On L-close Sperner systems

Dániel T. Nagy ${ }^{1} \quad$ Balázs Patkós ${ }^{1,2}$
${ }^{1}$ Alfréd Rényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary.
${ }^{2}$ Lab. of Combinatorial and Geometric Structures, Moscow Inst. of Physics and Technology
\{nagydani, patkos\}@renyi.hu

Abstract

For a set L of positive integers, a set system $\mathcal{F} \subseteq 2^{[n]}$ is said to be L-close Sperner, if for any pair F, G of distinct sets in \mathcal{F} the skew distance $s d(F, G)=\min \{|F \backslash G|,|G \backslash F|\}$ belongs to L. We reprove an extremal result of Boros, Gurvich, and Milanič on the maximum size of L-close Sperner set systems for $L=\{1\}$ and generalize to $|L|=1$ and obtain slightly weaker bounds for arbitrary L. We also consider the problem when L might include 0 and reprove a theorem of Frankl, Füredi, and Pach on the size of largest set systems with all skew distances belonging to $L=\{0,1\}$.

1 Introduction

One of the first results of extremal finite set theory is Sperner's theorem [13] that states that if for any pair F, F^{\prime} of distinct sets in a set systems $\mathcal{F} \subseteq 2^{[n]}$ we have $\min \left\{\left|F \backslash F^{\prime}\right|,\left|F^{\prime} \backslash F\right|\right\} \geq 1$, then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor \mid}$ holds. Set systems with this property are called antichains or Sperner systems. This theorem has lots of generalizations and applications in different areas of mathematics (see the book [7] and Chapter 3 of [11]). Recently, Boros, Gurvich, and Milanič introduced the following notion: given a positive integer k, we say that a set system \mathcal{F} is k-close Sperner if every pair $F, G \in \mathcal{F}$ of distinct sets satisfies $1 \leq \min \{|F \backslash G||,|G \backslash F|\} \leq k$. In particular, \mathcal{F} is 1-close Sperner if every pair $F, G \in \mathcal{F}$ of distinct sets satisfies $\min \{|F \backslash G||,|G \backslash F|\}=1$. (The authors used the unfortunate k-Sperner term which, throughout the literature, refers to set systems that are union of k many antichains. That is why we decided to use instead the terminology k-close Sperner systems.) Boros, Gurvich, and Milanič's motivation to study these set systems comes from computer science: they wanted to compare them to other classes of Sperner systems (see also [4] and [6]). They obtained some structural results from which they deduced the following extremal theorem. For a set $F \subseteq[n]=\{1,2, \ldots, n\}$, its characteristic vector v_{F} is a $0-1$ vector of length n with $\left(v_{F}\right)_{i}=1$ if and only if $i \in F$.

Theorem 1.1 (Boros, Gurvich, Milanič [5]). If the set system $\{\emptyset\} \neq\left\{F_{1}, F_{2} \ldots, F_{m}\right\} \subseteq 2^{[n]}$ is 1 -close Sperner, then the characteristic vectors $v_{F_{1}}, v_{F_{2}}, \ldots, v_{F_{m}}$ are linearly independent over \mathbb{R}. In particular, $m \leq n$.

In this short note, we reprove the extremal part of Theorem 1.1 via a different linear algebraic approach and generalize the result. For a subset L of $[n]$, we say that a set system \mathcal{F} is L-close Sperner if every pair $F, G \in \mathcal{F}$ satisfies $\min \{|F \backslash G|,|G \backslash F|\} \in L$. Our first result is the following.

Theorem 1.2. If the set system $\left\{F_{1}, F_{2} \ldots, F_{m}\right\} \subseteq 2^{[n]}$ is L-close Sperner for some $L \subseteq[n]$, then we have $m \leq \sum_{h=0}^{|L|}\binom{n}{h}$. Furthermore, if $|L|=1$, then $m \leq n$ holds.

