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Abstract

For a set L of positive integers, a set system F ⊆ 2[n] is said to be L-close Sperner, if for
any pair F,G of distinct sets in F the skew distance sd(F,G) = min{|F \G|, |G\F |} belongs
to L. We reprove an extremal result of Boros, Gurvich, and Milanič on the maximum size
of L-close Sperner set systems for L = {1} and generalize to |L| = 1 and obtain slightly
weaker bounds for arbitrary L. We also consider the problem when L might include 0 and
reprove a theorem of Frankl, Füredi, and Pach on the size of largest set systems with all
skew distances belonging to L = {0, 1}.

1 Introduction

One of the first results of extremal finite set theory is Sperner’s theorem [13] that states that if for
any pair F, F ′ of distinct sets in a set systems F ⊆ 2[n] we have min{|F \F ′|, |F ′ \F |} ≥ 1, then
|F| ≤

(

n
⌊n/2⌋|

)

holds. Set systems with this property are called antichains or Sperner systems.

This theorem has lots of generalizations and applications in different areas of mathematics (see
the book [7] and Chapter 3 of [11]). Recently, Boros, Gurvich, and Milanič introduced the
following notion: given a positive integer k, we say that a set system F is k-close Sperner if
every pair F,G ∈ F of distinct sets satisfies 1 ≤ min{|F \ G||, |G \ F |} ≤ k. In particular, F
is 1-close Sperner if every pair F,G ∈ F of distinct sets satisfies min{|F \ G||, |G \ F |} = 1.
(The authors used the unfortunate k-Sperner term which, throughout the literature, refers to
set systems that are union of k many antichains. That is why we decided to use instead the
terminology k-close Sperner systems.) Boros, Gurvich, and Milanič’s motivation to study these
set systems comes from computer science: they wanted to compare them to other classes of
Sperner systems (see also [4] and [6]). They obtained some structural results from which they
deduced the following extremal theorem. For a set F ⊆ [n] = {1, 2, . . . , n}, its characteristic

vector vF is a 0-1 vector of length n with (vF )i = 1 if and only if i ∈ F .
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Theorem 1.1 (Boros, Gurvich, Milanič [5]). If the set system {∅} 6= {F1, F2 . . . , Fm} ⊆ 2[n] is
1-close Sperner, then the characteristic vectors vF1

, vF2
, . . . , vFm

are linearly independent over R.

In particular, m ≤ n.

In this short note, we reprove the extremal part of Theorem 1.1 via a different linear algebraic
approach and generalize the result. For a subset L of [n], we say that a set system F is L-close
Sperner if every pair F,G ∈ F satisfies min{|F \G|, |G\F |} ∈ L. Our first result is the following.

Theorem 1.2. If the set system {F1, F2 . . . , Fm} ⊆ 2[n] is L-close Sperner for some L ⊆ [n],

then we have m ≤
∑|L|

h=0

(

n
h

)

. Furthermore, if |L| = 1, then m ≤ n holds.

Note that if |L| is fixed and n tends to infinity, then the bound is asymptotically sharp as
shown by L = {1, 2, . . . , k} (i.e. the k-close Sperner property) and the set system

(

[n]
k

)

= {F ⊆
[n] : |F | = k}. Observe also that the inequality m ≤ n is sharp for L = {1} as shown by the
family of singletons, but there exist many other 1-close Sperner systems with n sets. Furthermore,
if L = {q} for some prime power q and n = q2 + q + 1, then the lines of a projective plane of
order q form an L-close family of size n, so the bound m ≤ n is sharp in this case, too.

