results on *L*-intersecting families had some geometric consequences on point sets in \mathbb{R}^n defining only a few distances, in particular on set systems \mathcal{F} with only a few Hamming distance. The skew distance $sd(F,G) := \min\{|F \setminus G|, |G \setminus F|\}$ does not define a metric space on $2^{[n]}$ as sd(F,G) = 0 holds if and only if $F \subseteq G$ or $G \subseteq F$ and one can easily find triples for which the triangle inequality fails: if A is the set of even integers in [n], C is the set of odd integers in [n], and $B = \{1, 2\}$, then $\lfloor n/2 \rfloor = sd(A, C) \not\leq sd(A, B) + sd(B, C) = 1 + 1$

One can also investigate the case when L includes 0. Then set systems with the required property are not necessarily Sperner, so we will say that \mathcal{F} is L-skew distance (or L-sd for short) if $sd(A, B) \in L$ for all pairs of distinct sets $A, B \in \mathcal{F}$. We will write $ex_{sd}(n, L)$ to denote the largest size of an L-skew distance system $\mathcal{F} \subseteq 2^{[n]}$. Observe that $ex_{sd}(n, \{0\})$ asks for the maximum size of a chain in $2^{[n]}$ which is obviously n + 1. This shows that the moreover part of Theorem 1.2 does not remain valid in this case. In a different context Frankl, Füredi, and Pach considered the case $L = \{0, 1, \ldots, t\}$. They considered the following construction: let $\emptyset = C_0 \subsetneq C_1 \subsetneq C_2 \subsetneq \cdots \subsetneq C_n = [n]$ be a maximal chain and let

$$\mathcal{F}_{n,t} = \{F : C_{|F|-t} \subset F\} \cup \{F : |F| \le t \text{ or } |F| \ge n-t\}.$$

The size of $\mathcal{F}_{n,t}$ is $\binom{n}{t+1} - \binom{2t+1}{t+1} + 2\sum_{i=0}^{t} \binom{n}{i}$ and clearly $\mathcal{F}_{n,t}$ is $\{0, 1, \ldots, t\}$ -sd. This gives the lower bounds in the following results.

Theorem 1.4 (Frankl, Füredi, Pach, [9]). If $n \ge 3$, we have $ex_{sd}(n, \{0, 1\}) = \binom{n}{2} + 2n - 1$.

Theorem 1.5 (Frankl, Füredi, Pach, [9]). For any n, t with $n \ge 2(t+2)$, we have $\binom{n}{t+1} - \binom{2t+1}{t+1} + 2\sum_{i=0}^{t} \binom{n}{i} \le ex_{sd}(n, \{0, 1, \dots, t\}) < \binom{n}{t+1} + 5(t+1)^2\binom{n}{t}$.

The authors of [9] conjectured that the lower bound is tight in Theorem 1.5 for large enough n. (There are larger constructions for small n.) We will give a simple, new proof of Theorem 1.4 that proceeds by induction.

2 Proof and remarks

We start by introducing some notation. For two vectors, u, v of length n we denote their scalar product $\sum_{i=1}^{n} u_i v_i$ by $u \cdot v$. We will often use the fact that for any pair F, G of sets we have $v_F \cdot v_G = |F \cap G|$. We will also use that $\min\{|F \setminus G|, |G \setminus F|\} = |F \setminus G|$ if and only if $|F| \leq |G|$ holds.

For two sets $F, L \subseteq [n]$ we define the polynomial $p'_{F,L} \in \mathbb{R}^n[x]$ as

$$p'_{F,L}(x) = \prod_{h \in L} (|F| - v_F \cdot x - h).$$

We obtain $p_{F,L}(x)$ from $p'_{F,L}(x)$ by replacing every x_i^t term by x_i for every $t \ge 2$ and i = 1, 2, ..., n. As $0 = 0^t$ and $1 = 1^t$ for any $t \ge 2$, we have $p_{F,L}(v_G) = p'_{F,L}(v_G) = \prod_{h \in L} (|F \setminus G| - h)$. Finally, observe that the polynomials $p_{F,L}(x)$ all belong to the subspace $M_{|L|}$ of $\mathbb{R}^n[x]$ spanned by $\{x_{i_1}x_{i_2}\ldots x_{i_l}: 0 \le l \le |L|, i_1 < i_2 < \cdots < i_l\}$, where l = 0 refers to the constant 1 polynomial **1**. Note that dim $(M_{|L|}) = \sum_{i=0}^{|L|} {n \choose i}$.