Note that if $|L|$ is fixed and n tends to infinity, then the bound is asymptotically sharp as shown by $L=\{1,2, \ldots, k\}$ (i.e. the k-close Sperner property) and the set system $\binom{[n]}{k}=\{F \subseteq$ $[n]:|F|=k\}$. Observe also that the inequality $m \leq n$ is sharp for $L=\{1\}$ as shown by the family of singletons, but there exist many other 1-close Sperner systems with n sets. Furthermore, if $L=\{q\}$ for some prime power q and $n=q^{2}+q+1$, then the lines of a projective plane of order q form an L-close family of size n, so the bound $m \leq n$ is sharp in this case, too.

Apart from Sperner-type theorems, the other much studied area in extremal finite set theory are intersection properties (see e.g. Chapter 2 of [11]). For a set L of integers, a set system \mathcal{F} is said to be L-intersecting if for any pair F, F^{\prime} of distinct sets in \mathcal{F} we have $\left|F \cap F^{\prime}\right| \in L$. Frankl and Wilson [10] proved the same upper bound $\sum_{h=0}^{|L|}\binom{n}{h}$ on the size of L-intersecting set systems. Frankl and Wilson used higher incidence matrices to prove their result, but later the polynomial method (see [2] and [1]) turned out to be very effective in obtaining L-intersection theorems. In the proof of the moreover part of Theorem 1.2, an additional idea due to Blokhuis [3] will be used.

We will need the following well-known lemma, we include the proof for sake of completeness. For any field \mathbb{F}, we denote by $\mathbb{F}^{n}[x]$ the vector space over \mathbb{F} of polynomials of n variables with coefficients from \mathbb{F}.

Lemma 1.3. Let $p_{1}(x), p_{2}(x), \ldots, p_{m}(x) \in \mathbb{F}^{n}[x]$ be polynomials and $v_{1}, v_{2}, \ldots, v_{m} \in \mathbb{F}^{n}$ be vectors such that $p_{i}\left(v_{i}\right) \neq 0$ and $p_{i}\left(v_{j}\right)=0$ holds for all $1 \leq j<i \leq m$. Then the polynomials are linearly independent.

Proof. Suppose that $\sum_{i=1}^{m} c_{i} p_{i}(x)=0$. As $p_{i}\left(v_{1}\right)=0$ for all $1<i$ we obtain $c_{1} p_{1}\left(v_{1}\right)=0$ and therefore $c_{1}=0$ holds. We proceed by induction on j. If $c_{h}=0$ holds for all $h<j$, then using this and $p_{i}\left(v_{j}\right)=0$ for all $i>j$, we obtain $c_{j} p_{j}\left(v_{j}\right)=0$ and therefore $c_{j}=0$.

Results on L-intersecting families had some geometric consequences on point sets in \mathbb{R}^{n} defining only a few distances, in particular on set systems \mathcal{F} with only a few Hamming distance. The skew distance $\operatorname{sd}(F, G):=\min \{|F \backslash G|,|G \backslash F|\}$ does not define a metric space on $2^{[n]}$ as $s d(F, G)=0$ holds if and only if $F \subseteq G$ or $G \subseteq F$ and one can easily find triples for which the
triangle inequality fails: if A is the set of even integers in $[n], C$ is the set of odd integers in $[n]$, and $B=\{1,2\}$, then $\lfloor n / 2\rfloor=s d(A, C) \not \leq s d(A, B)+s d(B, C)=1+1$

One can also investigate the case when L includes 0 . Then set systems with the required property are not necessarily Sperner, so we will say that \mathcal{F} is L-skew distance (or L-sd for short) if $s d(A, B) \in L$ for all pairs of distinct sets $A, B \in \mathcal{F}$. We will write $e x_{s d}(n, L)$ to denote the largest size of an L-skew distance system $\mathcal{F} \subseteq 2^{[n]}$. Observe that $e x_{s d}(n,\{0\})$ asks for the maximum size of a chain in $2^{[n]}$ which is obviously $n+1$. This shows that the moreover part of Theorem 1.2 does not remain valid in this case. In a different context Frankl, Füredi, and Pach considered the case $L=\{0,1, \ldots, t\}$. They considered the following construction: let $\emptyset=C_{0} \subsetneq C_{1} \subsetneq C_{2} \subsetneq \cdots \subsetneq C_{n}=[n]$ be a maximal chain and let

$$
\mathcal{F}_{n, t}=\left\{F: C_{|F|-t} \subset F\right\} \cup\{F:|F| \leq t \text { or }|F| \geq n-t\} .
$$

