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PRE-COMPACT FAMILIES OF FINITE SETS OF INTEGERS ANDWEAKLY NULL SEQUENCES IN BANACH SPACESJ. LOPEZ-ABAD AND S. TODORCEVIC1. IntrodutionThe aÆnities between the in�nite-dimensional Ramsey theory and some problems of theBanah spae theory and espeially those dealing with Shauder basi sequenes have beenexplored for quite some time, starting perhaps with Farahat's proof of Rosenthal's `1-theorem(see [13℄ and [19℄). The Nash-Williams' theory though impliit in all this was not fully exploitedin this ontext. In this paper we try to demonstrate the usefulness of this theory by applyingit to the lassial problem of �nding unonditional basi-subsequene of a given normalizedweakly null sequene in some Banah spae E. Reall that Bessaga and Pelzynski [7℄ haveshown that every normalized weakly null sequene in a Banah spae ontains a subsequeneforming a Shauder basis for its losed linear span. However, as demonstrated by Maurey andRosenthal [16℄ there exist weakly null sequenes in Banah spaes without unonditional basisubsequenes. So one is left with a task of �nding additional onditions on a given weakly nullsequene guaranteeing the existene of unonditional subsequenes. One suh ondition, givenby Rosenthal himself around the time of publiation of [16℄ (see also [19℄). When put in aproper ontext Rosenthal's ondition reveals the onnetion with the Nash-Williams theory. Itsays that if a weakly null sequene (xn) in some spae of the form `1(�) is suh that eah xntakes only the values 0 or 1, then (xn) has an unonditional subsequene. To see the onnetion,onsider the family F = ffn 2 N : xn() = 1g :  2 �gand note that F is a pre-ompat family of �nite subsets of N: As pointed out in [19℄, Rosenthalresult is equivalent saying that there is an in�nite subset M of N suh that the traeF [M ℄ = ft \M : t 2 Fgis hereditary, i.e., it is downwards losed under inlusion. On the other hand, reall that thebasi notion of the Nash-Williams' theory is the notion of a barrier, whih is simply a familyF of �nite subsets of N no two members of whih are related under the inlusion whih hasthe property that an arbitrary in�nite subset of N ontains an initial segment in F : Thus, inpartiular, F is a pre-ompat family of �nite subsets of N: Though the trae of an arbitrarypre-ompat family might be hard to visualize, a trae B[M ℄ of a barrier B is easily to omputeas it is simply equal to the downwards losure of its restritionB �M = ft 2 B : t �Mg:2000 Mathematis Subjet Classi�ation. Primary 05D10, 46B20, 46A35; Seondary 03E05.1



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 2A further examination of Rosenthal's result shows that for every pre-ompat family F of �nitesubsets ofN there is an in�nite setM suh that the trae F [M ℄ is atually equal to the downwardslosure of a uniform barrier B onM , or in other words that the�-maximal elements of F [M ℄ forma uniform barrier on M: As it turns out, this fat holds onsiderably more information that theonlusion that F [M ℄ is merely a hereditary family whih is espeially notieable if one need toperform further re�nements of M while keeping truk on the original family F : This observationwas the motivating point for our researh whih helped us to realize that further extensions ofRosenthal's result require analysis of not only pre-ompat families of �nite subsets of N butalso maps from barriers into pre-ompat families of �nite subsets of N; or, more generally, intoweakly ompat subsets of 0. We have explained this point in our previous paper [14℄, wherewe have presented various results on partial unonditionality suh as near-unonditionality oronvex-unonditionality as onsequenes of the struture theory of this kind of mappings. Thispaper is as a ontinuation of this line of researh. In Setion 3 we show how the ombinatoris onbarriers an be used to prove the 0-saturation for Banah spaes C(K) when K is a ountableompatum. Reall that the 0-saturation of Banah spaes C(K) over ountable ompata K isa result originally due to Pe lzy�nski and Semadeni [21℄ (see also [5℄ and [12℄ for reent aountson this result.) More partiularly, we show that if (xi) � C(K) is a normalized weakly-nullsequene, then there is C � 1, some in�nite set M , some uniform barrier B on M of rank atmost the Cantor-Bendixson rank of K and some uniform assignment � : B ! +00 with theproperty that supp�(s) � s for every s 2 B, and suh that for every blok sequene (sn) ofelements of B, the orresponding sequene (x(sn)) of linear ombinations,x(sn) = Xi2sn(�(sn))(i)xi;is a normalized blok sequene C-equivalent to the standard basis of 0.The last setion onerns the following natural measurement of unonditionality present in agiven weakly null sequene (xn) in a general Banah spae E: Given a family F of �nite sets, wesay that (xn) is F -unonditional with onstant at most C � 1 i� for every sequene of salars(an), sups2F kXn2s anxnk � CkXn2Nanxnk:Thus, if for some in�nite subset M of N the trae F [M ℄ ontains the family of all �nite subsets ofM; the orresponding subsequene (xn)n2M is unonditional. Typially, one will not be able to�nd suh a trae, so one is naturally led to study this notion when the family F is pre-ompat,or equivalently, when F is a barrier. Sine for every pair F0 and F1 of barriers on N there isan in�nite set M suh that F0[M ℄ � F1[M ℄ or F1[M ℄ � F0[M ℄ and sine the two alternativesdepend on the ranks of F0 and F1; one is also naturally led to the following measurement ofunonditionality that refers only to a ountable ordinal  rather than a partiular barrier of rank: Thus, we say that a normalized basi sequene (xn) of a Banah spae X is -unonditionallysaturated with onstant at most C � 1 if there is an -uniform barrier B on N suh that forevery in�nite M � N there is in�nite N �M suh that the orresponding subsequene (xn)n2Nof (xn) is B � N-unonditional with onstant at most C. (Here, B � N denotes the topologiallosure of the restrition B � N whih in turn is equal to the trae B[N ℄, a pleasant property of