Based on the above, Theorem 1.2 is an immediate consequence of the next result.

Theorem 2.1. If the set system $\{F_1, F_2, \ldots, F_m\} \subseteq 2^{[n]}$ is L-close Sperner, then the polynomials $p_{F_1,L}(x), p_{F_2,L}(x), \ldots, p_{F_m,L}(x)$ are linearly independent in $\mathbb{R}^n[x]$. In particular, $m \leq \sum_{h=0}^{|L|} \binom{n}{h}$. Moreover, if |L| = 1 and $\{F_1, F_2, \ldots, F_m\} \neq \{\emptyset\}$, then the polynomials $p_{F_1,L}(x), p_{F_2,L}(x), \ldots, p_{F_m,L}(x)$ are linearly independent in $\mathbb{R}^n[x]$ even together with **1**. In particular, $m \leq n$.

Proof. We claim that if F_1, F_2, \ldots, F_m are listed in a non-increasing order according to the sizes of the sets, then the polynomials $p_{F_1,L}(x), p_{F_2,L}(x), \ldots, p_{F_m,L}(x)$ and the characteristic vectors $v_{F_1}, v_{F_2}, \ldots, v_{F_m}$ satisfy the conditions of Lemma 1.3. Indeed, for any $G \subseteq [n]$ we have $p_{F,k}(G) =$ $\prod_{h \in L} (|F| - |F \cap G| - h) = \prod_{h \in L} (|F \setminus G| - h)$. Therefore $p_{F,L}(v_F) \neq 0$ holds for any $F \subseteq [n]$, while if $|F_j| \leq |F_i|$, then the L-close Sperner property ensures $|F_i \setminus F_j| \in L$ and thus $p_{F_j,L}(v_{F_i}) = 0$.

To prove the moreover part, let $L = \{s\}$, $\mathcal{F} = \{F_1, F_2, \ldots, F_m\}$ and let us suppose towards a contradiction that $\mathbf{1} = \sum_{i=1}^m c_{F_i} p_{F_i,L}(x)$ holds for some reals c_{F_i} . We claim that if $|F_i| = |F_j|$, then $c_{F_i} = c_{F_j}$ holds and all coefficients are negative. Observe that for any $F \in \mathcal{F}$ using the *L*-close Sperner property we have

$$1 = c_F p_{F,L}(v_F) + \sum_{\substack{F' \in \mathcal{F} \\ |F'| > |F|}} c_{F'} p_{F',L}(v_F),$$
(1)

and $p_{F,L}(v_F) = -s$ for all F. In particular, if F is of maximum size in \mathcal{F} , then $c_F = -\frac{1}{s}$ holds. Let m_j denote $|\{F \in \mathcal{F} : |F| = j\}|$ and c_j denote the value of c_F for all $F \in \mathcal{F}$ of size j-once this is proved. By the above, if j^* is the maximum size among sets in \mathcal{F} , then c_{j^*} exists. Suppose that for some i we have proved the existence of c_j for all j with $i < j \leq j^*$. If there is no set in \mathcal{F} of size i, there is nothing to prove. If |F| = i, then using (1) and the fact $p_{F',L}(v_F) = |F'| - |F| + s - s = |F'| - |F|$ provided $|F'| \geq |F|$, we obtain

$$1 = c_F p_{F,L}(v_F) + \sum_{\substack{F' \in \mathcal{F} \\ |F'| > |F|}} c_{F'} p_{F',L}(v_F) = -sc_F + \sum_{j > i} c_j m_j (j-i).$$
(2)

This shows that c_F does not depend on F only on |F| as claimed. Moreover, as $s, m_j, j - i$ are all non-negative and, by induction, all c_j are negative, then in order to satisfy (2), we must have that c_i is negative as well. So we proved that all c_j 's are negative. But this contradicts $\mathbf{1} = \sum_{i=1}^{m} c_{F_i} p_{F_i,L}(x)$, as on the right and side all coefficients of the variables are positive, so they cannot cancel. (If there are variables. This is where the condition $\{F_1, F_2, \ldots, F_m\} \neq \{\emptyset\}$ is used.)