Apart from Sperner-type theorems, the other much studied area in extremal finite set theory
are intersection properties (see e.g. Chapter 2 of [11]). For a set L of integers, a set system F is
said to be L-intersecting if for any pair F, F ′ of distinct sets in F we have |F ∩ F ′| ∈ L. Frankl

and Wilson [10] proved the same upper bound
∑|L|

h=0

(

n
h

)

on the size of L-intersecting set systems.
Frankl and Wilson used higher incidence matrices to prove their result, but later the polynomial
method (see [2] and [1]) turned out to be very effective in obtaining L-intersection theorems. In
the proof of the moreover part of Theorem 1.2, an additional idea due to Blokhuis [3] will be
used.

We will need the following well-known lemma, we include the proof for sake of completeness.
For any field F, we denote by Fn[x] the vector space over F of polynomials of n variables with
coefficients from F.

Lemma 1.3. Let p1(x), p2(x), . . . , pm(x) ∈ Fn[x] be polynomials and v1, v2, . . . , vm ∈ Fn be vectors

such that pi(vi) 6= 0 and pi(vj) = 0 holds for all 1 ≤ j < i ≤ m. Then the polynomials are linearly

independent.

Proof. Suppose that
∑m

i=1 cipi(x) = 0. As pi(v1) = 0 for all 1 < i we obtain c1p1(v1) = 0 and
therefore c1 = 0 holds. We proceed by induction on j. If ch = 0 holds for all h < j, then using
this and pi(vj) = 0 for all i > j, we obtain cjpj(vj) = 0 and therefore cj = 0.

Results on L-intersecting families had some geometric consequences on point sets in Rn

defining only a few distances, in particular on set systems F with only a few Hamming distance.
The skew distance sd(F,G) := min{|F \ G|, |G \ F |} does not define a metric space on 2[n] as
sd(F,G) = 0 holds if and only if F ⊆ G or G ⊆ F and one can easily find triples for which the
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triangle inequality fails: if A is the set of even integers in [n], C is the set of odd integers in [n],
and B = {1, 2}, then ⌊n/2⌋ = sd(A,C) 6≤ sd(A,B) + sd(B,C) = 1 + 1

One can also investigate the case when L includes 0. Then set systems with the required
property are not necessarily Sperner, so we will say that F is L−skew distance (or L-sd for
short) if sd(A,B) ∈ L for all pairs of distinct sets A,B ∈ F . We will write exsd(n, L) to denote
the largest size of an L-skew distance system F ⊆ 2[n]. Observe that exsd(n, {0}) asks for the
maximum size of a chain in 2[n] which is obviously n + 1. This shows that the moreover part
of Theorem 1.2 does not remain valid in this case. In a different context Frankl, Füredi, and
Pach considered the case L = {0, 1, . . . , t}. They considered the following construction: let
∅ = C0 ( C1 ( C2 ( · · · ( Cn = [n] be a maximal chain and let

Fn,t = {F : C|F |−t ⊂ F} ∪ {F : |F | ≤ t or |F | ≥ n− t}.

The size of Fn,t is
(

n
t+1

)

−
(

2t+1
t+1

)

+ 2
∑t

i=0

(

n
i

)

and clearly Fn,t is {0, 1, . . . , t}-sd. This gives the
lower bounds in the following results.

Theorem 1.4 (Frankl, Füredi, Pach, [9]). If n ≥ 3, we have exsd(n, {0, 1}) =
(

n
2

)

+ 2n− 1.

Theorem 1.5 (Frankl, Füredi, Pach, [9]). For any n, t with n ≥ 2(t+ 2), we have
(

n
t+1

)

−
(

2t+1
t+1

)

+ 2
∑t

i=0

(

n
i

)

≤ exsd(n, {0, 1, . . . , t}) <
(

n
t+1

)

+ 5(t+ 1)2
(

n
t

)

.

The authors of [9] conjectured that the lower bound is tight in Theorem 1.5 for large enough
n. (There are larger constructions for small n.) We will give a simple, new proof of Theorem 1.4
that proceeds by induction.