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 3any barrier.) It turns out that only indeomposable ountable ordinals  matter for this notion.We shall see, extending the well-known example of Maurey-Rosenthal of a normalized weakly-null sequene without unonditional subsequenes, that every normalized basi sequene has asubsequene whih is !-unonditionally saturated, and that this annot be extended further. Forexample, we show that for every indeomposable ountable ordinal  > ! there is a ompatumK of Cantor-Bendixson rank  + 1 and a normalized 1-basi weakly-null sequene (xn) � C(K)suh that (xn) is �-unonditionally saturated for all � <  but not -unonditionally saturated.More preisely, the summing basis of 0 is �nitely blok-representable in every subsequene of(xn), and so in partiular, no subsequene of (xn) is unonditional.2. PreliminariesLet N denote the set of all non-negative integers and let FIN denote the family of all �nite setsof N. The topology on FIN is the one indued from the Cantor ube N2 via the identi�ation ofsubsets of N with their harateristis funtion. Observe that this topology oinides with theone indued by 0, the Banah spae of sequenes onverging to zero, with the same identi�ationof �nite sets and orresponding harateristi funtions. Thus, we say that a family F � FINis ompat if it is a ompat spae under the indued topology. We say that F � FIN is pre-ompat if its topologial losure Ftop taken in the Cantor ube N2 onsists only of �nite subsetsof N: Given X; Y � N we write(1) X < Y i� maxX < min Y . We will use the onvention ; < X and X < ; for every X .(2) X v Y i� X � Y and X < Y nX .A sequene (si) of �nite sets of integers is alled a blok sequene i� si < sj for every i < j,and it is alled a �-sequene i� there is some �nite set s suh that s v si (i 2 N) and (si ns) is ablok sequene. The set s is alled the root of (si). Note that si !i s i� for every subsequene of(si) has a �-subsequene with root s. It follows that the topologial losure F of a pre-ompatfamily F of �nite subsets of N is inluded in its downwards losureF� = fs � t : t 2 Fgwith respet to the inlusion relation and also inluded in its downwards losureFv = fs v t : t 2 Fgwith respet to the relation v : We say that a family F � FIN is �-hereditary if F = F� andv-hereditary if F = Fv: The �-hereditary families will simply be alled hereditary families. Weshall onsider the following two restritions of a given family F of subsets of N to a �nite orin�nite subset X of N F � X =fs 2 F : s � Xg;F [X ℄ =fs \X : s 2 Fg:There are various ways to assoiate an ordinal index to a pre-ompat family F of �nitesubsets of N. All these ordinal indies are based on the fat that for n 2 N, the index of thefamily Ffng = fs 2 FIN : n < s; fng [ s 2 Fg



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 4is smaller or equal from that of F : For example, one may onsider the Cantor-Bendixson indexr(F), the minimal ordinal � for whih the iterated Cantor-Bendixson derivative ��(F) is equal to;, then learly r(Ffng) � r(F) for all n 2 N: Reall that �F is the set of all proper aumulationpoints of F and that ��(F) = T�<� �(��(F)): The rank is well de�ned sine F is ountableand therefore a sattered ompatum so the sequene ��(F) of iterated derivatives must vanish.Observe that if F is a nonempty ompat, then neessarily r(F) is a suessor ordinal.We are now ready to introdue the basi ombinatorial onepts of this setion. For this weneed the following piee of notation, where X and Y are subsets of N�X = X n fminXg and X=Y = fm 2 X : maxY < mgThe set �X is alled the shift of X . Given integer n 2 N, we write X=n to denote X=fng =fm 2 X : m > ng. The following notions have been introdued by Nash-Williams.De�nition 2.1. ([15℄) Let F � FIN.(1) F is alled thin if s 6v t for every pair s, t of distint members of F .(2) F is alled Sperner if s * t for every pair s 6= t 2 F .(3) F is alled Ramsey if for every �nite partition F = F0 [ � � � [ Fk there is an in�nite setM � N suh that at most one of the restritions Fi �M is non-empty.(4) F is alled a front on M if F � P(M), it is thin, and for every in�nite N �M there is somes 2 F suh that s v N .(5) F is alled a barrier on M if F � P(M), it is Sperner, and for every in�nite N � M thereis some s 2 F suh that s v N .Clearly, every barrier is a front but not vie-versa. For example, the family N[k℄ of all k-element subsets of N is a barrier. The basi result of Nash-Williams [15℄ says that every front(and therefore every barrier) is Ramsey. Sine as we will see soon there are many more barriersthan those of the form N[k℄ this is a far reahing generalization of the lassial result of Ramsey.To see a typial appliation, let F be a front on some in�nite set M and onsider its partitionF = F0 [ F1; where F0 is the family of all �-minimal elements of F . Sine F is Ramsey thereis an in�nite N �M suh that one of the restritions Fi �M is empty. Note that F1 � N mustbe empty. Sine F0 � N is learly a Sperner family, it is a barrier on N . Thus we have shownthat every front has a restrition that is a barrier. Sine barrier are more pleasant to workwith one might wonder why introduing the notion of front at all. The reason is that indutiveonstrutions lead more naturally to fronts rather than barriers. To get an idea about this, it isinstrutive to onsider the following notion introdued by Pudlak and R�odl.De�nition 2.2. ([22℄) For a given ountable ordinal �, a family F of �nite subsets of a givenin�nite set M is alled �-uniform on M provided that:(a) � = 0 implies F = f;g,(b) � = � + 1 implies that Ffng is �-uniform on M=n,() � > 0 limit implies that there is an inreasing sequene f�ngn2M of ordinals onverging to� suh that Ffng is �n-uniform on M=n for all n 2M .F is alled uniform on M if it is �-uniform on M for some ountable ordinal �.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 5Remark 2.3. (a) If F is a front on M , then F = Fv.(b) If F is uniform on M , then it is a front (though not neessarily a barrier) on M .() If F is �-uniform (front, barrier) on M and � : M ! N is the unique order-preserving ontomapping between M and N , then �"F = f�"s : s 2 Fg is �-uniform (front, barrier) on M .(d) If F is �-uniform (front, barrier) on M then F � N is �-uniform (front, barrier) on N forevery N �M .(e) If F is uniform (front, barrier) on M , then for every s 2 Fv the familyFs = ft : s < t and s [ t 2 Fgis uniform (front, barrier) on M=s.(e) If F is �-uniform on M , then ��(F) = f;g, hene r(F) = �+ 1. (Hint: use that ��(Ffng) =(��(F))fng for every � and every ompat family F).(f) It is easy to prove by indution on n that every n-uniform family on M is of the form M [n℄.This is not the ase in general.(g) An important example of a !