Using the original "push-to-the-middle" argument of Sperner, it is not hard to prove that for any k-close Sperner system $\mathcal{F} \subseteq 2^{[n]}$, there exists another one $\mathcal{F}' \subseteq 2^{[n]}$ with $|\mathcal{F}| = |\mathcal{F}'|$ and \mathcal{F}' containing sets of size between k and n - k. Is it true that for such set systems we have $\langle p_{F,[k]}: F \in \mathcal{F}' \rangle \cap M_{k-1} = \{\mathbf{0}\}$? This would imply $ex_{sd}(n, [k]) = {n \choose k}$.

Let us now turn to the proof of Theorem 1.4.

Proof of Theorem 1.4. The lower bound is given by the special case t = 1 of the construction given above Theorem 1.4. It remains to prove the upper bound.

We will prove that a $\{0, 1\}$ -sd system $\mathcal{F} \subseteq 2^{[n]}$ is of size at most $\binom{n}{2} + 2n - 1$ by induction on n. Since $\binom{3}{2} + 2 \cdot 3 - 1 = 2^3$, the statement is trivially true for n = 3. Now assume that $n \ge 4$ and we have already proved the statement for n - 1.

Consider the uniform systems $\mathcal{F}_i = \{F \in \mathcal{F} : |F| = i\}$ that are 1-close Sperner. We will define a representative set C_i for all nonempty levels. If $|\mathcal{F}_i| \ge 3$, it is an exercise for the reader (see Lemma 19 in [5]) to see that there exists a set C_i either with $|C_i| = i - 1$ and $C_i \subseteq \bigcap_{F \in \mathcal{F}_i} F$ or with $|C_i| = i + 1$ and $\bigcup_{F \in \mathcal{F}_i} F \subseteq C_i$. In the former case we say that \mathcal{F}_i is of type \lor , in the latter case we say that \mathcal{F}_i is of type \land . If $|\mathcal{F}_i| = 2$, then we select one of the two sets to be C_i . If $|\mathcal{F}_i| = 1$, then C_i is the only set in \mathcal{F}_i . Finally, if $\mathcal{F}_i = \emptyset$, then C_i is undefined.

Claim 2.2. If i < j and $|\mathcal{F}_i|, |\mathcal{F}_j| > 0$ then $|C_i \setminus C_j| \leq 1$.

Proof. Assume that there are two different elements a, b such that $a, b \in C_i$ but $a, b \notin C_j$. It follows from the definition of the representative sets, that there are sets $F_i \in \mathcal{F}_i$ and $F_j \in \mathcal{F}_j$ such that $a, b \in F_i$ and $a, b \notin F_j$. (This is trivial for levels with one or two sets. If there are 3 or more sets then at most two of them can be wrong.)

Let $C_{p_1}, C_{p_2}, \ldots C_{p_t}$ $(p_1 < \cdots < p_t)$ denote the representative sets of the nonempty levels among $\mathcal{F}_1, \mathcal{F}_2, \ldots \mathcal{F}_{n-1}$. Since

$$\left| \bigcup_{i=1}^{t-1} C_{p_i} \backslash C_{p_{i+1}} \right| \le \sum_{i=1}^{t-1} |C_{p_i} \backslash C_{p_{i+1}}| \le t-1 \le n-2,$$

there will be an element $x \in [n]$ such that $x \notin C_{p_i} \setminus C_{p_{i+1}}$ for any p_i . This implies that there are no nonempty levels \mathcal{F}_i and \mathcal{F}_j such that $i < j, x \in C_i$ but $x \notin C_j$. Rearranging the names of the elements, we may assume that x = n.