2 Proof and remarks

We start by introducing some notation. For two vectors, u, v of length n we denote their scalar
product

∑n
i=1 uivi by u · v. We will often use the fact that for any pair F,G of sets we have

vF · vG = |F ∩G|. We will also use that min{|F \G|, |G \ F |} = |F \G| if and only if |F | ≤ |G|
holds.

For two sets F, L ⊆ [n] we define the polynomial p′F,L ∈ Rn[x] as

p′F,L(x) =
∏

h∈L

(|F | − vF · x− h).

We obtain pF,L(x) from p′F,L(x) by replacing every xt
i term by xi for every t ≥ 2 and i = 1, 2, . . . , n.

As 0 = 0t and 1 = 1t for any t ≥ 2, we have pF,L(vG) = p′F,L(vG) =
∏

h∈L(|F \ G| − h).
Finally, observe that the polynomials pF,L(x) all belong to the subspace M|L| of R

n[x] spanned
by {xi1xi2 . . . xil : 0 ≤ l ≤ |L|, i1 < i2 < · · · < il}, where l = 0 refers to the constant 1 polynomial

1. Note that dim(M|L|) =
∑|L|

i=0

(

n
i

)

.
Based on the above, Theorem 1.2 is an immediate consequence of the next result.
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Theorem 2.1. If the set system {F1, F2 . . . , Fm} ⊆ 2[n] is L-close Sperner, then the polynomials

pF1,L(x), pF2,L(x), . . . , pFm,L(x) are linearly independent in Rn[x]. In particular, m ≤
∑|L|

h=0

(

n
h

)

.

Moreover, if |L| = 1 and {F1, F2 . . . , Fm} 6= {∅}, then the polynomials pF1,L(x), pF2,L(x), . . . , pFm,L(x)
are linearly independent in Rn[x] even together with 1. In particular, m ≤ n.

Proof. We claim that if F1, F2, . . . , Fm are listed in a non-increasing order according to the sizes
of the sets, then the polynomials pF1,L(x), pF2,L(x), . . . , pFm,L(x) and the characteristic vectors
vF1

, vF2
, . . . , vFm

satisfy the conditions of Lemma 1.3. Indeed, for any G ⊆ [n] we have pF,k(G) =
∏

h∈L(|F |−|F ∩G|−h) =
∏

h∈L(|F \G|−h). Therefore pF,L(vF ) 6= 0 holds for any F ⊆ [n], while
if |Fj | ≤ |Fi|, then the L-close Sperner property ensures |Fi \ Fj| ∈ L and thus pFj ,L(vFi

) = 0.
To prove the moreover part, let L = {s}, F = {F1, F2, . . . , Fm} and let us suppose towards

a contradiction that 1 =
∑m

i=1 cFi
pFi,L(x) holds for some reals cFi

. We claim that if |Fi| = |Fj|,
then cFi

= cFj
holds and all coefficients are negative. Observe that for any F ∈ F using the

L-close Sperner property we have

1 = cFpF,L(vF ) +
∑

F ′∈F
|F ′|>|F |

cF ′pF ′,L(vF ), (1)

and pF,L(vF ) = −s for all F . In particular, if F is of maximum size in F , then cF = −1
s
holds.

Let mj denote |{F ∈ F : |F | = j}| and cj denote the value of cF for all F ∈ F of size j -
once this is proved. By the above, if j∗ is the maximum size among sets in F , then cj∗ exists.
Suppose that for some i we have proved the existence of cj for all j with i < j ≤ j∗. If there
is no set in F of size i, there is nothing to prove. If |F | = i, then using (1) and the fact
pF ′,L(vF ) = |F ′| − |F |+ s− s = |F ′| − |F | provided |F ′| ≥ |F |, we obtain

1 = cFpF,L(vF ) +
∑

F ′∈F
|F ′|>|F |

cF ′pF ′,L(vF ) = −scF +
∑

j>i

cjmj(j − i). (2)

This shows that cF does not depend on F only on |F | as claimed. Moreover, as s, mj , j − i
are all non-negative and, by induction, all cj are negative, then in order to satisfy (2), we must
have that ci is negative as well. So we proved that all cj’s are negative. But this contradicts
1 =

∑m
i=1 cFi

pFi,L(x), as on the right hand side all coefficients of the variables are positive, so
they cannot cancel. (If there are variables. This is where the condition {F1, F2 . . . , Fm} 6= {∅} is
used.)