The size of $\mathcal{F}_{n, t}$ is $\binom{n}{t+1}-\binom{2 t+1}{t+1}+2 \sum_{i=0}^{t}\binom{n}{i}$ and clearly $\mathcal{F}_{n, t}$ is $\{0,1, \ldots, t\}$-sd. This gives the lower bounds in the following results.
Theorem 1.4 (Frankl, Füredi, Pach, [9]). If $n \geq 3$, we have ex $x_{s d}(n,\{0,1\})=\binom{n}{2}+2 n-1$.
Theorem 1.5 (Frankl, Füredi, Pach, [9]). For any n, t with $n \geq 2(t+2)$, we have $\binom{n}{t+1}-\binom{2 t+1}{t+1}+2 \sum_{i=0}^{t}\binom{n}{i} \leq e x_{s d}(n,\{0,1, \ldots, t\})<\binom{n}{t+1}+5(t+1)^{2}\binom{n}{t}$.

The authors of [9] conjectured that the lower bound is tight in Theorem 1.5 for large enough n. (There are larger constructions for small n.) We will give a simple, new proof of Theorem 1.4 that proceeds by induction.

2 Proof and remarks

We start by introducing some notation. For two vectors, u, v of length n we denote their scalar product $\sum_{i=1}^{n} u_{i} v_{i}$ by $u \cdot v$. We will often use the fact that for any pair F, G of sets we have $v_{F} \cdot v_{G}=|F \cap G|$. We will also use that $\min \{|F \backslash G|,|G \backslash F|\}=|F \backslash G|$ if and only if $|F| \leq|G|$ holds.

For two sets $F, L \subseteq[n]$ we define the polynomial $p_{F, L}^{\prime} \in \mathbb{R}^{n}[x]$ as

$$
p_{F, L}^{\prime}(x)=\prod_{h \in L}\left(|F|-v_{F} \cdot x-h\right) .
$$

We obtain $p_{F, L}(x)$ from $p_{F, L}^{\prime}(x)$ by replacing every x_{i}^{t} term by x_{i} for every $t \geq 2$ and $i=1,2, \ldots, n$. As $0=0^{t}$ and $1=1^{t}$ for any $t \geq 2$, we have $p_{F, L}\left(v_{G}\right)=p_{F, L}^{\prime}\left(v_{G}\right)=\prod_{h \in L}(|F \backslash G|-h)$. Finally, observe that the polynomials $p_{F, L}(x)$ all belong to the subspace $M_{|L|}$ of $\mathbb{R}^{n}[x]$ spanned by $\left\{x_{i_{1}} x_{i_{2}} \ldots x_{i_{l}}: 0 \leq l \leq|L|, i_{1}<i_{2}<\cdots<i_{l}\right\}$, where $l=0$ refers to the constant 1 polynomial 1. Note that $\operatorname{dim}\left(M_{|L|}\right)=\sum_{i=0}^{|L|}\binom{n}{i}$.

Based on the above, Theorem 1.2 is an immediate consequence of the next result.

Theorem 2.1. If the set system $\left\{F_{1}, F_{2} \ldots, F_{m}\right\} \subseteq 2^{[n]}$ is L-close Sperner, then the polynomials $p_{F_{1}, L}(x), p_{F_{2}, L}(x), \ldots, p_{F_{m}, L}(x)$ are linearly independent in $\mathbb{R}^{n}[x]$. In particular, $m \leq \sum_{h=0}^{|L|}\binom{n}{h}$. Moreover, $i f|L|=1$ and $\left\{F_{1}, F_{2} \ldots, F_{m}\right\} \neq\{\emptyset\}$, then the polynomials $p_{F_{1}, L}(x), p_{F_{2}, L}(x), \ldots, p_{F_{m}, L}(x)$ are linearly independent in $\mathbb{R}^{n}[x]$ even together with 1 . In particular, $m \leq n$.