Now we define two families in $2^{[n-1]}$, let

$$\mathcal{G} = \{F \setminus \{n\} \mid F \in \mathcal{F}\}, \quad \mathcal{H} = \{H \in 2^{[n-1]} \mid H, H \cup \{n\} \in \mathcal{F}\}.$$

Note that $|\mathcal{F}| = |\mathcal{G}| + |\mathcal{H}|$. Since \mathcal{G} is a $\{0, 1\}$ -sd system in $2^{[n-1]}$, we get an upper bound on its size by induction. We will examine \mathcal{H} to bound its size as well.

Claim 2.3. If $A, B \in \mathcal{H}$ and |A| < |B| then $A \subset B$.

Proof. By the definition of \mathcal{H} , we get that $A \cup \{n\} \in \mathcal{F}$ and $n \notin B$. Since \mathcal{F} is a $\{0, 1\}$ -sd system, $1 \ge |(A \cup \{n\}) \setminus B| = |A \setminus B| + 1$. Therefore we have $|A \setminus B| = 0$ or equivalently $A \subset B$.

Claim 2.4. There is at most one level in \mathcal{H} with two or more sets in it.

Proof. Assume that there are two sets of size i and two sets of size j (i < j) in \mathcal{H} . Then in \mathcal{F} there are two sets of size i + 1 containing n and two sets of size j that do not contain n. From the definition of the representative sets follows that $n \in C_{i+1}$ but $n \notin C_j$. This is an outright contradiction if i + 1 = j. If i + 1 < j, it contradicts the special property of the element n established earlier.

Claim 2.5. $|\mathcal{H}| \le n + 1$.

Proof. Let $\mathcal{H}_i = \{H \in \mathcal{H} : |H| = i\}$ for all $i = 0, 1, \ldots, n-1$. If there is no *i* such that $|\mathcal{H}_i| > 1$, then $|\mathcal{H}| \leq n$. Assume that $|\mathcal{H}_t| = k > 1$. By Claim 2.4, this is the only level with more than one set. If the level \mathcal{H}_t is of type \lor , then the union of its sets is of size t + k - 1. Claim 2.3 implies that all sets $H \in \mathcal{H}$, |H| > t must contain this union, therefore the levels $\mathcal{H}_{t+1}, \mathcal{H}_{t+2}, \ldots, \mathcal{H}_{t+k-2}$ are all empty. If \mathcal{H}_t is of type \land , then the intersection of its sets is of size t - k + 1. Claim 2.3 implies that all sets $H \in \mathcal{H}, |H| > t$ must contain this union, therefore the levels is of size t - k + 1. Claim 2.3 implies that all sets $H \in \mathcal{H}, |H| < t$ must be subsets of this intersection, therefore the levels $\mathcal{H}_{t-k+2}, \mathcal{H}_{t-k+3}, \ldots, \mathcal{H}_{t-1}$ are all empty. In either case we get that $|\mathcal{H}| \leq k + (k-2) \cdot 0 + (n-k+1) \cdot 1 = n+1$.

Now we can complete the proof of the theorem:

$$|\mathcal{F}| = |\mathcal{G}| + |\mathcal{H}| \le \binom{n-1}{2} + 2(n-1) - 1 + n + 1 = \binom{n}{2} + 2n - 1.$$

Let us make two final remarks.