-uniform barrier on N is the family S = fs : jsj = min(s) + 1g.We all S a Shreier barrier sine its downwards losure is ommonly alled a Shreier family.Indeed, it an be proved a B is a !-uniform family on M i� there is an unbounded mappingf : M ! ! suh that B = fs �M : jsj = f(min s) + 1g.The following result based on Nash-Williams' extension of Ramsey's theorem explains therelationship between the onepts introdued above (see [4℄ for proofs and fuller disussion).Proposition 2.4. The following are equivalent for a family F of �nite subsets of N:(a) F is Ramsey.(b) There is an in�nite M � N suh that F �M is Sperner.() There is an in�nite M � N suh that F �M is either empty or uniform on M .(d) There is an in�nite M � N suh that F �M is either empty or a front on M .(e) There is an in�nite M � N suh that F �M is either empty or a barrier on M .(f) There is an in�nite M � N suh that F �M is thin.(g) There is an in�niteM � N suh that for every in�nite N �M the restrition F � N annotbe split into two disjoint families that are uniform on N . �In this kind of Ramsey theory one frequently performs diagonalisation arguments that an beformalized using the following notion.De�nition 2.5. An in�nite sequene (Mk)k2N of in�nite subsets of N is alled a fusion sequeneof subsets of M � N if for all k 2 N:(a) Mk+1 �Mk �M ,(b) mk < mk+1, where mk = minMk .The in�nite set M1 = fmkgk2N is alled the fusion set (or limit) of the sequene (Mk)k2N:We have also the following simple fats onneting these ombinatorial notions with thetopologial onepts onsidered at the beginning of this setion.Proposition 2.6. Fix a family F � FIN.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 6(a) If F is a barrier on M then F� = Fv = F, and hene F� is a ompat family.(b) If F is a barrier on M then for every N �M , F � N� = F� � N .() Suppose that F is a barrier on M . Then for every N � M suh that M nN is in�nite wehave that F [N ℄ = F � N�, and in partiular F [N ℄ is downwards losed.(d) A family F �M [<1℄ is the topologial losure of a barrier on M i� Fv�max = F��max isa barrier on M .Barriers desribe small families of �nite sets, as it is shown in the following.Theorem 2.7. [14℄ Let F � FIN be an arbitrary family. Then there is an in�nite set M � Nsuh that either(a) F [M ℄ is the losure of a uniform barrier on M , or(b) M [1℄ � F�.Note that it follows that if F is pre-ompat then ondition (a) must hold.We shall follow standard terminology and notation when dealing with sequenes in Banahspaes (see [13℄). We reall now few standard de�nitions we are going to use along this paper.De�nition 2.8. Let (xi) be a sequene in a Banah spae E.(a) (xi) is alled weakly-null i� for every x� 2 E�, the sequene of salars (x�(xi))i tends to 0.(b) (xi) is alled a Shauder basis of E i� for every x 2 E there is a unique sequene of salars(ai) suh that x = Pi aixi. This is equivalent to say that xi 6= 0 for every i, the losed linearspan of (xi) is X , and there is a onstant � � 1 suh that for every sequene of salars (ai), andevery interval I � N, kXi2I aixik � �kXi2Naixik: (1)() (xi) is alled a basi sequene i� it is a Shauder basis of its losed linear span, i.e., xi 6= 0for every i, and there is � � 1 suh that for every sequene of salars (ai), and every intervalI � N, kPi2I aixik � �kP aixik. The in�mum of those onstants � is alled the basi onstantof (xi).(d) (xi) is alled �-unonditional (� � 1) i� for every sequene of salars (ai), and every subsetA � N, kXi2A aixik � �kXi2Naixik: (2)(xi) is alled unonditional if it is �-unonditional for some � � 1.Given two basi sequenes (xi)i2M and (yi)i2N of some Banah spaes E and F , indexedby the in�nite sets M;N � N, we say that (xi)i2M � E and (yi)i2N � F are �-equivalent,denoted by (xi)i2M �� (yi)i2N , if the order preserving bijetion � between the two index-setsM and N lifts naturally to an isomorphism between the orresponding losed linear spans ofthese sequenes sending xi to y�(i).The sequene of evaluation funtionals of 0 is the biorthogonal sequene (pi) of the naturalbasis (ei) of 0, i.e. if x = Pi aiei 2 0, then pi(x) = ai. Note that weakly ompat subsetsK of 0 are haraterized by the property that every sequene in K has a pointwise onvergingsubsequene to an element of K. It is lear that for every weakly-ompat subset K � 0 the



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 7restritions of evaluation mappings (pi) toK is weakly-null in C(K). The sequene of restritionswill also be denoted by (pi). Observe that (pi) as a sequene in the Banah spae C(K) is amonotone basi sequene i� K is losed under restrition to initial intervals.There are two partiularly important examples of weakly-ompat subsets of 0 naturallyassoiated to a normalized weakly null sequene (xi)i2M of a Banah spae E:(a) the set RE((xi)i2M) = f(x�(xi))i2M 2 0 : x� 2 BE�gis symmetri, 1-bounded and weakly-ompat subset of 0.(b) If E = C(K), K ompatum, then the setRK((xi)i2M) = f(xi())i2M 2 0 :  2 Kgis also 1-bounded and weakly-ompat.In both ases one has that (xi)i2M is 1-equivalent to the evaluation mapping sequenes ofC(RE((xi)i2M)) and C(RK((xi)i2M)).We say that a subset X of 0 is weakly pre-ompat if its losure relative to the weak topologyof 0 is weakly ompat. We have then the following, not diÆult to prove.Proposition 2.9. (a) F � FIN is pre-ompat i� the set f�s : s 2 FINg � 0 of harateristifuntions of sets in F is weakly-pre-ompat.(b) For every weakly-pre-ompat subset X of 0 and every " > 0 one has thatsupp "X = ffn 2 N : j�(n)j � "g : � 2 Xg is pre-ompat:Finally, we introdue few ombinatorial notions onerning mappings from families of �nitesets of integers into 0. For more details see [14℄.De�nition 2.10. ([14℄) Let F � FIN be an arbitrary family, and let f : F ! 0.(a) f is internal if for every s 2 F one has that supp f(s) � s.(b) f is uniform if for every t 2 FIN one has thatjf'(s)(min(s=t)) : t v s; s 2 Fgj = 1() f is Lipshitz if for every t 2 FIN one has thatjf'(s) � t : t v s; s 2 Fgj = 1(d) f is alled a U -mapping if F if it is internal and uniform.(e) f is alled a L-mapping if F if it is internal and Lipshitz.Remark 2.11. (a) Every uniform mapping is Lipshitz, but the reiproal is in general false.For example, the mapping f : FIN ! 0 de�ned by f(s)(i) = i if i 2 s and f(s)(i) = 0 isLipshitz but not uniform.(b) Every L-mapping f : F ! 0 an be naturally extended to a ontinuous mapping f 0 : Fv !0 by setting f 0(t) = f(s) � t for (any) s 2 F suh that t v s.() The importane of internal mappings an be seen, for example, by the well-known resultof Pudlak-R�odl [22℄ stating that if f : B ! X is a funtion de�ned on a barrier B on M then