Using the original ”push-to-the-middle” argument of Sperner, it is not hard to prove that for
any k-close Sperner system F ⊆ 2[n], there exists another one F ′ ⊆ 2[n] with |F| = |F ′| and
F ′ containing sets of size between k and n − k. Is it true that for such set systems we have
〈pF,[k] : F ∈ F ′〉 ∩Mk−1 = {0}? This would imply exsd(n, [k]) =

(

n
k

)

.

Let us now turn to the proof of Theorem 1.4.
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Proof of Theorem 1.4. The lower bound is given by the special case t = 1 of the construction
given above Theorem 1.4. It remains to prove the upper bound.

We will prove that a {0, 1}-sd system F ⊆ 2[n] is of size at most
(

n
2

)

+ 2n − 1 by induction

on n. Since
(

3
2

)

+2 · 3− 1 = 23, the statement is trivially true for n = 3. Now assume that n ≥ 4
and we have already proved the statement for n− 1.

Consider the uniform systems Fi = {F ∈ F : |F | = i} that are 1-close Sperner. We will
define a representative set Ci for all nonempty levels. If |Fi| ≥ 3, it is an exercise for the reader
(see Lemma 19 in [5]) to see that there exists a set Ci either with |Ci| = i− 1 and Ci ⊆ ∩F∈Fi

F
or with |Ci| = i + 1 and ∪F∈Fi

F ⊆ Ci. In the former case we say that Fi is of type ∨, in the
latter case we say that Fi is of type ∧. If |Fi| = 2, then we select one of the two sets to be Ci.
If |Fi| = 1, then Ci is the only set in Fi. Finally, if Fi = ∅, then Ci is undefined.

Claim 2.2. If i < j and |Fi|, |Fj| > 0 then |Ci\Cj| ≤ 1.

Proof. Assume that there are two different elements a, b such that a, b ∈ Ci but a, b 6∈ Cj. It
follows from the definition of the representative sets, that there are sets Fi ∈ Fi and Fj ∈ Fj

such that a, b ∈ Fi and a, b 6∈ Fj. (This is trivial for levels with one or two sets. If there are 3 or
more sets then at most two of them can be wrong.)

Let Cp1, Cp2, . . . Cpt (p1 < · · · < pt) denote the representative sets of the nonempty levels
among F1,F2, . . .Fn−1. Since

∣

∣

∣

∣

∣

t−1
⋃

i=1

Cpi\Cpi+1

∣

∣

∣

∣

∣

≤
t−1
∑

i=1

|Cpi\Cpi+1
| ≤ t− 1 ≤ n− 2,

there will be an element x ∈ [n] such that x 6∈ Cpi\Cpi+1
for any pi. This implies that there are

no nonempty levels Fi and Fj such that i < j, x ∈ Ci but x 6∈ Cj . Rearranging the names of the
elements, we may assume that x = n.

Now we define two families in 2[n−1], let

G = {F\{n} | F ∈ F}, H = {H ∈ 2[n−1] | H,H ∪ {n} ∈ F}.

Note that |F| = |G|+ |H|. Since G is a {0, 1}-sd system in 2[n−1], we get an upper bound on
its size by induction. We will examine H to bound its size as well.

Claim 2.3. If A,B ∈ H and |A| < |B| then A ⊂ B.

Proof. By the definition of H, we get that A∪{n} ∈ F and n 6∈ B. Since F is a {0, 1}-sd system,
1 ≥ |(A ∪ {n})\B| = |A\B|+ 1. Therefore we have |A\B| = 0 or equivalently A ⊂ B.