Proof. We claim that if $F_{1}, F_{2}, \ldots, F_{m}$ are listed in a non-increasing order according to the sizes of the sets, then the polynomials $p_{F_{1}, L}(x), p_{F_{2}, L}(x), \ldots, p_{F_{m}, L}(x)$ and the characteristic vectors $v_{F_{1}}, v_{F_{2}}, \ldots, v_{F_{m}}$ satisfy the conditions of Lemma 1.3. Indeed, for any $G \subseteq[n]$ we have $p_{F, k}(G)=$ $\prod_{h \in L}(|F|-|F \cap G|-h)=\prod_{h \in L}(|F \backslash G|-h)$. Therefore $p_{F, L}\left(v_{F}\right) \neq 0$ holds for any $F \subseteq[n]$, while if $\left|F_{j}\right| \leq\left|F_{i}\right|$, then the L-close Sperner property ensures $\left|F_{i} \backslash F_{j}\right| \in L$ and thus $p_{F_{j}, L}\left(v_{F_{i}}\right)=0$.

To prove the moreover part, let $L=\{s\}, \mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ and let us suppose towards a contradiction that $\mathbf{1}=\sum_{i=1}^{m} c_{F_{i}} p_{F_{i}, L}(x)$ holds for some reals $c_{F_{i}}$. We claim that if $\left|F_{i}\right|=\left|F_{j}\right|$, then $c_{F_{i}}=c_{F_{j}}$ holds and all coefficients are negative. Observe that for any $F \in \mathcal{F}$ using the L-close Sperner property we have

$$
\begin{equation*}
1=c_{F} p_{F, L}\left(v_{F}\right)+\sum_{\substack{F^{\prime} \in \mathcal{F} \\\left|F^{\prime}\right|>|F|}} c_{F^{\prime}} p_{F^{\prime}, L}\left(v_{F}\right), \tag{1}
\end{equation*}
$$

and $p_{F, L}\left(v_{F}\right)=-s$ for all F. In particular, if F is of maximum size in \mathcal{F}, then $c_{F}=-\frac{1}{s}$ holds. Let m_{j} denote $|\{F \in \mathcal{F}:|F|=j\}|$ and c_{j} denote the value of c_{F} for all $F \in \mathcal{F}$ of size j once this is proved. By the above, if j^{*} is the maximum size among sets in \mathcal{F}, then $c_{j^{*}}$ exists. Suppose that for some i we have proved the existence of c_{j} for all j with $i<j \leq j^{*}$. If there is no set in \mathcal{F} of size i, there is nothing to prove. If $|F|=i$, then using (1) and the fact $p_{F^{\prime}, L}\left(v_{F}\right)=\left|F^{\prime}\right|-|F|+s-s=\left|F^{\prime}\right|-|F|$ provided $\left|F^{\prime}\right| \geq|F|$, we obtain

$$
\begin{equation*}
1=c_{F} p_{F, L}\left(v_{F}\right)+\sum_{\substack{F^{\prime} \in \mathcal{F} \\\left|F^{\prime}\right|>|F|}} c_{F^{\prime}} p_{F^{\prime}, L}\left(v_{F}\right)=-s c_{F}+\sum_{j>i} c_{j} m_{j}(j-i) . \tag{2}
\end{equation*}
$$

This shows that c_{F} does not depend on F only on $|F|$ as claimed. Moreover, as $s, m_{j}, j-i$ are all non-negative and, by induction, all c_{j} are negative, then in order to satisfy (2), we must have that c_{i} is negative as well. So we proved that all c_{j} 's are negative. But this contradicts $1=\sum_{i=1}^{m} c_{F_{i}} p_{F_{i}, L}(x)$, as on the right hand side all coefficients of the variables are positive, so they cannot cancel. (If there are variables. This is where the condition $\left\{F_{1}, F_{2} \ldots, F_{m}\right\} \neq\{\emptyset\}$ is used.)