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 8there is N � M , a barrier C on N , and an internal mapping g : B � N ! C suh that for everys; t 2 B � N one has that f(s) = f(t) i� g(s) = g(t).(d) U -mappings were used in [14℄ to produe some weakly-null sequenes playing important rolein the better understanding of an abstrat onept of unonditionality (see [14℄ for more details).The main result on mappings de�ned on barriers is the following:Theorem 2.12. [14℄ Suppose that B is a barrier on M , K � 0 is weakly-ompat and supposethat f : B ! K. Then for every " > 0 there is N �M and there is a U -mapping g : B � N ! 00suh that for every s 2 B � N one has thatkf(s) � N � g(s)k`1 � ":Corollary 2.13. Suppose that f : B ! 0 is an internal mapping de�ned on a barrier B.Suppose that in addition f is bounded, i.e. there is C suh that for every s 2 B one has thatkf(s)k1 � C. Then for every " > 0 there exists is a U -mapping g : B � N ! 00 suh that forevery s 2 B � N one has that kf(s)� g(s)k`1 � ":Proof. Let us prove �rst that the image of f is weakly-pre-ompat: For suppose that (f(sn))nis an arbitrary sequene. Let M � N be suh that (supp f(sn))n2M onverges to some s 2 Bv.This is possible beause f is internal. Sine f is bounded, we an �nd N � M suh that(f(sn))n2N is weak-onvergent in 0.Now the desired result follows from 2.12 by using that f is in addition internal. �3. 0-saturation of C(K) for a ountable ompatum KReall the result of Pelzynski and Semadeni [21℄ whih says that every Banah spae of theform C(K) for K a ountable ompatum is 0-saturated in the sense that every of its losedin�nite-dimensional subspaes ontains an isomorphi opy of 0: The purpose of this setionis to examine the 0-saturation using the theory of mappings on barriers developed above inSetion 3. We start with a onvenient reformulation of the problem. We start with a de�nition.De�nition 3.1. For a given subset X of 0, let suppX = ffi 2 N : �(i) 6= 0g : � 2 Xg be thesupport set of X . We say that a weakly ompat subset K of 0 is supported by a barrier on Mif its support set suppK is the is the losure of a uniform barrier on M .Lemma 3.2. Suppose that K is a ountable ompatum. Suppose that (xi) � C(K) is a nor-malized weakly null sequene. Then for every " > 0 there is subsequene (xi)i2M and a weakly-ompat subset L � 0 supported by a barrier on N of rank not bigger than the Cantor-Bendixsonrank of K suh that (xi)i2M and the evaluation mapping (pi)i2N of C(L) are (1 + ")-equivalent.Proof. Fix " > 0. Find �rst an stritly dereasing sequene ("i) suh that Pi "i � " and suhthat f"i : i 2 Ng \ fjxi()j :  2 Kg = ;: (3)This is possible beause K is ountable. Now de�ne ' : K ! P(N) by '() = fi 2 N :jxi()j � "ig. Note that (3) implies that ' is a ontinuous funtion. Enumerate K = fkgk2N.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 9Sine (xi) is weakly-null we an �nd a fusion sequene (Mk) suh that for every k and everyi 2Mk one has that jxi(k)j < "k . Now if we set N to be the orresponding fusion set then forevery k one has that fi 2M : jxi(k)j � "ig � fn0; : : : ; nk�1g. This means that the mapping = �M �  is ontinuous with image inluded in FIN. Set N = �M and denote the immediatepredeessor of i 2 N in M by i�. Sine K is a zero-dimensional ompatum, we an �nd lopensets Ci � K (i 2 N) suh thatK n x�1i ((�"i� ; "i�)) � Ci � K n x�1i ([�"i; "i℄) for every i 2 N .Set yi = �Cixi for eah i 2 N . So one has(i) kxi � yikK < "i� , so (xi)i2N and (yi)i2N are 1 + "-equivalent, and(ii) for every  2 K and every i 2 N , if jyi()j � "i, then yi() = 0.Sine for every  2 K, by (ii) above, one has thatfi 2 N : yi() 6= 0g = fi 2 N :  2 Ci and jxi()j � "ig =  ();it follows that the support set F of RK((yi)i2N) oinide with the image of  , so it is a ompatfamily of N. We use now Theorem 2.7 to �nd P � N suh that F [P ℄ is the losure of a uniformbarrier on P . This implies thatRK((yi)i2P ) is supported by a barrier B on P . Let � be the uniqueorder preserving mapping from N onto P , and let � : 0 � P = f� 2 0 : supp � � P g � 0 ! 0be de�ned by �(�)(n) = �(�(n)). This is an homeomorphism between 0 � P and 0, both withthe weak topology, so L = �"RK((yi)i2P ) is a weakly-ompat subset of 0 and supported bythe barrier ��1B = f��1s : s 2 Bg on N. Now it is easy to see that the evaluation mapping(pi)i2N of C(L) is a normalized weakly-null sequene 1 + "-equivalent to (xi)i2P . �Theorem 3.3. Suppose that (xi) � C(K) is a normalized weakly-null sequene for a ountableompatum K. Then there is a onstant C � 1, an in�nite set M , a uniform barrier B onM whose rank is at most the Cantor-Bendixson rank of K, and some U -mapping � : B ! +00suh that for every blok sequene (sn) � B the orresponding sequene of linear ombinations(Pi2sn(�(sn))(i)xi)n is a normalized blok sequene C-equivalent to the unit vetor basis of 0.Proof. The proof is by indution on the Cantor-Bendixson rank of K. First of all, by Lemma3.2 we may assume that K is a weakly-ompat subset of 0 supported by a barrier B on N andthat the normalized weakly null sequene (xi) is the orresponding evaluation mapping sequene(pi)i2N. If � = 1, then B = N[1℄ and learly (pi) is equivalent to the unit vetor basis of 0. Soassume that � > 1. By going to a subsequene of (pi) if needed, we may also assume in this asethat jsj � 2 for every s 2 B. For eah integer n set Fn = Sm�n Bfmg. Sine B is a �-uniformfamily, we have that for every n, ��Fn = ;, so its Cantor-Bendixson rank is stritly smallerthan �+ 1. For eah n 2 N, let Kn = ff � s : s 2 Fng:This is a ompatum whose support is Fn and whose rank is stritly smaller than �+ 1. So, theevaluation mapping sequene (pi) is a weakly-null sequene of C(Kn) for every n. Observe thatfor every sequene of salars (ai) we have thatkXi aipikn = kXi aipikKn = supfkXi2s aipikK : s 2 Fng: (4)