Claim 2.4. There is at most one level in H with two or more sets in it.
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Proof. Assume that there are two sets of size i and two sets of size j (i < j) in H. Then in F
there are two sets of size i+ 1 containing n and two sets of size j that do not contain n. From
the definition of the representative sets follows that n ∈ Ci+1 but n 6∈ Cj. This is an outright
contradiction if i + 1 = j. If i + 1 < j, it contradicts the special property of the element n
established earlier.

Claim 2.5. |H| ≤ n+ 1.

Proof. Let Hi = {H ∈ H : |H| = i} for all i = 0, 1, . . . , n − 1. If there is no i such that
|Hi| > 1, then |H| ≤ n. Assume that |Ht| = k > 1. By Claim 2.4, this is the only level with
more than one set. If the level Ht is of type ∨, then the union of its sets is of size t + k − 1.
Claim 2.3 implies that all sets H ∈ H, |H| > t must contain this union, therefore the levels
Ht+1, Ht+2, . . . , Ht+k−2 are all empty. If Ht is of type ∧, then the intersection of its sets is
of size t − k + 1. Claim 2.3 implies that all sets H ∈ H, |H| < t must be subsets of this
intersection, therefore the levels Ht−k+2, Ht−k+3, . . . , Ht−1 are all empty. In either case we get
that |H| ≤ k + (k − 2) · 0 + (n− k + 1) · 1 = n+ 1.

Now we can complete the proof of the theorem:

|F| = |G|+ |H| ≤

(

n− 1

2

)

+ 2(n− 1)− 1 + n+ 1 =

(

n

2

)

+ 2n− 1.

Let us make two final remarks.

• Observe that for the set Lℓ = {ℓ+ 1, ℓ+ 2, . . . , n} a system F ⊆ 2[n] is Lℓ-close Sperner if
and only if for every ℓ-subset Y of [n], the trace F[n]\Y = {F \ Y : F ∈ F} is Sperner. Set
systems with this property are called (n − ℓ)-trace Sperner and results on the maximum
size of such systems can be found in Section 4 of [12].

• A natural generalization arises in Qn = {0, 1, . . . , q − 1}n. One can partially order Qn by
a ≤ b if and only if ai ≤ bi for all i = 1, 2, . . . , n. We say that A ⊆ {0, 1, . . . , q − 1}n is
L-close Sperner for some subset L ⊆ [n] if for any distinct a, b ∈ A we have sd(a, b) :=
min{|{i : ai < bi}|, |{i : ai > bi}|} ∈ L. One can ask for the largest number of points in an
L-close Sperner set A ⊆ Qn. Here is a construction for {1}-close Sperner set: for 2 ≤ i ≤ n,
1 ≤ h ≤ q − 1 let (vi,h)i = h, (vi,h)1 = q − h + 1 and (vi,h)j = 0 if j 6= i. Then it is easy to
verify that {vi,h : 2 ≤ i ≤ n, 1 ≤ h ≤ q − 1} is {1}-close Sperner of size (q − 1)(n− 1).

An easy upper bound on the most number of points in Qn that form an {1}-close Sperner
system is Oq(n

q−1). To see this, for any a = {a1, a2, . . . an} ∈ Qn let us define the set
Fa ⊆ [(q − 1)n] as follows.

Fa :=

n
⋃

i=1

ai
⋃

j=1

{(q − 1)(i− 1) + j}
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If A ⊆ Qn is {1}-close Sperner, then A′ = {Fa | a ∈ A} ⊂ 2[(q−1)n] will be {1, 2, . . . q − 1}-
close Sperner. Theorem 1.2 implies

|A| = |A′| ≤

q−1
∑

h=0

(

(q − 1)n

h

)

= Oq(n
q−1).

We conjecture that for any q there exists a constant Cq such that the maximum number of
points in Qn that form a {1}-close Sperner system is at most Cqn.
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