Using the original "push-to-the-middle" argument of Sperner, it is not hard to prove that for any k-close Sperner system $\mathcal{F} \subseteq 2^{[n]}$, there exists another one $\mathcal{F}^{\prime} \subseteq 2^{[n]}$ with $|\mathcal{F}|=\left|\mathcal{F}^{\prime}\right|$ and \mathcal{F}^{\prime} containing sets of size between k and $n-k$. Is it true that for such set systems we have $\left\langle p_{F,[k]}: F \in \mathcal{F}^{\prime}\right\rangle \cap M_{k-1}=\{0\}$? This would imply $e x_{s d}(n,[k])=\binom{n}{k}$.

Let us now turn to the proof of Theorem 1.4.

Proof of Theorem 1.4. The lower bound is given by the special case $t=1$ of the construction given above Theorem 1.4. It remains to prove the upper bound.

We will prove that a $\{0,1\}$-sd system $\mathcal{F} \subseteq 2^{[n]}$ is of size at most $\binom{n}{2}+2 n-1$ by induction on n. Since $\binom{3}{2}+2 \cdot 3-1=2^{3}$, the statement is trivially true for $n=3$. Now assume that $n \geq 4$ and we have already proved the statement for $n-1$.

Consider the uniform systems $\mathcal{F}_{i}=\{F \in \mathcal{F}:|F|=i\}$ that are 1-close Sperner. We will define a representative set C_{i} for all nonempty levels. If $\left|\mathcal{F}_{i}\right| \geq 3$, it is an exercise for the reader (see Lemma 19 in [5]) to see that there exists a set C_{i} either with $\left|C_{i}\right|=i-1$ and $C_{i} \subseteq \cap_{F \in \mathcal{F}_{i}} F$ or with $\left|C_{i}\right|=i+1$ and $\cup_{F \in \mathcal{F}_{i}} F \subseteq C_{i}$. In the former case we say that \mathcal{F}_{i} is of type \vee, in the latter case we say that \mathcal{F}_{i} is of type \wedge. If $\left|\mathcal{F}_{i}\right|=2$, then we select one of the two sets to be C_{i}. If $\left|\mathcal{F}_{i}\right|=1$, then C_{i} is the only set in \mathcal{F}_{i}. Finally, if $\mathcal{F}_{i}=\emptyset$, then C_{i} is undefined.
Claim 2.2. If $i<j$ and $\left|\mathcal{F}_{i}\right|,\left|\mathcal{F}_{j}\right|>0$ then $\left|C_{i} \backslash C_{j}\right| \leq 1$.
Proof. Assume that there are two different elements a, b such that $a, b \in C_{i}$ but $a, b \notin C_{j}$. It follows from the definition of the representative sets, that there are sets $F_{i} \in \mathcal{F}_{i}$ and $F_{j} \in \mathcal{F}_{j}$ such that $a, b \in F_{i}$ and $a, b \notin F_{j}$. (This is trivial for levels with one or two sets. If there are 3 or more sets then at most two of them can be wrong.)

Let $C_{p_{1}}, C_{p_{2}}, \ldots C_{p_{t}}\left(p_{1}<\cdots<p_{t}\right)$ denote the representative sets of the nonempty levels among $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots \mathcal{F}_{n-1}$. Since

$$
\left|\bigcup_{i=1}^{t-1} C_{p_{i}} \backslash C_{p_{i+1}}\right| \leq \sum_{i=1}^{t-1}\left|C_{p_{i}} \backslash C_{p_{i+1}}\right| \leq t-1 \leq n-2
$$

there will be an element $x \in[n]$ such that $x \notin C_{p_{i}} \backslash C_{p_{i+1}}$ for any p_{i}. This implies that there are no nonempty levels \mathcal{F}_{i} and \mathcal{F}_{j} such that $i<j, x \in C_{i}$ but $x \notin C_{j}$. Rearranging the names of the elements, we may assume that $x=n$.