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 10Using the fat that the family Fn is hereditary, we obtain that (pi) is 1-unonditional. Sine weassume that all the singletons fig belong to Fn, it follows that (pi)i�1 is indeed a 1-unonditionalnormalized weakly null sequene in C(Kn).Fix " > 0, and let ("n)n be a summable sequene withPn "n < "=2. By the Ramsey propertyof the uniform barrier B, we an �nd a fusion sequene (Mk)k suh that, setting nk = minMkfor eah k 2 N, we have that for every k the following dihotomy holds:(I) Either for every s 2 B � Mk there is some �k(s) 2 00 with supp �k(s) � s, 0 ��k(s)(i) � 1 for every i 2 s, and suh that for every suh that kPi2s �k(s)(i)pikK = 1 whilekPi2s �k(s)(i)piknk < "k , or else(II) kPi2s aipikK � 2"�1k kPi2s aipiknk for every s 2 B �Mk and every (ai)i2s.Suppose �rst that (I) holds for every k. Let M1 = fnkg be the orresponding fusion set.Then let C = B � M1. For s 2 C, de�ne �(s) = �k(s), where nk = min s. This is well de�nedsine s 2 B �Mk. For a given s 2 C, letx(s) =Xi2s �(s)(i)pi:Our intention is to show that for every blok sequene (si)i in C one has that (x(si))i is 2 + "-equivalent to the 0-basis. So �x suh sequene (si) and let (bi)i2N be a sequene of salars withjbij � 1 for every integer i. Sine eah x(si) is normalized and sine (pi) is monotone, we obtainthat kXi bix(si)kK � (1=2)kXi bieik1:Suppose that � 2 K, and let i0 = minfi : si \ supp � 6= ;g. Fix i > i0, and let ki be suh thatnki = min si. Sine supp � \ si 2 Fmax si0 we have thatjx(si)(�)j � k Xj2si\suppf a(ki)i pikmaxsi0 < "ki : (5)It follows that jXi bix(si)(�)j � jbi0 j+Xi>i0 jbijjx(si)(�)j � jbi0j+ "2 : (6)So, kPi bix(si)kK � (1 + "=2)kPbieik1. Finally use Corollary 2.13 to perturb � and make itU -mapping.Suppose now that k0 is the �rst k suh that (II) holds for k. Set M = Mk. It readilyfollows that for every x in the losed linear span of (pi)i2M one has that kxkK � "�1k0 kxknk0 . Byindutive hypothesis applied to (pi) � C(Knk0 ), there is some C � 1, some uniform barrier Con some N � M of rank not bigger than the one of Knk0 and some � ful�lling the onlusionsof the Lemma. Fix s 2 C. Then k�(s)knk0 = 1, so we an �nd some ts � s suh that 1 =k�(s)knk0 = k�(s) � tskK . Observe that, by 1-unonditionality of k � knk0 , k�(s) � tknk0 = 1.De�ne � : C ! 00 by �(s) = �(s) � ts. Finally, let us hek that (x(si)) � C(K) is C"�1nk -equivalent to the 0-basis for every blok sequene (si)i in C. Fix salars (ai), jaij � 1 (i 2 N).We obtain the inequality kPi ai�(si)kK � (1=2)kPi aieik1 by the monotoniity of the basi



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 11sequene (pi). Now,kXi ai�(si)kK � 1"nk0 kXi ai�(si)knk0 � 1"nk0 kXi ai�(si)knk0 � C"nk0 kXi aieik1: (7)�4. ConditionalityWe start with the following natural slightly variation on the notion of S�-unonditionalityfrom [3℄, and whih is a generalization of unonditionality (see De�nition 2.8 (d)).De�nition 4.1. Let F be a family of �nite sets of integers. A normalized basi sequene (xn) ofa Banah spae E is alled F -unonditional with onstant at most C � 1 i� for every sequeneof salars (an), sups2F kXn2s anxnk � CkXn2Nanxnk:This generalizes the notion of unonditionality overed by the ase of F = FIN. The questionis whether every normalized weakly-null sequene has a F -unonditional subsequene. Observethat the subsequene (xn)n2M is F -unonditional i� it is F [M ℄-unonditional, so the existeneof an F -unonditional subsequene is losely related to the form of the traes F [M ℄. If weassume that in addition the family F is hereditary, then, by the Theorem 2.7, two possibilitiesan our: The �rst one is that some trae of F onsists on all �nite subsets of some in�niteset M . In this ase, for subsequenes of (xn)n2M the F -unonditionality oinides with theunonditionality. The seond ase is when some trae of F is the losure of a uniform barrier.So one is naturally led to examining the standard ompat families of �nite subsets of N. Webegin with the following positive result announed in [16℄ and �rst proved by E. Odell [20℄onerning the Shreier family S = fs � N : jsj � min(s) + 1g.Theorem 4.2. Suppose that (xn) is a normalized weakly-null sequene of a Banah spae E.For every " > 0 there is a S-unonditional subsequene with onstant 2 + ". �Reall that if F is a barrier on some set M then its trae F [N ℄ on any o-in�nite subset N ofM is hereditary and that for every pair F0 and F1 of barriers on the same domain M there isan in�nite set N � M suh that F0[N ℄ � F1[N ℄ or F1[N ℄ � F0[N ℄. Sine the two alternativesare dependent on the ranks of F0 and F1; one is naturally led to the following measurement ofunonditionality.De�nition 4.3. Suppose that  is a ountable ordinal. A normalized basi sequene (xn) ofa Banah spae E is alled -unonditionally saturated with onstant at most C � 1 if forevery -uniform barrier B on N and for every in�nite M there is in�nite N �M suh that theorresponding subsequene (xn)n2N of (xn) is B-unonditional with onstant at most C.We say that (xn)n is -unonditionally saturated if it is -unonditionally saturated withonstant C for some C � 1.Remark 4.4. (a) A sequene (xn)n is -unonditionally saturated i� given a -uniform barrierB every subsequene of (xn)n has a further B-unonditional subsequene. The reason for this is



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 12that given two -uniform barriers B and C on a set M we have that there is N � M suh thateither B � N � C � N � B � N �N [�1℄ or the symmetri situation holds, where F �G = fs [ t :s 2 G; t 2 F and s < tg (see [4℄).(b) It follows from Theorem 4.2 that every normalized weakly null sequene is !-unonditionallysaturated. Sine the !-uniform barriers are of the form fs 2 FIN : jsj = f(min s) + 1g for someunbounded mapping f : M ! N one an easily modify the proof of Theorem 4.2 to prove thatevery normalized weakly-null sequene is !-unonditionally saturated with onstant at most2 + ".() If the normalized basi sequene (xn) is monotone, then it is B-unonditional i� it is B-unonditional for every uniform barrier B on N.(d) An analysis of the Maurey-Rosenthal [16℄ example of a weakly-null sequene (xn) with nounonditional basi subsequene (see Example 4.5 below) reveals an !2-uniform barrier BMRsuh that no in�nite subsequene (xn)n2M is BMR-unonditional with any �nite onstant C. Sothis is an example of a normalized weakly-null sequene with no !2-unonditionally saturatedsubsequene.(e) Reall that an ordinal  is alled indeomposable if for every � < , �! � . Equivalently, = !