- Observe that for the set $L_{\ell} = \{\ell + 1, \ell + 2, ..., n\}$ a system $\mathcal{F} \subseteq 2^{[n]}$ is L_{ℓ} -close Sperner if and only if for every ℓ -subset Y of [n], the trace $\mathcal{F}_{[n]\setminus Y} = \{F \setminus Y : F \in \mathcal{F}\}$ is Sperner. Set systems with this property are called $(n - \ell)$ -trace Sperner and results on the maximum size of such systems can be found in Section 4 of [12].
- A natural generalization arises in $Q^n = \{0, 1, \ldots, q-1\}^n$. One can partially order Q^n by $a \leq b$ if and only if $a_i \leq b_i$ for all $i = 1, 2, \ldots, n$. We say that $A \subseteq \{0, 1, \ldots, q-1\}^n$ is *L*-close Sperner for some subset $L \subseteq [n]$ if for any distinct $a, b \in A$ we have $sd(a, b) := \min\{|\{i : a_i < b_i\}|, |\{i : a_i > b_i\}|\} \in L$. One can ask for the largest number of points in an *L*-close Sperner set $A \subseteq Q^n$. Here is a construction for $\{1\}$ -close Sperner set: for $2 \leq i \leq n$, $1 \leq h \leq q-1$ let $(v_{i,h})_i = h, (v_{i,h})_1 = q-h+1$ and $(v_{i,h})_j = 0$ if $j \neq i$. Then it is easy to verify that $\{v_{i,h} : 2 \leq i \leq n, 1 \leq h \leq q-1\}$ is $\{1\}$ -close Sperner of size (q-1)(n-1).

An easy upper bound on the most number of points in Q^n that form an $\{1\}$ -close Sperner system is $O_q(n^{q-1})$. To see this, for any $a = \{a_1, a_2, \ldots a_n\} \in Q^n$ let us define the set $F_a \subseteq [(q-1)n]$ as follows.

$$F_a := \bigcup_{i=1}^n \bigcup_{j=1}^{a_i} \{ (q-1)(i-1) + j \}$$

If $A \subseteq Q^n$ is $\{1\}$ -close Sperner, then $A' = \{F_a \mid a \in A\} \subset 2^{[(q-1)n]}$ will be $\{1, 2, \ldots, q-1\}$ close Sperner. Theorem 1.2 implies

$$|A| = |A'| \le \sum_{h=0}^{q-1} \binom{(q-1)n}{h} = O_q(n^{q-1}).$$

We conjecture that for any q there exists a constant C_q such that the maximum number of points in Q^n that form a {1}-close Sperner system is at most $C_q n$.

Acknowledgement

The research of Nagy was supported by the National Research, Development and Innovation Office - NKFIH under the grants FK 132060 and K 132696.

The research of Patkós was supported partially by the grant of Russian Government N 075-15-2019-1926 and by the National Research, Development and Innovation Office - NKFIH under the grants FK 132060 and SNN 129364.

References

- N. Alon, L. Babai, M. Suzuki, Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems. Journal of Combinatorial Theory, Series A, 58(2) (1991), 165– 180.
- [2] L. Babai, P. Frankl, Linear Algebra Methods in Combinatorics: With Applications to Geometry and Computer Science. Department of Computer Science, University of Chicago 1992.
- [3] A. Blokhuis, A new upper bound for the cardinality of 2-distance sets in Euclidean space, Ann. Discrete Math. 20 (1984), 65–66.
- [4] E. Boros, V. Gurvich, M. Milanič, Characterizing and decomposing classes of threshold, split, and bipartite graphs via 1-Sperner hypergraphs. to appear in Journal of Graph Theory, doi: 10.1002/jgt.22529, arXiv:1805.03405
- [5] E. Boros, V. Gurvich, M. Milanič, Decomposing 1-Sperner hypergraphs. Electron. J. Combin. 26 (3) (2019), P3.18
- [6] N. Chiarelli, M. Milanič, Linear separation of connected dominating sets in graphs. Ars Math. Contemp., 16 (2019), 487–525.
- [7] K. Engel, Sperner theory. Vol. 65. Cambridge University Press, 1997.

- [8] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313–320.
- [9] P. Frankl, Z. Füredi, J. Pach, Bounding one-way differences, Graphs and Combinatorics 3(1) (1987) 341–347.
- [10] P. Frankl, R.M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357–368.
- [11] D. Gerbner, B. Patkós, Extremal Finite Set Theory. CRC Press. 2018
- [12] B. Patkós, l-trace k-Sperner families, J. Combin. Theory Ser. A 116 (2009), 1047–1055.
- [13] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544–548.