Now we define two families in $2^{[n-1]}$, let

$$
\mathcal{G}=\{F \backslash\{n\} \mid F \in \mathcal{F}\}, \quad \mathcal{H}=\left\{H \in 2^{[n-1]} \mid H, H \cup\{n\} \in \mathcal{F}\right\} .
$$

Note that $|\mathcal{F}|=|\mathcal{G}|+|\mathcal{H}|$. Since \mathcal{G} is a $\{0,1\}$-sd system in $2^{[n-1]}$, we get an upper bound on its size by induction. We will examine \mathcal{H} to bound its size as well.

Claim 2.3. If $A, B \in \mathcal{H}$ and $|A|<|B|$ then $A \subset B$.
Proof. By the definition of \mathcal{H}, we get that $A \cup\{n\} \in \mathcal{F}$ and $n \notin B$. Since \mathcal{F} is a $\{0,1\}$-sd system, $1 \geq|(A \cup\{n\}) \backslash B|=|A \backslash B|+1$. Therefore we have $|A \backslash B|=0$ or equivalently $A \subset B$.

Claim 2.4. There is at most one level in \mathcal{H} with two or more sets in it.

Proof. Assume that there are two sets of size i and two sets of size $j(i<j)$ in \mathcal{H}. Then in \mathcal{F} there are two sets of size $i+1$ containing n and two sets of size j that do not contain n. From the definition of the representative sets follows that $n \in C_{i+1}$ but $n \notin C_{j}$. This is an outright contradiction if $i+1=j$. If $i+1<j$, it contradicts the special property of the element n established earlier.

Claim 2.5. $|\mathcal{H}| \leq n+1$.
Proof. Let $\mathcal{H}_{i}=\{H \in \mathcal{H}:|H|=i\}$ for all $i=0,1, \ldots, n-1$. If there is no i such that $\left|\mathcal{H}_{i}\right|>1$, then $|\mathcal{H}| \leq n$. Assume that $\left|\mathcal{H}_{t}\right|=k>1$. By Claim 2.4, this is the only level with more than one set. If the level \mathcal{H}_{t} is of type \vee, then the union of its sets is of size $t+k-1$. Claim 2.3 implies that all sets $H \in \mathcal{H},|H|>t$ must contain this union, therefore the levels $\mathcal{H}_{t+1}, \mathcal{H}_{t+2}, \ldots, \mathcal{H}_{t+k-2}$ are all empty. If \mathcal{H}_{t} is of type \wedge, then the intersection of its sets is of size $t-k+1$. Claim 2.3 implies that all sets $H \in \mathcal{H},|H|<t$ must be subsets of this intersection, therefore the levels $\mathcal{H}_{t-k+2}, \mathcal{H}_{t-k+3}, \ldots, \mathcal{H}_{t-1}$ are all empty. In either case we get that $|\mathcal{H}| \leq k+(k-2) \cdot 0+(n-k+1) \cdot 1=n+1$.

Now we can complete the proof of the theorem:

$$
|\mathcal{F}|=|\mathcal{G}|+|\mathcal{H}| \leq\binom{ n-1}{2}+2(n-1)-1+n+1=\binom{n}{2}+2 n-1
$$

Let us make two final remarks.