� for some �. Suppose that  is the maximal indeomposable ordinal smaller than some�xed ordinal �. Then a normalized basi sequene (xn) is �-unonditionally saturated if andonly it is -unonditionally saturated.Example 4.5. First of all, for a �xed 0 < " < 1 hoose a fast inreasing sequene (mi) suhthat 1Xi=0Xj 6=i minf(mimj )1=2; (mjmi )1=2g � "2 : (8)Let FIN[<1℄ be the olletion of all �nite blok sequenes E0 < E1 < � � �< Ek of nonempty�nite subsets of N. Now hoose a 1� 1 funtion� : FIN[<1℄ ! fmig (9)suh that '((si)ni=0) > sn for all (si) 2 FIN[<1℄ Now let BMR be the family of unions s0 [ s1 [� � � [ sn of �nite sets suh that(a) (si) is blok and s0 = fng.(b) jsij = �(s0; : : : ; si�1) (1 � i � n).It turns out that BMR is a !2-uniform barrier on N (see Proposition 4.11 below), heneBMR = BMRv is a ompat family with rank !2 + 1. Observe that by de�nition, every s 2 BMRhas a unique deomposition s = fng [ s1 [ � � �[ sn satisfying (a) and (b) above. Now de�ne themapping � : BMR ! 00, �(s) = en + nXi=1 1jsij 12 Xk2si ek: (10)It follows that � is a U -mapping de�ned on the barrier BMR. Now we an de�ne the Banahspae XMR as the ompletion of 00 under the normkxkMR = supfjh�(s); xij : s 2 BMRg:



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 13The natural Hamel basis (en) of 00 is now a normalized weakly-null monotone basis of XMR with-out unonditional subsequenes. Indeed, without !2-unonditionally saturated subsequenes.Moreover this weakly-null sequene has the property that the summing basis (Si) of , the Ba-nah spae of onvergent sequenes of reals, is �nitely-blok representable in the linear span ofevery subsequene of (ei) (and so the summing basis of 0), more preisely, for every M , everyn 2 N and every " > 0 there is a normalized blok subsequene (xi)n�1i=0 of (ei)i2M suh that forevery sequene of salars (ai)n�1i=0 ,maxfj mXi=0 aij : m < ng � k n�1Xi=0 aixikC(K) � (1 + ") maxfj mXi=0 aij : m < ng:On the other hand, by Proposition 4.2 the sequene (pi) is !-unonditionally saturated withonstant � 2.Another presentation of this spae is the following: Sine � is uniform, it is Lipshitz, sothere is a unique extension � : BMR ! 00, naturally de�ned by �(s) = �(t) � t, where t 2 BMRis (any) suh that s v t. Now de�ne K = �"BMR � 00. This is a weakly-ompat subset of00 whose rank the same than BMR, i.e., !2 + 1. Then the orresponding evaluation sequene(pi) � C(K) is 1-equivalent to the basis (ei)i of XMR.Building on the idea of Example 4.5, we are now going to �nd, for every ountable inde-omposable ordinal , a U -sequene with no unonditional subsequenes but �-unonditionallysaturated for every � < . Before embarking into the onstrution, we need to reall a loalizedversion of Pt�ak's Lemma. For this we need the following notation: Given a family F , and n 2 N,let F 
 n = fs0 [ � � � [ sn�1 : (si)n�1i=0 � F is blokg:It an be shown that F 
 n is a �n-uniform family if F is an �-uniform family.Given � 2 00 we will write �1=2 to denote (�(i)1=2). Given � 2 00 and a �nite set s, leth�; si = h�; �si =Pi2s �(i).De�nition 4.6. A mean is an element � 2 +00 with the property that Pi2N�(i) = 1. We saythat � : B ! +00 is a U -mean-assignment if � is a U -mapping suh that for every s 2 B one hasthat �(s) is a mean.Lemma 4.7. Suppose that B is an �-uniform barrier on M , � � 1. Let  = (�) be themaximal indeomposable ordinal not bigger than �,and let n = n(�) 2 N, n � 1, be suh thatn � � < (n+ 1). Then for every k 2 N, k > 1, every " > 0, and every �-uniform barrier Con M with � > �k there N �M and U -mean-assignment � : C � N ! +00 suh thatsupfh�(s) 12 ; ti : t 2 Bg � (1 + ")(n+ 1)(nk) 12 (11)for every s 2 C � N .Proof. The proof is by indution on �. Fix " > 0 and k > 1. Let C be an �-uniform family onM suh that � > �k.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 14Notie that if we prove that for every N � M there is one mean � with support in C � Nsuh that (11) holds, then the Ramsey property of the uniform barrier C gives the existene forsome N � M of a mean-assignment � : C � N ! 00 suh that �(s) has the property (11) forevery s 2 C � N . Then Corollary 2.13 gives the desired U -mapping.Let D be a -uniform barrier on M (if n = 1 we take D = B), and �x N � M . Find �rstP � N be suh that (D 
 nk) � P � C as well as B � P � D 
 (n+ 1). Consider (i)i2P suhthat Dfig � P is i-uniform on P=i. Observe that for every i 2 P we have that i < , so, sine is indeomposable, i! � . Let �0 be any mean suh that supp�0 2 B � P . By indutivehypothesis applied to appropriate �i's, we an �nd a blok sequene (�j)nk�1j=0 of means withsupport in B � P suh that for every 1 � j � nk � 1,supfh� 12j ; ti : t 2 D; and min t � max supp�j�1g < "2j+1 : (12)Let � = (1=(nk))Pnk�1j=0 �j . Observe that supp � 2 (D 
 (nk)) � P � C. Then, for every t 2 B,by (12), h� 12 ; ti = 1(nk) 12 k�1Xj=0Xi2t �j(i) 12 � 1 + "2(nk) 12 : (13)Let us point out that supp � is, possibly, not a set in C. However it is easy to slightly perturb �to a newer mean with support in C and satisfying (13) for every t 2 B: Let s 2 C be suh thatsupp � v s, and set u = s n supp �. Let Æ > 0 be suh that(1 + "2)(1� Æ)1=2 + (nkÆjuj)1=2 � 1 + ": (14)Now set � = (1� Æ)� + Æjuj�u: (15)� is a mean whose support is s 2 C. It an be shown now that for every t 2 B,Xi2t �(i) 12 � 1 + "(nk) 12 ; (16)by the hoie of Æ. Finally, let t 2 B and let us omputePi2t(�(i))1=2: First of all we have thatPi2t(�(i))1=2 = Pi2u(�(i))1=2, where u = t \ P . Now, sine u 2 B � P � D 
 (n+ 1), we an�nd t0 < � � �< tn in D suh that u v t0 [ � � � [ tn, and heneh�1=2; ti = nXj=0h�1=2; tji � (n+ 1)(1 + ")(nk) 12 ; (17)as promised. �Corollary 4.8. Suppose that B is an �-uniform barrier on M , � � 1. Then for every " > 0there is some k = k(�; ") suh that for every �-uniform barrier on M with � > �k there N �Mand some U -mean-assignment � : C � N ! +00 suh that,supfh�(s)1=2; ti : t 2 Bg � " (18)for every s 2 B � N . �



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 15Lemma 4.9. Fix an indeomposable ountable � and a sequene ("n) of positive reals. Then:(a) there is a olletion (Bn) of �n-uniform barriers on N=n and a orresponding sequene ofU -mean-assignments �n : Bn ! +00 with the following properties:(a.1) �n > 0, supn �n = �,(a.2) for every m < n and every s 2 Bnsupfh�n(s) 12 ; ti : t 2 Bmg < "n: (19)(b) Suppose that in addition � = ! with  limit. Let �n " � be any sequene suh that�n! � �n+1 (n 2 N). Then there is a double sequene (Bni ) suh that for every integers n and i(b.1) Bni is an �(n)i -uniform barrier on N=(n+ i), with �(n)i > 0 and �(n)i "i �n.(b.2) There are U -mean-assignments �n;i : Bni ! 00 suh that for every s 2 Bni , and every(m; j)<lex (n; i) supfh�n;i(s) 12 ; ti : t 2 Bmj g < "n+i; (20)where we reall that <lex denotes the lexiographial order on N2 de�ned by (m; i) <lex (n; j) i�m < n, or m = n and i < j.Proof. (a): Choose �n "n � suh that for every n 2 N, �n+1 > �nk(�n; "n), that is is possiblesine � is indeomposable. Let Cn be an �n-uniform family on N (n 2 N). By Corollary 4.8 wean �nd a fusion sequene (Mn) suh that() Cm �Mm � Cn if m � n, and(d) for every n 2 N there is a U -mean-assignment �n : Cn �Mn ! +00 suh thatsupfh�n(s) 12 ; ti : t 2 [l<n Clg < "n (21)for every s 2 Cn � Mn. Let M = fmng be the fusion set of (Mn), and � : M ! N be theorresponding order preserving onto mapping. It is not diÆult to see that Cn = (�"Bn) � (N=n),and �n : Cn ! 00 de�ned naturally out of �n � ful�ls all the requirements.(b): Suppose that � = ! with  limit. Let �n " � be any sequene suh that �n! � �n+1(n 2 N).Claim. There is a fusion sequene (Mn), Mn = fm(n)i g, a double sequene (Bni ) of �(n)i -uniformbarriers on Mn=m(n)i and U -mean-assignments �n;i : Bni ! +00 suh that(e) �(n)i "i �n (n 2 N), and(f) for every (m; j)<lex (n; i), every s 2 Bni and every t 2 Bmj , h(�n;i(s))1=2; ti < "n+i.Proof of Claim: First, use Corollary 4.8 applied to �0 to produe an in�nite set M0 = fm(0)i g anda sequene (B0i ) of �(0)i -uniform barriers on M0=fm(0)i g with �(0)i " �0 and U -mean-assignments�0;i : B0i ! 00 suh that for every i and every s 2 B0i , h�0;i(s)1=2; ti � "i for every t 2 B0jwith j < i. In general, suppose we have found for every k � n Mk = fm(k)i g � Mk�1, (Bki )�(k)i -uniform barriers on Mk=m(k)i and U -mean-assignments �k;i : Bki ! 00 suh that for every(k; j) <lex (m; i) every s 2 Bmi and every t 2 Bkj h�m;i(s)1=2; ti � "m+i. For eah k � n de�nethe following families Bk = fs �Mk : �s 2 Bkmin sg: (22)



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 16This is learly an �k-uniform family on Mk. Sine �n! � �n+1, we an use again Corollary 4.8and �nd an in�nite subset Mn+1 = fm(n+1)i g � Mn and a sequene (Bn+1i ) of �(n+1)i -uniformbarriers on Mn+1=m(n+1)i and U -mean-assignments �n+1;i : Bn+1i ! 00 suh that for everys 2 Bn+1i , supfh(�n+1;i(s)) 12 ; ti : t 2 [k�nBm [[j<iB(n+1)j g < "n+i+1; (23)so, in partiular for every k � n and every t 2 Bkj , h(�n+1;i(s)) 12 ; ti < "n+i+1 . �Let M be the fusion set of (Mn), i.e. M = fm(n)0 g. Observe that m(n+i)0 � m(n)i for every nand i, so M=m(n)0 � Mn=m(n)i . Set Cni = Bni � (M=m(n+i)0 ). This is an �(n)i -uniform barrier onM=m(n+i)0 . Consider �n;i = �n;i � Cni : Cni ! 00 has the property that for every (m; j)<lex (n; i),every every s 2 Cni and every t 2 Cmj , h(�n;i(s))1=2; ti < "n+i. Now use � : M ! N, �(m(n)0 ) = 0,to de�ne the desired mean-assignments and families. �Remark 4.10. Observe that if B is �-uniform on M with � > 0, then M [1℄ � B. It readilyfollows that the mean-assignments �n and �n;i obtained in Lemma 4.9 have the property thatk�n(s)1=2k1 � "n and k�n;i(s)1=2k1 � "n+i for every s in the orresponding domains.Proposition 4.11. (a) Suppose that C and Bi are � and �i-uniform families on M (i 2 N)with �i " �, �i; � � 1. Let � : FIN[<1℄ ! N be 1-1. Then for every n 2 N the familyD = fs0 [ � � � [ sn : (si) is blok, s0 2 C and si 2 B�((s0;:::;si�1)) for every 1 � i � n� 1gis -uniform on M , where  = �n + �� if 1 � � < ! and n > 0, and  = �n + � if � � ! orn = 0.(b) Suppose that Bi is �i-uniform on M (i 2 N) with �i " �. Let � : FIN[<1℄ ! N be 1-1. Thenthe family C = ffng [ s0 [ � � � [ sn�1 :(fng; s0; : : : ; sn�1) is blok, andsi 2 B�((fng;s0;:::;si�1)) for every 0 � i � n� 1gis �!-uniform on M .Proof. (a): The proof is by indution on n. If n = 0, the result is lear. So suppose thatn > 0. Now the proof is by indution on �. Suppose �rst that � = 1. Then C = M [1℄, and so,for every m 2MDfmg = fs1 [ � � � [ sn :(s1; s2; : : : ; sn) is blok, s1 2 B�((fmg)) andsi 2 B�((fmg;s1;s2;:::;si�1)) for every 2 � i � n� 1g;so, by indutive hypothesis, Dfmg is �(n� 1) + m-uniform on M=m, depending whether �m is�nite or in�nite, but in any ase with m " �. Hene D is �n-uniform on M . The general asefor 1 � � < ! is shown in the same way.Suppose now that � � !. Then for every m 2MDfmg = ft [ s1 [ � � � [ sn : (t; s1; : : : ; sn) is blok, t 2 Cfmg andsi 2 B�((fmg[t;s1;:::;si�1)) for every 1 � i � n� 1g;



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 17By indutive hypothesis, Dfmg is �n+m-uniform on M=m, with m " � , so D is �n+�-uniformon M , as desired.(b) follows easily from (a). �The following is a generalization of Maurey-Rosenthal example for arbitrary ountable inde-omposable ordinal �.Theorem 4.12. For every ountable indeomposable ordinal � there is a normalized weakly-null sequene whih is �-unonditionally saturated for every � < � but without unonditionalsubsequenes.Proof. Our example is a slightly modi�ation of a U -sequene introdued in [14℄. So, weare going to de�ne a �-uniform barrier B on N, a U -mean-assignment ' : B ! 00 and someG � FIN � FIN and then de�ne the norm on 00 byk�k = maxfk�k1; supfjh'(s) � t; �ij : (s; t) 2 Ggg (24)where G � FIN�FIN is suh that its �rst projetion is B. Notie that some sort of restritionshave to be needed in the formula (24), sine it is not diÆult to see that that for a ompatand hereditary family F , a normalized weakly-null sequene (xi)i is F -unonditional i� it isequivalent to the evaluation mapping sequene (pi)i of a weakly-ompat subset K � 0 that isF -losed, i.e. losed under restrition on elements of F .Fix " > 0, and let "n = "=2n+3. Suppose that � = ! . There are two ases to onsider.Suppose �rst that  = �+1. We apply Lemma 4.9 (a) to the indeomposable ordinal !� and ("n)to produe the orresponding sequenes of barriers (Cn) and U -mean-assignments �n : Cn ! 00(n 2 N) satisfying the onlusions (a.1) and (a.2) of the Lemma. If  is limit, then we use the part(b) of that lemma to produe a double sequene (Bni ) and U -mean-assignments �n;i : Cni ! 00satisfying (b.1) and (b.2). In order to unify the two ases we set for n; i,Bni = ( Ci if  is suessor ordinalCni if  is limit ordinaland �n;i = ( �i if  is suessor ordinal�n;i if  is limit ordinal:Let � : FIN[<1℄ ! N be 1-1 mapping suh that �((s0; : : : ; sn)) > max sn for every bloksequene (s0; : : : ; sn) of �nite sets. For eah n de�neCn = fs0 [ � � � [ sn�1 : (si) is blok and si 2 Bn�((fng;s0;:::;si�1)) for every 0 � i � n g;So, by Proposition 4.11, if � = !�+1, then Cn is a !�(n � 1) + �-uniform family on N, where �is suh that Bn�((fng)) is �-uniform; while if � = ! with  limit, then it is �n(n � 1) + � where� is suh that Bn�((fng)) is �-uniform. Now letC = fs 2 FIN : �s 2 Cminsg: (25)It turns out that C is an �-uniform family on N (so it is a front), not neessarily a barrier.Observe that every s 2 C has a unique deomposition s = fng [ s(0) [ � � � [ s(n � 1) with