- Observe that for the set $L_{\ell}=\{\ell+1, \ell+2, \ldots, n\}$ a system $\mathcal{F} \subseteq 2^{[n]}$ is L_{ℓ}-close Sperner if and only if for every ℓ-subset Y of $[n]$, the trace $\mathcal{F}_{[n] \backslash Y}=\{F \backslash Y: F \in \mathcal{F}\}$ is Sperner. Set systems with this property are called $(n-\ell)$-trace Sperner and results on the maximum size of such systems can be found in Section 4 of [12].
- A natural generalization arises in $Q^{n}=\{0,1, \ldots, q-1\}^{n}$. One can partially order Q^{n} by $a \leq b$ if and only if $a_{i} \leq b_{i}$ for all $i=1,2, \ldots, n$. We say that $A \subseteq\{0,1, \ldots, q-1\}^{n}$ is L-close Sperner for some subset $L \subseteq[n]$ if for any distinct $a, b \in A$ we have $\operatorname{sd}(a, b):=$ $\min \left\{\left|\left\{i: a_{i}<b_{i}\right\}\right|,\left|\left\{i: a_{i}>b_{i}\right\}\right|\right\} \in L$. One can ask for the largest number of points in an L-close Sperner set $A \subseteq Q^{n}$. Here is a construction for $\{1\}$-close Sperner set: for $2 \leq i \leq n$, $1 \leq h \leq q-1$ let $\left(v_{i, h}\right)_{i}=h,\left(v_{i, h}\right)_{1}=q-h+1$ and $\left(v_{i, h}\right)_{j}=0$ if $j \neq i$. Then it is easy to verify that $\left\{v_{i, h}: 2 \leq i \leq n, 1 \leq h \leq q-1\right\}$ is $\{1\}$-close Sperner of size $(q-1)(n-1)$.
An easy upper bound on the most number of points in Q^{n} that form an $\{1\}$-close Sperner system is $O_{q}\left(n^{q-1}\right)$. To see this, for any $a=\left\{a_{1}, a_{2}, \ldots a_{n}\right\} \in Q^{n}$ let us define the set $F_{a} \subseteq[(q-1) n]$ as follows.

$$
F_{a}:=\bigcup_{i=1}^{n} \bigcup_{j=1}^{a_{i}}\{(q-1)(i-1)+j\}
$$

If $A \subseteq Q^{n}$ is $\{1\}$-close Sperner, then $A^{\prime}=\left\{F_{a} \mid a \in A\right\} \subset 2^{[(q-1) n]}$ will be $\{1,2, \ldots q-1\}$ close Sperner. Theorem 1.2 implies

$$
|A|=\left|A^{\prime}\right| \leq \sum_{h=0}^{q-1}\binom{(q-1) n}{h}=O_{q}\left(n^{q-1}\right) .
$$

We conjecture that for any q there exists a constant C_{q} such that the maximum number of points in Q^{n} that form a $\{1\}$-close Sperner system is at most $C_{q} n$.

Acknowledgement

The research of Nagy was supported by the National Research, Development and Innovation Office - NKFIH under the grants FK 132060 and K 132696.

The research of Patkós was supported partially by the grant of Russian Government N 075-15-2019-1926 and by the National Research, Development and Innovation Office - NKFIH under the grants FK 132060 and SNN 129364.

References

[1] N. Alon, L. Babai, M. Suzuki, Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems. Journal of Combinatorial Theory, Series A, 58(2) (1991), 165180.
[2] L. Babai, P. Frankl, Linear Algebra Methods in Combinatorics: With Applications to Geometry and Computer Science. Department of Computer Science, University of Chicago 1992.
[3] A. Blokhuis, A new upper bound for the cardinality of 2-distance sets in Euclidean space, Ann. Discrete Math. 20 (1984), 65-66.
[4] E. Boros, V. Gurvich, M. Milanič, Characterizing and decomposing classes of threshold, split, and bipartite graphs via 1-Sperner hypergraphs. to appear in Journal of Graph Theory, doi: $10.1002 /$ jgt.22529, arXiv:1805.03405
[5] E. Boros, V. Gurvich, M. Milanič, Decomposing 1-Sperner hypergraphs. Electron. J. Combin. 26 (3) (2019), P3.18
[6] N. Chiarelli, M. Milanič, Linear separation of connected dominating sets in graphs.Ars Math. Contemp., 16 (2019), 487-525.
[7] K. Engel, Sperner theory. Vol. 65. Cambridge University Press, 1997.
[8] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313-320.
[9] P. Frankl, Z. Füredi, J. Pach, Bounding one-way differences, Graphs and Combinatorics 3(1) (1987) 341-347.
[10] P. Frankl, R.M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357-368.
[11] D. Gerbner, B. Patkós, Extremal Finite Set Theory. CRC Press. 2018
[12] B. Patkós, l-trace k-Sperner families, J. Combin. Theory Ser. A 116 (2009), 1047-1055.
[13] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548.