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 18n = min s and s(i) 2 B�(s[i℄), and where s[i℄ = (fng; s0; : : : ; si�1) (0 � i � n � 1). For everys 2 C and every i � s, set �(s; i) = (�mins;�(s[i℄)(s(i)))1=2:De�ne now � : C ! 00 for every s 2 C by�(s) = emin s + n�1Xi=0 �(s; i); (26)It is not diÆult to see that � : C ! 00 is a U -mapping. Now de�ne on 00 the normk�k = supfjh�(s) � (s n t); �ij : s 2 C; t � s(i); for some i < min sg == supfjh�(s) � (u n t); �ij : u v s 2 C; t � s(i); for some i < min sg; (27)the last equality beause � is Lipshitz and supported by a front. Let X the ompletion of00 under this norm. Then the Hamel basis (en)n of 00 is a normalized basis of X, moreovermonotone (sine � is Lipshitz with domain a front) and weakly-null: To prove this, it is enoughto see that the setL = f�(s) � (u n t) : s 2 B; u v s; and t � s(i) for some i < min sgis weakly-ompat. So, let (�(sn) � (un n tn))n a typial sequene in L. Sine C is a front, wean �nd an in�nite set M and u 2 FIN suh that (un)n2M onverges to u and suh that (sn) isa �-system with root u v r. Sine � is Lipshitz de, we obtain that (�(sn) � tn)n2M onvergesto �(sm) � t for (any) m 2 M . If u = ;, then (�(sn) � (tn [ u))n2M onverges to 0. Otherwise,let N � M and j < min u be suh that tn � sn(j) for every n 2 N . Now (tn)n2N is a sequenein the losure of Bmins�(s[i℄), hene, we an �nd P � N suh that (tn)n2P is onvergent with limit t.It follows that (�(sn) � (un n tn))n2P has limit �(sn) � (u n t) 2 L, where n is (any) integer in P .The next is a ruial omputation.Claim. For every s; t 2 C and every i � min s and j � min s, we have that0 � h�(t; j); �(s; i)i � ( "maxfmins;min tg if t[j℄ 6= s[i℄1 if t[j℄ = s[i℄:Proof of Claim: Set n = min s, m = min t, and assume that t[j℄ 6= s[i℄. Suppose �rst that� = !�+1. Then, by de�nition of the mean assignments, h�(t; j); �(s; i)i � "maxf�(t[j℄);�(s[i℄)g,but �(u0; : : : ; uk) � maxuk for every blok sequene (ui), whih derives into the desired in-equality. Assume now that � = ! ,  limit ordinal. If min s = min t, then h�(t; j); �(s; i)i �"min s+maxf�(t[j℄);�(s[i℄)g � "min s. While if min t 6= min s, say min t < min s, then h�(t; j); �(s; i)i �"min s+�(s[i℄) � "min s.If �(s[i℄) = �(t[j℄) = l, then min s = min t = n, andh�(s; i); �(t; j)i � k(�n;l(s(i)))1=2k`2k(�n;l(t(j)))1=2k`2 � 1; (28)sine both are means. �Claim. The summing basis (Sn) of  is �nitely blok represented in any subsequene of (en)n.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 19Proof of Claim: Fix an in�nite set M of integers, and l 2 N. Let v 2 B �M=l, v = fng [ v(0)[� � � [ v(n� 1) its anonial deomposition, and setxi = Xj2v(i) �(v; i)(j)ej: (29)Observe that h�(v); x(v; i)i = h�(v; i); �(v; i)i = 1, so from the previous laim we obtain thatkxik = 1. Now onsider salars (ai)i�n�1 with kPi�n�1 aiSik1 = 1. Observe that this impliesthat maxi�n�1 jaij � 2. We are going to show that1 � k X0�i�n�1 aixik � 3 + ": (30)To get the left hand inequality, suppose that 1 = kP0�i�n�1 aiSik1 = jPi�m aij, wherem � n� 1. Let t = fng [ s(0)[ � � � [ s(m). By (27) it follows thatk Xi�n�1 aixik � h�(v) � t; Xi�n�1 aixii = jXi�m aij = 1: (31)Next, �x s 2 C and t � s(k) for some k < min s. Suppose �rst that min v = min s. Leti0 = maxfi � n� 1 : v(i) = s(i)g. If k > i0 then by the previous laim we obtainjh�(s) � (s n t); Xi�n�1 aixii)j �jXi�i0 aij+ Xi0<i;j�n�1 2jh�(s; i); �(t; j)ji ��k Xi�n�1 aiSik1 + 2n2"n � (1 + ")k Xi�n�1 aiSik1: (32)Suppose that k � i0. Thenjh�(s) � (s n t); Xi�n�1 aixii)j �j Xi�i0;i6=k ai + akh�(v; k); �(v; k) � (s(k) n t)ij++ Xi0<i;j�n�1 2jh�(s; i); �(t; j)ji ��3k Xi�n�1 aiSik1 + 2n2"n � (3 + ")k Xi�n�1aiSik1: (33)Suppose now that n = min v 6= min s, say min s < min v. Let i0 < n, if possible, be suh thatmin s 2 v(i0). Then,jh�(s) � (s n t); Xi�n�1aixii)j �jai0 jk�(v; i0)k1 + 2 Xi0�i<n X0�j<min th�(t; j); �(s; i)i ��2"n + 2n2"n � ": (34)�Finally, it rests to show that the sequene (en) is �-unonditionally saturated for every � < �.We onsider the two obvious ases:Case 1. � = !�+1. Let D = fs � N : �s 2 B0minsg:This is an !�-uniform family on N sine eah family B0m is �m-uniform and supm �m = !�.Therefore, the next laim gives that (en) is �-unonditionally saturated for every � < �.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 20Claim. (en)n is D-unonditional with onstant at most 2 + ".Proof of Claim: Fix t 2 D, and let (ai)i2N be salars suh that kPi2Naieik = 1. Fix also s 2 C.Suppose �rst that min s 2 t. Then sine �(s[i℄) > min s � min t and �t 2 B0min t we obtain thatjh�(s);Xi2t aieiij � jamin sj+ " � (1 + ")kXi aieik: (35)Now suppose that min s =2 t, but s \ t 6= ; (otherwise h�(s);Pi2t aieii = 0). Leti0 = minfi < min s : s(i) \ t 6= ;g:Then for every i0 < i < min s we have that �(s[i℄)> max si0 � min t, sojXj2t aj�(s; i)(j)j< "�(s[i℄); (36)hene jh�(s) � u;Xi2t aieiij �j Xj2t\s(i0)aj�(s; i0)(j)j+ Xi0<i<min s jXj2t aj�(s; i)(j)j==jh�(s) � (fng [ s(0) [ � � � [ (s(i0) \ t)); Xi�min t aieiij++ Xi0<i<min s jXj2t aj�(s; i)(j)j � k Xi�min taieik+ "kXi2Naieik ��(2 + ")kXi aieik; (37)the last inequality beause (ei) is monotone. �Case 2. � = ! ,  a ountable limit ordinal. The desired result follows from the following fat.Claim. For every n 2 N; the sequene (ei) is Bn0 -unonditional with onstant at most 2n+ 1.Proof of Claim: Fix n 2 N and t 2 Bn0 . Let (ai)i2N be salars suh that kPi2Naieik = 1. Fixs 2 C. Suppose �rst that n � min s. Then in a similar manner that in Case 1 one an showthat jh�(s);Xi2t aieiij � jamin sj+ " � (1 + ")kXi aieik: (38)Suppose that m = min s < n, thenjh�(s);Xi2t aieiij �jamin sj+ m�1Xi=0 j Xj2s(i)\taj�(s; i)(j)j==jamin sj+ m�1Xi=0 jh�(s) � ui; Xj�min(s(i)\t)ajij ��(2m+ 1)kXi aieik: (39)where ui = s(0) [ � � � [ (s(i)\ t). ��
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